NO142577B - PROCEDURE FOR MICROSUSPENSION POLYMERIZATION FOR THE PREPARATION OF A LATEX - Google Patents

PROCEDURE FOR MICROSUSPENSION POLYMERIZATION FOR THE PREPARATION OF A LATEX Download PDF

Info

Publication number
NO142577B
NO142577B NO2994/73A NO299473A NO142577B NO 142577 B NO142577 B NO 142577B NO 2994/73 A NO2994/73 A NO 2994/73A NO 299473 A NO299473 A NO 299473A NO 142577 B NO142577 B NO 142577B
Authority
NO
Norway
Prior art keywords
sulfur
hydrogen
coke
temperature
mesh
Prior art date
Application number
NO2994/73A
Other languages
Norwegian (no)
Other versions
NO142577C (en
Inventor
Anthony John Park
Alan Charles Sturt
Richard Harvey Williams
Original Assignee
Bp Chem Int Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bp Chem Int Ltd filed Critical Bp Chem Int Ltd
Publication of NO142577B publication Critical patent/NO142577B/en
Publication of NO142577C publication Critical patent/NO142577C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

Fremgangsmåte for fjerning av svovel fra carbonholdige materialer. Process for removing sulfur from carbonaceous materials.

Foreliggende oppfinnelse tilveiebringer en fremgangsmåte for fjerning av svovel fra carbonholdige materialer, særlig for avsvovling av petroleumkoks. The present invention provides a method for removing sulfur from carbonaceous materials, in particular for desulphurisation of petroleum coke.

Den nylig utviklete fluidiseringsprosess for fremstilling av koks og termisk over-føring av tyngere hydrocarbonolj er til let-tere fraksjoner, gir fluidisert koks som vanligvis har et høyt svovelsinnhold, f. eks. mellom 5 og 8 pst. svovel eller mer, noe som er et hovedproblem ved effektiv nyttig-gjørelse av prosessen. The recently developed fluidization process for the production of coke and thermal transfer of heavier hydrocarbon oil to lighter fractions produces fluidized coke which usually has a high sulfur content, e.g. between 5 and 8 per cent sulfur or more, which is a main problem in the efficient utilization of the process.

For de fleste formål både som høyere-verdig brennstoff og til ikke-brennstoff-formål kreves koks med lavt svovelinnhold, med under ca. 3 vektsprosent og i noen tilfelle under 1,5 vektsprosent svovel. Det høye svovelinnhold er uønsket fordi i det minste en del av svovelet forurenser produktene fremstilt ved anvendelse av koksen. Når koks med høyt svovelinnhold brennes, frigjøres videre svovelet som svo-veldioxyd, som ikke bare forårsaker korro-sjonsskade på apparaturen, men også har en helseskadende virkning ved forurens-ning av atmosfæren. For most purposes, both as a higher-value fuel and for non-fuel purposes, coke with a low sulfur content is required, with less than approx. 3% by weight and in some cases below 1.5% by weight of sulphur. The high sulfur content is undesirable because at least part of the sulfur contaminates the products produced by using the coke. When coke with a high sulfur content is burned, the sulfur is further released as sulfur dioxide, which not only causes corrosion damage to the equipment, but also has a harmful effect on health by polluting the atmosphere.

Såkalt «grønn» eller vanlig langsomt-dannet (green or delayed) petroleumkoks byr på et lignende problem når det gjelder svovelinnholdet. So-called "green" or ordinary slowly-formed (green or delayed) petroleum coke presents a similar problem with regard to the sulfur content.

