NO142075B - PROCEDURE FOR ASYMMETRIC HYDROGENERATION - Google Patents

PROCEDURE FOR ASYMMETRIC HYDROGENERATION Download PDF

Info

Publication number
NO142075B
NO142075B NO1757/71A NO175771A NO142075B NO 142075 B NO142075 B NO 142075B NO 1757/71 A NO1757/71 A NO 1757/71A NO 175771 A NO175771 A NO 175771A NO 142075 B NO142075 B NO 142075B
Authority
NO
Norway
Prior art keywords
parts
group
optically active
mixture
rhodium
Prior art date
Application number
NO1757/71A
Other languages
Norwegian (no)
Other versions
NO142075C (en
Inventor
William Stanish Knowles
Milton Jerome Sabacky
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Co filed Critical Monsanto Co
Priority to NO770472A priority Critical patent/NO148322C/en
Publication of NO142075B publication Critical patent/NO142075B/en
Publication of NO142075C publication Critical patent/NO142075C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • C07F15/008Rhodium compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1895Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing arsenic or antimony
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2291Olefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/36Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by hydrogenation of carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/32Esters thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/34Halides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/66Arsenic compounds
    • C07F9/70Organo-arsenic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/825Osmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

Når et olefin, som i sin mettede form er optisk aktivt, blir hydrogenert, er det vanlige sluttproduktet optiskt inaktivt hovedsakelig fordi en ekvivalent mengde av begge enantiomorfer (racemisk blanding) dannes. For å erholde den onskede enan- When an olefin, which in its saturated form is optically active, is hydrogenated, the usual end product is optically inactive mainly because an equivalent amount of both enantiomorphs (racemic mixture) is formed. In order to obtain the desired enan-

tiomorf må blandingen separeres i sine optiske komponenter. thiomorph, the mixture must be separated into its optical components.

Denne fremgangsmåte er arbeidskrevende og dyr, og resulterer This method is laborious and expensive, and results

ofte i destruksjon av den uonskede enantiomorf. På grunn av often in the destruction of the unwanted enantiomorph. Because of

disse vanskeligheter har en okt oppmerksomhet blitt viet de asymmetriske synteser, hvorved i hovedsak en av enantiomorfene erholdes. these difficulties, a keen attention has been devoted to the asymmetric syntheses, whereby essentially one of the enantiomorphs is obtained.

Det har nå blitt funnet at utmerkede utbytter av. en onsket enantiomorf av a-aminosyrer kan erholdes av de olefiniske forbindelser som er (3-substituerte-a-akrylamido-akrylsyrer og/ eller deres salter ved hydrogenering av olefinbindingen i nærvær av et optisk aktivt koordinert metallkompleks som hydrogenerings-katalysator. En slik reaksjon illustreres ved hjelp av folgende ligning: It has now been found that excellent yields of a desired enantiomorph of α-amino acids can be obtained from the olefinic compounds which are (3-substituted-α-acrylamido-acrylic acids and/or their salts by hydrogenation of the olefinic bond in the presence of an optically active coordinated metal complex as hydrogenation catalyst. Such a reaction is illustrated using the following equation:

hvorved P-substituenten er fenyl. wherein the P substituent is phenyl.

(3-substituenten kan eksemplifiseres ved slike grupper som hydrogen, alkyl, substituert alkyl, aryl, substituert aryl, aralkyl, amino, benzylamino, dibenzylamino, nitro, karboksyl og karboksylester, o.l. Fagfolk vil også erkjenne at substituenten kan utvelges blant et stort antall grupper, og at disse bare er begrenset av a-aminosyren som er det onskede sluttproduktet. (The 3-substituent can be exemplified by such groups as hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, aralkyl, amino, benzylamino, dibenzylamino, nitro, carboxyl and carboxyl ester, etc. Those skilled in the art will also recognize that the substituent can be selected from a large number of groups , and that these are only limited by the α-amino acid which is the desired end product.

Eksempler på a-aminosyrer, hvis enantiomorfer kan hurtig fremstilles i overensstemmelse med fremgangsmåten ifblge nærværende oppfinnelse, er alanin, p-klorfenylalanin, tryptofan, fenylalanin, 3-(3,4-dihydroksyfenyl)-alanin, 5-hydroksytryptofan, lysin, histidin, tyrosin, leucin, glutaminsyre og valin. Examples of α-amino acids, whose enantiomorphs can be rapidly prepared in accordance with the method according to the present invention, are alanine, p-chlorophenylalanine, tryptophan, phenylalanine, 3-(3,4-dihydroxyphenyl)-alanine, 5-hydroxytryptophan, lysine, histidine, tyrosine, leucine, glutamic acid and valine.

Acylgruppen kan være substituert eller usubstituert acyl, og eksempler på slike grupper er acetyl, benzoyl, formyl, The acyl group can be substituted or unsubstituted acyl, and examples of such groups are acetyl, benzoyl, formyl,

propionyl, butyry1, toluyl, nitrobenzoyl, eller andre acyl-varianter som anvendes som blokkeringsgrupper i peptidsyntesen etc. propionyl, butyryl, toluyl, nitrobenzoyl, or other acyl variants used as blocking groups in peptide synthesis, etc.

Det blir foretrukket at en slik katalytisk hydrogenering av P-substituerte-oc-acylamido-akrylsyrer utfores i nærvær av en base. It is preferred that such a catalytic hydrogenation of P-substituted-oc-acylamido-acrylic acids is carried out in the presence of a base.

P-substituerte-a-acylamido-akrylsyrer og/eller deres salter er prekursorer av de substituerte og usubstituerte alaniner. P-substituted-α-acylamido-acrylic acids and/or their salts are precursors of the substituted and unsubstituted alanines.

Forbindelser, som representeres av folgende strukturformel gir utmerkede resultater med fremgangsmåten ifdlge nærværende oppfinnelse, og er derfor forbindelser som spesielt er egnede for fremgangsmåten ifolge nærværende oppfinnelse. Compounds represented by the following structural formula give excellent results with the method according to the present invention, and are therefore compounds which are particularly suitable for the method according to the present invention.

hvor T er utvalgt fra gruppen bestående av hydrogen, karboksyl, usubstituert og substituert alkyl, tienyl, P-indolyl, (3-imidazolyl, furyl, piperonyl og where T is selected from the group consisting of hydrogen, carboxyl, unsubstituted and substituted alkyl, thienyl, P-indolyl, (3-imidazolyl, furyl, piperonyl and

hvor B, C og D er valgt uavhengig fra hverandre fra grupper bestående av hydrogen, alkyl, karboksyl, hydrok-syl (og deres metallsalter), alkoksy, halogen, acyloksy, aryloksy, aralkyloksy, amino, alkylamino, nitro og cyano, where B, C and D are independently selected from groups consisting of hydrogen, alkyl, carboxyl, hydroxyl (and their metal salts), alkoxy, halogen, acyloxy, aryloxy, aralkyloxy, amino, alkylamino, nitro and cyano,

Z er utvalgt fra gruppen bestående av substituert Z is selected from the group consisting of substituted

eller usubstituert acyl, ifolge det. oven beskrevne, or unsubstituted acyl, accordingly. described above,

og p, q og r er hele tall fra O til 5 forutsatt at summen av p, q og r ikke.overstiger 5. and p, q and r are integers from 0 to 5 provided that the sum of p, q and r does not exceed 5.

En spesielt foretrukket utforelsesform, som også illustrerer fremgangsmåten ifolge denne oppfinnelse, er fremstillingen av substituerte og usubstituerte fenylalaniner ved katalytisk asymmetrisk hydrogenering ifolge nærværende oppfinnelse. Umettede prekursorer av slike a-aminosyrer kan fremstilles A particularly preferred embodiment, which also illustrates the method according to this invention, is the preparation of substituted and unsubstituted phenylalanines by catalytic asymmetric hydrogenation according to the present invention. Unsaturated precursors of such α-amino acids can be prepared

ved hjelp av Erlenmeyer-azlaktonsyntesen, hvorved et substituert eller usubstituert benzaldehyd får reagere med et acylgiycin, som f.eks. acetylglycin, og acetanhydrid for dannelse av azlakton, hvilket blir hydrolysert for å danne den umettede prekursor. En slik reaksjon illustreres ved hjelp av folgende ligninger (ved anvendelse av benzaldehyd og acetylglycin som illustrative reaktanter): by means of the Erlenmeyer-azlactone synthesis, whereby a substituted or unsubstituted benzaldehyde is allowed to react with an acylglycine, such as e.g. acetylglycine, and acetic anhydride to form azlactone, which is hydrolyzed to form the unsaturated precursor. Such a reaction is illustrated by means of the following equations (using benzaldehyde and acetylglycine as illustrative reactants):