Det er hittil foreslått mange fremgangsmåter til fjerning av svovel fra pe-troleumkokser. Noen av disse omfatter av-brenning av svovelet, andre behandlingen av koksen med syre, og i noen tilfelle anvendes elektrolyse i forbindelse med det sistnevnte. Andre fremgangsmåter som er mer beslektet med den foreliggende oppfinnelse, omfatter behandlingen av koks ved forhøyete temperaturer og ved atmosfærisk eller forhøyet trykk med visse gas-ser, som f. eks. nitrogen, carbonmonoxyd, carbondioxyd, ammoniakk, vanndamper, oxygen, hydrogen og forskjellige kombina-sjoner derav. Imidlertid har alle disse fremgangsmåter ulemper ved at de ikke er i stand til å minske svovelinnholdet til det uønskete lave innhold, eller de omfatter uforholdsmessig dyre operasjoner. To date, many methods have been proposed for removing sulfur from petroleum cokes. Some of these include burning off the sulphur, others the treatment of the coke with acid, and in some cases electrolysis is used in connection with the latter. Other methods which are more closely related to the present invention include the treatment of coke at elevated temperatures and at atmospheric or elevated pressure with certain gases, such as e.g. nitrogen, carbon monoxide, carbon dioxide, ammonia, water vapour, oxygen, hydrogen and various combinations thereof. However, all these methods have disadvantages in that they are not capable of reducing the sulfur content to the undesirably low content, or they involve disproportionately expensive operations.

Den nye fremgangsmåte i henhold til foreliggende oppfinnelse til behandlingen av petroleumkoks avhjelper disse ulemper og reduserer innholdet av svovel slik at det kan godtas kommersielt. Denne fremgangsmåte er tilrettelagt slik at den kan utføres økonomisk i stor målestokk og er i stand til å fjerne ikke mindre enn 60 pst. og opptil 90 pst. av svovelet til stede i petroleumkoks. The new method according to the present invention for the treatment of petroleum coke remedies these disadvantages and reduces the content of sulfur so that it can be accepted commercially. This process is designed so that it can be carried out economically on a large scale and is capable of removing not less than 60 per cent and up to 90 per cent of the sulfur present in petroleum coke.

Mer spesielt tilveiebringer den foreliggende oppfinnelse en fremgangsmåte til fjerning av svovel fra carbonholdige materialer, så som f. eks. petroleumkoks, ved behandling av nevnte materialer med hydrogen ved forhøyet temperatur og atmosfærisk trykk, karakterisert ved at carbonholdige materialer som har en korn-størrelse på 200 mesh eller mindre og som inneholder minst 3 pst. flyktige bestanddeler, hydrogenbehandles uten forutgående oxydasjon ved en temperatur fra 600 til 950° C i 1 til 23 timer slik at minst 2 pst. av de flyktige bestanddeler forblir igjen i materialet og mist 60 pst. svovel er fjernet fra dette. More particularly, the present invention provides a method for removing sulfur from carbonaceous materials, such as e.g. petroleum coke, by treating said materials with hydrogen at elevated temperature and atmospheric pressure, characterized in that carbonaceous materials which have a grain size of 200 mesh or less and which contain at least 3 percent volatile components, are hydrogen treated without prior oxidation at a temperature from 600 to 950° C for 1 to 23 hours so that at least 2 percent of the volatile constituents remain in the material and at least 60 percent of the sulfur is removed from it.

Det følgende er en detaljert beskrivelse av foretrukne utførelsesformer av oppfinnelsen og bør leses i forbindelse med den vedlagte tegning som er en skjematisk beskrivelse av en foretrukken måte å ut-føre fremstillingen på i kommersiell målestokk. The following is a detailed description of preferred embodiments of the invention and should be read in connection with the attached drawing which is a schematic description of a preferred way of carrying out the manufacture on a commercial scale.