Ved slike reaksjoner kan substituentene på fenylgruppen velges blant et stort antall grupper, og de er bare begrenset av fenylalaninet som er det onskede sluttproduktet. Dessuten kan det forekomme at slike substituentgrupper i seg selv er prekursorer av substituenter som er onsket i sluttproduktet, og som lett kan omdannes til slike onskede substituenter. Hvis det substituerte benzaldehydet f.eks. er vanillin, og man onsker å fremstille 3- (3,4-dihydroksyfenyl)-alanin kan den umettede prekursoren være a-acetamido-4-hydroksy-3-metoksy-cinnaminsyre, som vil gi N-acetyl-3-(4-hydroksy-3-metoksyfenyl)-alanin ved hydrogenering, og hvilken derefter kan omdannes til 3-(3,4-dihydroksyfenyl)-alanin ved enkel hydrolyse. L-enantiomorfen av slike fenylalaniner er spesielt onskelige. F.eks. er 3-(3,4-dihydroksyfenyl)-L-alanin ("L-DOPA") velkjent for sin anvendelighet ved behandling av symptomer på Parkinsons sykdom. Likeledes har L-fenylalanin funnet anvendelse som et intermediært produkt ved fremstillingen av alkylestere av L-aspartyl-L-fenylalanin, som i den senere tid har vist seg å være et utmerket syntetisk søtningsstoff. In such reactions, the substituents on the phenyl group can be chosen from a large number of groups, and they are only limited by the phenylalanine which is the desired end product. Moreover, it may occur that such substituent groups are themselves precursors of substituents which are desired in the final product, and which can easily be converted into such desired substituents. If the substituted benzaldehyde e.g. is vanillin, and one wishes to produce 3-(3,4-dihydroxyphenyl)-alanine, the unsaturated precursor can be α-acetamido-4-hydroxy-3-methoxy-cinnamic acid, which will give N-acetyl-3-(4- hydroxy-3-methoxyphenyl)-alanine by hydrogenation, and which can then be converted to 3-(3,4-dihydroxyphenyl)-alanine by simple hydrolysis. The L-enantiomorph of such phenylalanines is particularly undesirable. E.g. is 3-(3,4-dihydroxyphenyl)-L-alanine ("L-DOPA") well known for its utility in treating symptoms of Parkinson's disease. Likewise, L-phenylalanine has found use as an intermediate product in the production of alkyl esters of L-aspartyl-L-phenylalanine, which has recently proven to be an excellent synthetic sweetener.

De optisk aktive hydrogenerings-katalysatorer, som er anvendelige ifolge denne oppfinnelse, er loselige, koordinerte komplekser, som inneholder et metall utvalgt fra gruppen bestående av rhodium, iridium, ruthenium, osmium, palladium og platina i kombinasjon med minst en optisk aktiv fosfin- eller arsin-ligande. Disse katalysatorer er loselige i reaksjonsmassen, og det refereres derfor til disse som "homogene" katalysatorer. 5 6 7 Fosfin- eller arsin-ligande kan f.eks. være av formelen AR R R , 5 6 7 The optically active hydrogenation catalysts, which are applicable according to this invention, are soluble, coordinated complexes, which contain a metal selected from the group consisting of rhodium, iridium, ruthenium, osmium, palladium and platinum in combination with at least one optically active phosphine or arsine ligand. These catalysts are soluble in the reaction mass, and are therefore referred to as "homogeneous" catalysts. 5 6 7 Phosphine or arsine ligands can e.g. be of the formula AR R R , 5 6 7