Oppfinnelsen er basert på den opp-dagelse at en stor prosent av svovelet kan fjernes fra carbonholdige materialer inneholdende mer enn ca. 3 pst. flyktige stoffer, som f. eks. petroleumkoks, ved å ut-sette koksen for påvirkningen av hydrogen ved regulerte betingelser m.h.t. temperatur, tid og partikkelstørrelse av materialet som behandles. Det er funnet at under disse betingelser, når hydrogen ledes gjennom eller over koksen, forenes hydrogenet med svovelet i koksen og danner hydrogensulfid som fjernes av hydrogen-strømmen. Det er videre funnet at effek-tiviteten hvormed svovel fjernes, har en uventet tilknytning til innholdet av flyktige stoffer i koksen, og at for fjerningen av 60—90 pst. eller mer svovel, som den foreliggende fremgangsmåte særlig vedrø-rer, må reaksjonsbetingelsene m.h.t. temperatur og tid være slik at minst en del av de flyktige stoffer i koksen beholdes deri inntil den ønskete mengde svovel er fjernet. Det er således funnet at maksi-mumstemperaturen er kritisk, idet det har vist seg at ved temperaturer over kalsine-ringstemperaturen for koksen, dvs. ca. 950° C, er den totale mengde svovel som kan fjernes, også under lengere opphetning, vesentlig mindre enn ved lavere temperaturer. Den kritiske temperatur for maksimal fjerning av svovel er funnet å være ca. 750° C. Ved temperaturer over ca. 750° C er graden hvormed svovel fjernes, maksimal under den innledende opphetnings-periode, med graden avtar raskere ved de påfølgende opphetningsperioder enn den gjør ved 750° C. Den laveste temperatur hvorved mer enn 60 pst. av svovelet kan fjernes innen en kommersiell praktisk tids-periode, er ca. 600° C. The invention is based on the discovery that a large percentage of the sulfur can be removed from carbonaceous materials containing more than approx. 3 percent volatile substances, such as e.g. petroleum coke, by exposing the coke to the influence of hydrogen under regulated conditions in terms of temperature, time and particle size of the material being processed. It has been found that under these conditions, when hydrogen is passed through or over the coke, the hydrogen combines with the sulfur in the coke and forms hydrogen sulphide which is removed by the hydrogen flow. It has also been found that the effectiveness with which sulfur is removed has an unexpected connection to the content of volatile substances in the coke, and that for the removal of 60-90 per cent or more sulphur, which the present method particularly concerns, the reaction conditions must be temperature and time be such that at least part of the volatile substances in the coke are retained therein until the desired amount of sulfur has been removed. It has thus been found that the maximum temperature is critical, as it has been shown that at temperatures above the calcination temperature for the coke, i.e. approx. 950° C, the total amount of sulfur that can be removed, even during longer heating, is significantly less than at lower temperatures. The critical temperature for maximum removal of sulfur has been found to be approx. 750° C. At temperatures above approx. 750° C is the rate at which sulfur is removed, maximum during the initial heating period, with the rate decreasing more rapidly in subsequent heating periods than it does at 750° C. The lowest temperature at which more than 60 percent of the sulfur can be removed within a commercial practical time period, is approx. 600°C.

Ved en særlig foretrukket utførelses-form av fremgangsmåten ifølge oppfinnelsen behandles det karbonholdige materiale først ved en temperatur i området 750 til 950° C for fjerning av en mengde svovel opp til 60 vektsprosent, og deretter ved en temperatur i området 600 til 750°C i 8 til 23 timer for maksimal fjerning av svovel. In a particularly preferred embodiment of the method according to the invention, the carbonaceous material is first treated at a temperature in the range 750 to 950°C to remove an amount of sulfur up to 60% by weight, and then at a temperature in the range 600 to 750°C in 8 to 23 hours for maximum sulfur removal.

Fremgangsmåten etter den foreliggede oppfinnelse har den fordel at det ska-delige svovel fjernes i form av hydrogensulfid som kan anvendes som sådant, eller brennes til elementært svovel eller svovel-dioxyd som kan oxyderes til svoveltrioxyd for fremstilling av svovelsyre. The method according to the present invention has the advantage that the harmful sulfur is removed in the form of hydrogen sulphide which can be used as such, or burnt to elemental sulfur or sulfur dioxide which can be oxidized to sulfur trioxide to produce sulfuric acid.

Hydrogensulfidet kan fjernes fra det ureagerte hydrogen ved kjøling, kompresjon, kompresjon og kjøling eller andre kjente metoder som f. eks. kjemisk absorb-sjon. I sistnevnte tilfelle kan hydrogensulfidet behandles på vanlig måte for gjen-vinning av svovel. Hydrogenet som er be-fridd for hydrogensulfid, ledes tilbake til avsvovlingsenheten. The hydrogen sulphide can be removed from the unreacted hydrogen by cooling, compression, compression and cooling or other known methods such as e.g. chemical absorption. In the latter case, the hydrogen sulphide can be treated in the usual way for the recovery of sulphur. The hydrogen, which has been freed from hydrogen sulphide, is led back to the desulphurisation unit.

Som vist på tegningen, mates den flu-idiserte koks inn i en kulemølle (10) hvor det males til den påkrevde —200 mesh par-tikkelstørrelse. Det malte materiale klas-sifiseres (12), og det for grove materiale ledes tilbake til møllen (10). Det —200 mesh materiale lagres (14) og mates fra dette lager til reaktoren (16). As shown in the drawing, the fluidized coke is fed into a ball mill (10) where it is ground to the required -200 mesh particle size. The ground material is classified (12), and material that is too coarse is led back to the mill (10). The -200 mesh material is stored (14) and fed from this storage to the reactor (16).

Naturgass fra en forråds-beholder (18) ledes inn i en cracking-enhet (20) hvori den crackes slik at man får hydrogen som ledes inn i reaktoren (16). Hydrogenet be-høver ikke å være rent, og inneholder i al-minnelighet ca. 5 pst. naturgass. Hydrogenet fra cracking-enheten renses imidlertid fortrinnsvis på vanlig måte ved å vaske ut i det minste en del av tilstede-værende C02 og CO og naturgass med en aminoppløsning. Natural gas from a storage container (18) is led into a cracking unit (20) where it is cracked so that hydrogen is obtained which is led into the reactor (16). The hydrogen does not have to be pure, and generally contains approx. 5 percent natural gas. However, the hydrogen from the cracking unit is preferably purified in the usual way by washing out at least part of the CO 2 and CO and natural gas present with an amine solution.

Luft og naturgass ledes til varme-enheten (24) hvori blandingen brennes, og det varme forbrenningsprodukt føres inn i en varmeutveksler (26) for oppvarming av hydrogenet til den ønskete temperatur, fortrinnsvis ca. 750° C for maksimal fjerning av svovel. Det varme hydrogen pas-serer så oppover gjennom koksen inn i reaktoren under fluidiseringsbetingelser. Air and natural gas are led to the heating unit (24) in which the mixture is burned, and the hot combustion product is fed into a heat exchanger (26) for heating the hydrogen to the desired temperature, preferably approx. 750° C for maximum sulfur removal. The hot hydrogen then passes upwards through the coke into the reactor under fluidization conditions.

Blandingen av hydrogen og hydrogensulfid fra reaktoren føres til kompresjon-og kjøle-enheten (30) hvori hydrogensulfidet overføres til væske og ledes inn i en lagringstank (32). Hydrogenet fra enheten (30) ledes tilbake til reaktoren. The mixture of hydrogen and hydrogen sulphide from the reactor is fed to the compression and cooling unit (30) in which the hydrogen sulphide is transferred to liquid and led into a storage tank (32). The hydrogen from the unit (30) is led back to the reactor.

Den avsvovlete koks kalsineres i en enhet (40) og er så ferdig til bruk, f. eks. ved fremstilling av elektroder og lignende. The desulphurised coke is calcined in a unit (40) and is then ready for use, e.g. in the production of electrodes and the like.

De følgende eksempler skal tjene til å klargjøre den foreliggede oppfinnelse. The following examples shall serve to clarify the present invention.

Eksempel 1 Example 1

Prøver på 1 gram av fluidisert koks (—200 mesh, 5 pst. S) ble anbrakt i et Samples of 1 gram of fluidized coke (—200 mesh, 5 percent S) were placed in a

kvartsrør og oppvarmet til forskjellige temperaturer i en rørovn. I hvert tilfelle ble hydrogen ledet over prøven, idet man begynte ved romtemperatur, med en til-førsel på 20 cm3 pr. min., og resultatene er gjengitt i tabell I. quartz tubes and heated to different temperatures in a tube furnace. In each case, hydrogen was passed over the sample, starting at room temperature, with a supply of 20 cm 3 per min., and the results are reproduced in table I.