hvor A betyr fosfor eller arsen og R , R og R velges uavhengig av hverandre fra gruppen bestående av hydrogen; alkyl eller alkoksy, med minst et karbonatom og maksimalt 12 karbonatomer; substituert alkyl hvorved man ved nevnte substitusjon utvelger grupper bestående av amino, karbonyl, aryl, nitro og alkoksy, hvorved nevnte alkoksy har maksimalt 4 karbonatomer$ aryl5 aryloksy; fenyl5 substituert fenyl, hvorved man ved nevnte substitusjon utvelger grupper bestående av alkoksy where A means phosphorus or arsenic and R , R , and R are independently selected from the group consisting of hydrogen; alkyl or alkoxy, having at least one carbon atom and a maximum of 12 carbon atoms; substituted alkyl whereby, by said substitution, groups consisting of amino, carbonyl, aryl, nitro and alkoxy are selected, whereby said alkoxy has a maximum of 4 carbon atoms$ aryl5 aryloxy; phenyl5 substituted phenyl, whereby groups consisting of alkoxy are selected by said substitution

og alkyl, hydroksy, aryloksy, amino og nitro, og at det ved nevnte substitusjon forekommer mindre enn 3 substituenter; cykloalkyl med minst 3 karbonatomer; substituert cykloalkyl; pyrryl; tienyl; furyl; pyridyl; piperidyl; og 3-kolesteryl. and alkyl, hydroxy, aryloxy, amino and nitro, and that less than 3 substituents occur in said substitution; cycloalkyl of at least 3 carbon atoms; substituted cycloalkyl; pyrryl; thienyl; furyl; pyridyl; piperidyl; and 3-cholesteryl.

Den optiske aktiviteten til metallkomplekset skyldes fosfin-eller arsin-liganden. Denne optiske aktivitet skyldes enten tre forskjellige grupper på fosfor- eller arsen-atomet eller ved at en optisk aktiv gruppe er bundet til fosfor- eller arsenatomet. The optical activity of the metal complex is due to the phosphine or arsine ligand. This optical activity is due either to three different groups on the phosphorus or arsenic atom or to an optically active group being bound to the phosphorus or arsenic atom.

Illustrative koordinerte metallkomplekser kan representeres av Illustrative coordinated metal complexes can be represented by

1 2 l 1 2 l

formlene M XnL3 eller M X^, hvor M betyr et metall utvalgt fra gruppen bestående av rhodium, iridium, ruthenium og osmium: M 2er utvalgt fra gruppen bestående av palladium og platina; the formulas M XnL3 or M X^ , where M means a metal selected from the group consisting of rhodium, iridium, ruthenium and osmium: M 2 is selected from the group consisting of palladium and platinum;

X er utvalgt fra gruppen bestående av hydrogen, fluor, brom, klor og jod; 1 er fosfin- eller arsin-ligande som tidligere definert og n er tallene 1 eller 3. X is selected from the group consisting of hydrogen, fluorine, bromine, chlorine and iodine; 1 is phosphine or arsine ligand as previously defined and n is the numbers 1 or 3.

I de ovennevnte koordinerte metallkompleksformlene, behover In the above coordinated metal complex formulas, needs

bare en ligande (L) å være optisk aktiv for å gjore reaksjonen og fremgangsmåten gj ennomfbrbar. only one ligand (L) to be optically active to make the reaction and process feasible.

Hvis den optiske aktiviteten av liganden skyldes en optisk aktiv gruppe som er bundet til fosfor eller arsenatomet, behover det bare være en slik gruppe, og de andre to gruppene kan være like eller inaktive. I dette tilfelle behover bare en av gruppene R 5 , R 6 eller R 7 å være optisk aktive, hvorved de resterende If the optical activity of the ligand is due to an optically active group bound to phosphorus or the arsenic atom, there need only be one such group, and the other two groups may be the same or inactive. In this case, only one of the groups R 5 , R 6 or R 7 needs to be optically active, whereby the remaining

to grupper kan være like eller inaktive. two groups can be equal or inactive.

Katalysatorer, som kan anvendes, omfatter uten at de er begrenset hertil, koordinerte metallkomplekser med nedenstående formler. Catalysts which can be used include, but are not limited to, coordinated metal complexes with the formulas below.