Tabell I viser den synkende avsvov-lingsgrad etter den første oppvarmnings-periode med økning i temperaturen, og at under de anvendte betingelser, var den kritiske temperatur 750° C for maksimal fjerning av svovel. Dette er tilfelle også for va-rierende betingelser som det vil vises ved senere eksempler i denne beskrivelse. Hvis det ønskes avsvoveling på bare ca. 60 pst., kan det velges en temperatur på ca. 950° C fordi behandlingstiden da er minimal. Tilsvarende resultater kan oppnås ved anvendelse av lavere temperaturer på be-kostning av at behandlingstiden blir lenger. Table I shows the decreasing degree of desulphurisation after the first heating period with increase in temperature, and that under the conditions used, the critical temperature was 750° C for maximum removal of sulphur. This is also the case for varying conditions, as will be shown by later examples in this description. If desulphurisation of only approx. 60 per cent, a temperature of approx. 950° C because the processing time is then minimal. Corresponding results can be achieved by using lower temperatures at the expense of longer treatment times.

Eksempel 2 Example 2

Prøver på 1 gram av fluidisert koks, grønn petroleumkoks, metallurgisk koks og kokskull ble behandlet som i eksempel 1, men i hvert tilfelle ved 750° C. Kornstør-relsen av hver prøve var —200 mesh bortsett fra kokskull-prøvene som inneholdt partikler på opptil 2 mm. Samples of 1 gram of fluidized coke, green petroleum coke, metallurgical coke and coking coal were treated as in Example 1, but in each case at 750° C. The grain size of each sample was -200 mesh except for the coking coal samples which contained particles of up to 2 mm.

Resultatene vises i tabell II. The results are shown in Table II.

Resultatene vist i tabell II for behandlingen av metallurgisk koks, som er det samme materiale som kokskull bortsett fra at de flyktige bestanddeler er fjernet, viser tydelig viktigheten ved å beholde minst en vesentlig mengde av de flyktige bestanddeler i materialet før det utsettes for de nødvendige betingelser for fjerning av svovelet. The results shown in Table II for the treatment of metallurgical coke, which is the same material as coking coal except that the volatiles have been removed, clearly show the importance of retaining at least a substantial amount of the volatiles in the material before subjecting it to the necessary conditions. for removal of the sulphur.

Eksempel 3 Example 3

Prøver på 50 gram fluidisert koks som opprinnelig inneholdt 5 pst. svovel ble oppvarmet i en rørovn i 23 timer. Hydrogen ble ledet over prøvene i en grad av 120 cm3 pr. min. Partikkelstørrelsene i prøvene A og C var —200 mesh, og av prøvene B og D var 37 pst. + 80 mesh, 14 pst. + 100 mesh, 37 pst. + 200 mesh og 12 pst. — 200 mesh. Samples of 50 grams of fluidized coke which originally contained 5 percent sulfur were heated in a tube furnace for 23 hours. Hydrogen was passed over the samples at a rate of 120 cm3 per my. The particle sizes in samples A and C were -200 mesh, and of samples B and D were 37% + 80 mesh, 14% + 100 mesh, 37% + 200 mesh and 12% - 200 mesh.

Resultatene er gjengitt i tabell III og viser at partikkelstørrelsen for petroleum-koksen er kritisk og må holdes under ca. 200 mesh for å få tilfredsstillende av-svo veiing. The results are reproduced in Table III and show that the particle size for the petroleum coke is critical and must be kept below approx. 200 mesh to obtain satisfactory av-svo weighing.

Virkningene av kornstørrelse og temperatur på fjerningen av svovel vises videre i eks. IV. The effects of grain size and temperature on the removal of sulfur are further shown in ex. IV.

Eksempel 4 Example 4

Prøver på 10 gram av grønn petroleumkoks inneholdende 1,1 pst. svovel ble behandlet ved forskjellige temperaturer i en rørovn i 23 timer, og en hydrogenstrøm på 120 ems pr. min. ble anvendt. Prøve A hadde en kornstørrelse på —325 mesh og prøvene B og C hadde en kornstørrelse fra Samples of 10 grams of green petroleum coke containing 1.1 percent sulfur were treated at different temperatures in a tube furnace for 23 hours, and a hydrogen flow of 120 ems per my. was applied. Sample A had a grain size of -325 mesh and samples B and C had a grain size of from

—60 til +325 mesh. -60 to +325 mesh.

Resultatene er gjengitt i tabell IV. The results are reproduced in table IV.

Eksempel 5 Example 5

Prøver på 50 gram av —200 mesh fluidisert koks (5 pst. svovel) og grønn petroleumkoks (1, 1 pst.) svovel) ble behandlet i rørovn ved en temperatur på 750° C. Hydrogen ble ledet over prøvene i forskjel-lig grad. Samples of 50 grams of -200 mesh fluidized coke (5 per cent sulphur) and green petroleum coke (1.1 per cent sulphur) were treated in a tube furnace at a temperature of 750° C. Hydrogen was passed over the samples to varying degrees .

Resultatene er gjengitt i tabell V og viser at den grad hydrogen strømmer med innvirker på den hastighet svovel fjernes med i noen utstrekning, men ikke propor-sjonalt med økningen av hydrogenstrøm-men. The results are reproduced in table V and show that the degree to which hydrogen flows affects the rate at which sulfur is removed to some extent, but not proportionally to the increase in hydrogen flow.

Claims (2)

1. Fremgangsmåte for fjerning av svovel fra karbonholdige materialer, så som f. eks. petroleumkoks, ved behandling av nevnte materialer med hydrogen ved for-høyet temperatur og atmosfærisk trykk, karakterisert ved at karbonholdige materialer som har en kornstørrelse på 200 mesh eller mindre og som inneholder minst 3 vektprosent flyktige bestanddeler, hydrogenbehandles uten forutgående oksydasjon ved en temperatur fra 600 til 950° C i 1 til 23 timer slik at minst 2 vektsprosent av de flyktige bestanddeler forblir igjen i materialet og minst 60 vektprosent er fjernet fra dette.1. Process for removing sulfur from carbonaceous materials, such as e.g. petroleum coke, by treating said materials with hydrogen at elevated temperature and atmospheric pressure, characterized in that carbonaceous materials which have a grain size of 200 mesh or less and which contain at least 3% by weight of volatile components, are hydrogenated without prior oxidation at a temperature from 600 to 950° C for 1 to 23 hours so that at least 2% by weight of the volatile constituents remain in the material and at least 60% by weight are removed from it. 2. Fremgangsmåte som angitt i på-stand 1, karakterisert ved at det karbonholdige materiale først behandles ved en temperatur i området 750 til 950° C for fjerning av en mengde svovel opp til 60 vektprosent, og deretter ved en temperatur i området 600 til 750° C i 8 til 32 timer for maksimal fjerning av svovel.2. Method as stated in claim 1, characterized in that the carbonaceous material is first treated at a temperature in the range 750 to 950° C to remove an amount of sulfur up to 60 percent by weight, and then at a temperature in the range 600 to 750 ° C for 8 to 32 hours for maximum sulfur removal.
NO2994/73A 1972-08-16 1973-07-24 PROCEDURE FOR MICROSUSPENSION POLYMERIZATION FOR THE PREPARATION OF A LATEX NO142577C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB3820072 1972-08-16
GB3819972A GB1429627A (en) 1972-08-16 1972-08-16 Production of vinyl halide paste-forming polymers
GB1516773 1973-03-29

Publications (2)

Publication Number Publication Date
NO142577B true NO142577B (en) 1980-06-02
NO142577C NO142577C (en) 1980-09-10

Family

ID=27257225

Family Applications (1)