I formlene indikerer en stjerne asymmetri og således optisk aktivitet. Stjernen angir et asymmetrisk atom eller en dis-symmetrisk gruppe. Som eksempel viser R at fosfor eller arsen er asymmetrisk. Når ingen stjerne finnes så indikerer dette at ingen optisk aktivitet foreligger. In the formulas, a star indicates asymmetry and thus optical activity. The asterisk indicates an asymmetric atom or a dissymmetric group. As an example, R shows that phosphorus or arsenic is asymmetric. When no star is found, this indicates that there is no optical activity.

hvor M1, M~, X, A, KJ, \ ib og R7 har tidligere anqilU-betydninger. where M1, M~, X, A, KJ, \ib and R7 have previous anqilU meanings.

Det fremgår av de oven anforte katalysatorer at den dissymniet r ik<' gruppen kan være RJ, eller R7 og ikke begrenset til bare en gruppe. Dessuten kan det. forekomme en kombinasjon av delet som er bundet til metallet. It appears from the above-mentioned catalysts that the dissymnium r ik<' group can be RJ, or R7 and not limited to just one group. Besides, it can. occur a combination of the part that is bonded to the metal.

Det fremgår at de oven angitte formler ikke bare representerer It appears that the above formulas do not only represent

de koordinerte metallkomplekser, som inneholder to eller tre ligander som i formlene M 2 ^■ 2L2 eller M 1xnL3' men at de °9så representerer koordinerte metallkomplekser hvori antallet ligande-metall-koordinerte bindinger er beskrevet ved antallet av L i formlene, og hvorved disse bindinger er bestemt av ligandene av flertannet type. Selv om det f.eks. bare kan være to ligander i et spesielt koordinasjonsmetallkompleks, vil formlen M 1X fremdeles stå for komplekset hvis en eller to ligander er totannet, dvs. at de gir to koordinasjonsbindinger. På samme måte representerer formlen M"Sc også de komplekser hvori det bare finnes en ligande nærværende og hvis denne ligande er tretannet vil den gi tre koordinasjonsbindinger. the coordinated metal complexes, which contain two or three ligands as in the formulas M 2 ^■ 2L2 or M 1xnL3' but that they °9so represent coordinated metal complexes in which the number of ligand-metal coordinated bonds is described by the number of L in the formulas, and whereby these bonds are determined by the ligands of multidentate type. Although it e.g. can only be two ligands in a particular coordination metal complex, the formula M 1X will still stand for the complex if one or two ligands are bidentate, i.e. they give two coordination bonds. In the same way, the formula M"Sc also represents those complexes in which there is only one ligand present and if this ligand is tridentate it will give three coordination bonds.

Substituentene på fosfor- eller arsen-atomene omfatter folgende, uten å være begrenset bare til disse: metyl, etyl, propyl, isopropyl, butyl og dets isomerer, pentyl og dets isomerer, heksyl og dets isomerer, heptyl og dets isomerer, oktyl og dets isomerer, nonyl og dets isomerer, desyl og dets isomerer, unde-syl og dets isomerer, dodesyl og dets isomerer, cyklopropyl, cyklobutyl, cyklopentyl, cykloheksyl, fenyl, acetoksylfenyl, metylfenyl, etylfenyl, propylfenyl, butylfenyl, dimetylfenyl, trimetylfenyl, dietylfenyl, hydroksyfenyl, fenoksyfenyl, o-anisyl, 3- kolesteryl, benzyl, pyrryl, furyl, pyridyl, tienyl, piperidyl, menthy1, borny1 og pinyl. The substituents on the phosphorus or arsenic atoms include, but are not limited to: methyl, ethyl, propyl, isopropyl, butyl and its isomers, pentyl and its isomers, hexyl and its isomers, heptyl and its isomers, octyl and its isomers isomers, nonyl and its isomers, decyl and its isomers, undecyl and its isomers, dodecyl and its isomers, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, acetoxyphenyl, methylphenyl, ethylphenyl, propylphenyl, butylphenyl, dimethylphenyl, trimethylphenyl, diethylphenyl, hydroxyphenyl, phenoxyphenyl, o-anisyl, 3-cholesteryl, benzyl, pyrryl, furyl, pyridyl, thienyl, piperidyl, menthy1, borny1 and pinyl.