Application Number Title Priority Date Filing Date
NO2994/73A NO142577C (en) 1972-08-16 1973-07-24 PROCEDURE FOR MICROSUSPENSION POLYMERIZATION FOR THE PREPARATION OF A LATEX

Country Status (10)

Country Link
JP (1) JPS5838442B2 (en)
CA (1) CA1017099A (en)
DE (1) DE2341518B2 (en)
ES (1) ES417887A1 (en)
FR (1) FR2196358B1 (en)
GB (1) GB1429627A (en)
IT (1) IT1003121B (en)
NL (1) NL176463C (en)
NO (1) NO142577C (en)
SE (1) SE409719B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141441A (en) * 1981-02-27 1982-09-01 Mitsubishi Monsanto Chem Co Production of paste sol
DE3119967A1 (en) * 1981-05-20 1982-12-16 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING CONCENTRATED POLYACRYLATE DISPERSIONS
JPS5912956A (en) * 1982-07-14 1984-01-23 Mitsubishi Monsanto Chem Co Manufacture of polyvinyl chloride resin composition
JPS59180339A (en) * 1983-03-30 1984-10-13 Shimadzu Corp Differential pressure transmitter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1029563B (en) * 1956-05-30 1958-05-08 Hoechst Ag Process for the production of aqueous polyvinyl chloride dispersions
NL126421C (en) * 1959-05-09
BE628582A (en) * 1962-02-19

Also Published As

Publication number Publication date
NO142577C (en) 1980-09-10
GB1429627A (en) 1976-03-24
IT1003121B (en) 1976-06-10
DE2341518C3 (en) 1990-05-10
FR2196358A1 (en) 1974-03-15
DE2341518B2 (en) 1981-07-30
CA1017099A (en) 1977-09-06
SE409719B (en) 1979-09-03
JPS5838442B2 (en) 1983-08-23
ES417887A1 (en) 1976-03-16
FR2196358B1 (en) 1978-03-10
DE2341518A1 (en) 1974-02-28
NL7311240A (en) 1974-02-19
NL176463C (en) 1985-04-16
JPS49124187A (en) 1974-11-27

Similar Documents

Publication Publication Date Title
US2726148A (en) Production of low sulfur solid carbonaceous fuels
US3130133A (en) Process for desulfurizing petroleum coke
WO2013053427A1 (en) Process for dry cooling of coke with steam with subsequent use of the synthesis gas produced
NO793214L (en) CATALYTIC CRACKING PROCEDURE, CRACKING CATALYST FOR USE IN THE PROCEDURE AND PROCEDURE FOR PRODUCING THE CATALYST
US2717868A (en) Desulfurization of low temperature carbonization char
GB798239A (en) Improvements in regenerating hydroforming catalysts
NO142577B (en) PROCEDURE FOR MICROSUSPENSION POLYMERIZATION FOR THE PREPARATION OF A LATEX
US2393214A (en) Processing acid sludge
US2743216A (en) Calcination of fluid coke utilizing shot
US4268358A (en) Method of reducing the sulfur content of coal reduced to dust
EP0017285A1 (en) Process for the recovery of metals from catalysts used in the hydrodesulfurization of hydrocarbons
US3272721A (en) Process for desulfurizing and coking high sulfur content coal
US2166611A (en) Synthesis of ammonia from its elements
US3559296A (en) Process for the regeneration of hydrocarbon adsorbents
US3753683A (en) Method and apparatus for carbonizing and desulfurizing coal-iron compacts
US2743218A (en) Recovery of product vapors from fluid coke
US3211673A (en) Manufacture of active char by solvent extraction of coal and activation of the residue
Ibrahim et al. The effect of increased residence time on the thermal desulphurization of Syrian petroleum coke
JPS646124B2 (en)
US3971712A (en) Process for removing sulfur impurities from a fluid by contact with silver articles
US4308668A (en) Process for heat treatment of coal
US1544328A (en) Process of making aluminum chloride
US3322550A (en) Process for treating petroleum coke
JPS61249600A (en) Treatment of oil storage tank sludge
GB2052701A (en) Method of Quenching Hot Bulk Material