En fortegnelse over optisk aktivt fosfin og arsin, som kan anvendes, omfatter folgende uten å være begrenset bare til disse: metyletylfosfin, metylisopropylfosfin, etylbutylfosfin, isopropyl-isobutylfosfin, metylfenylfosfin, etylfenylfosfin, propylfenylfosfin, butylfenylfosfin, fenylbenzylfosfin, fenyl-pyrrolfosfin, etylisopropylisobutylfosfin, metylfenyl-4-metylfenylfosfin, etylfenyl-4-metylfenylfosfin, metylisopropyl-fenylfosfin, etylfenyl-2,4,5-trimetylfenylfosfin, fenylbenzyl-4- dimetylaminofenylfosfin, fenylpyridylmetylfosfin, fenylcyklo-pentyletylfosfin, cykloheksylmetylisopropylfosfin, o-metoksy-fenylmetylfenylfosfin, o-metoksyfenylcykloheksylmetylfosfin og analoge arsenforbindelser av ovennevnte. A list of optically active phosphine and arsine that may be used includes, but is not limited to, the following: methylethylphosphine, methylisopropylphosphine, ethylbutylphosphine, isopropylisobutylphosphine, methylphenylphosphine, ethylphenylphosphine, propylphenylphosphine, butylphenylphosphine, phenylbenzylphosphine, phenylpyrrolephosphine, ethylisopropylisobutylphosphine, methylphenylphosphine -4-methylphenylphosphine, ethylphenyl-4-methylphenylphosphine, methylisopropyl-phenylphosphine, ethylphenyl-2,4,5-trimethylphenylphosphine, phenylbenzyl-4-dimethylaminophenylphosphine, phenylpyridylmethylphosphine, phenylcyclopentylethylphosphine, cyclohexylmethylisopropylphosphine, o-methoxy-phenylmethylphenylphosphine, o-methoxyphenylcyclohexylmethylphosphine and analogues arsenic compounds of the above.

De optisk aktive fosfiner og arsiner inneholder minst en fenylgruppe som har en substituent i ortostilling, som f.eks. hydroksy; alkoksy med minst et karbonatom og maksimalt 12 karbonatomer og aryloksy er spesielt foretrukkede forbindelser for anvendelse ifolge nærværende oppfinnelse. Utmerkede resultater har blitt oppnådd med metylfenyl-o-anisylfosfin og metylcykloheksyl-o-anisylfosfin. Den sistnevnte forbindelse, fremstilt sammen med det optisk aktive koordinerte metallkomplekset som "hydrogeneringskatalysatorer er nye blandinger. Det har vist seg at de onskede enantiomorfer av substituerte og usubstituerte fenylalaniner lett kan fremstilles med utmerket utbytte ved å anvende slike optisk aktive ligander ved fremgangsmåten ifolge oppfinnelsen. The optically active phosphines and arsines contain at least one phenyl group which has a substituent in the ortho position, such as e.g. hydroxy; Alkoxy with at least one carbon atom and a maximum of 12 carbon atoms and aryloxy are particularly preferred compounds for use according to the present invention. Excellent results have been obtained with methylphenyl-o-anisylphosphine and methylcyclohexyl-o-anisylphosphine. The latter compound, prepared together with the optically active coordinated metal complex as "hydrogenation catalysts" are new compounds. It has been found that the desired enantiomorphs of substituted and unsubstituted phenylalanines can be easily prepared with excellent yield by using such optically active ligands in the process according to the invention.

Selv om bare en optisk aktiv gruppe eller ligande er nodvendig Although only one optically active group or ligand is required

i koordinasjonsmetall-komplekskatalysatoren, foretrekkes det av hensyn til enkel fremstilling at alle tre ligander er de samme i oven beskrevne formel, M^X^^- Det foretrekkes også at asymmetrien henfores enten til fosfor eller arsenatomet. in the coordination metal complex catalyst, it is preferred for reasons of ease of preparation that all three ligands are the same in the formula described above, M^X^^- It is also preferred that the asymmetry be attributed either to phosphorus or the arsenic atom.

Det har blitt funnet at utmerkede utbytter av de onskede en-antimorfer kan oppnås ikke bare ved hjelp av oven beskrevne optisk aktive hydrogeneringskatalysatorer, som består av koordinasjDnsmetallkomplekser av et metall utvalgt fra gruppen bestående av rhodium, iridium, ruthenium, osmium, palladium og platin, man at disse gode utbytter også kan oppnås ved hydrogenering i nærvær av en katalysator som inneholder en lbsning av et metall utvalgt fra gruppen bestående av rhodium, iridium, ruthenium, osmium, palladium og platina og minst en ekvivalent av en fosfin- og/eller arsin-ligande pr. mol metall, forutsatt at liganden er optisk aktiv. F.eks. kan katalysatoren fremstilles ved å opplose en loselig metallforbindelse i et egnet løsningsmiddel sammen med en ligande, It has been found that excellent yields of the desired en-antimorphs can be obtained not only by means of the optically active hydrogenation catalysts described above, which consist of coordination metal complexes of a metal selected from the group consisting of rhodium, iridium, ruthenium, osmium, palladium and platinum, it is believed that these good yields can also be obtained by hydrogenation in the presence of a catalyst containing a solution of a metal selected from the group consisting of rhodium, iridium, ruthenium, osmium, palladium and platinum and at least one equivalent of a phosphine and/or arsine -ligand per mole of metal, provided the ligand is optically active. E.g. the catalyst can be prepared by dissolving a soluble metal compound in a suitable solvent together with a ligand,

idet forholdet ligande til metall er minst en ekvivalent av liganden pr. mol metall, fortrinnsvis to ekvivalenter av liganden pr. mol metall. På samme måte har det blitt funnet at katalysatoren kan dannes in situ ved å tilsette en loselig metallforbindelse til reaksjonsmassen sammen med tilsetningen av en passende mengde av den optisk aktive liganden til reak- in that the ratio of ligand to metal is at least one equivalent of the ligand per mole of metal, preferably two equivalents of the ligand per moles of metal. Likewise, it has been found that the catalyst can be formed in situ by adding a soluble metal compound to the reaction mass together with the addition of an appropriate amount of the optically active ligand to the reaction

sjonsmassen enten for eller under hydrogeneringen. sion mass either before or during the hydrogenation.

Det foretrukkede anvendte metallet er rhodium. Loselige rhodiumforbindelser som kan anvendes, omfatter rhodiumtri-kloridhydrat, thodiumtribromid-hydrat, rhodiumsulfat, organiske rhodiumkomplekser med etylen, propylen, etc., og bis-olefiner, såsom 1,5-cyklooktadien og 1,5-heksadien, bicyklo-2,2,lhepta-2,5-dien og andre diener som kan danne totannede ligander, The preferred metal used is rhodium. Soluble rhodium compounds that can be used include rhodium trichloride hydrate, thodium tribromide hydrate, rhodium sulfate, organic rhodium complexes with ethylene, propylene, etc., and bis-olefins, such as 1,5-cyclooctadiene and 1,5-hexadiene, bicyclo-2,2 ,lhepta-2,5-diene and other dienes which can form bidentate ligands,

eller en aktiv form av metallisk rhodium og som lett kan opploses. or an active form of metallic rhodium and which can be easily dissolved.

Det har blitt funnet at fremgangsmåten ifolge denne oppfinnelse fortrinnsvis utfores i nærvær av en optisk aktiv fosfin- eller arsin-ligande, idet liganden forekommer i et forhold tilsvarende 1,5 til ca. 2,5 (fortrinnsvis 2,0) ekvivalenter ligande pr. mol metall. I praksis er det foretrukket å ha den optisk aktive katalysatoren i fast form på grunn av håndtering og lagring. Dette kan oppnås med faste, kationiske koordinasjonsmetallkomplekser. It has been found that the method according to this invention is preferably carried out in the presence of an optically active phosphine or arsine ligand, the ligand occurring in a ratio corresponding to 1.5 to approx. 2.5 (preferably 2.0) equivalents of ligand per moles of metal. In practice, it is preferred to have the optically active catalyst in solid form due to handling and storage. This can be achieved with solid cationic coordination metal complexes.

Kationiske koordinasjonsmetallkomplekser, som inneholder 2 ekvivalenter fosfin eller arsin pr. mol metall og en chelat-dannelde bis-olefin, kan anvendes som katalysatorer ifolge nærværende oppfinnelse. F.eks. ved å anvende de organiske rhodiumkomplekser, som beskrevet ovenfor, kan man fremstille slike kationiske koordinasjon-rhodium-komplekser ved å til- Cationic coordination metal complexes, containing 2 equivalents of phosphine or arsine per moles of metal and a chelate-forming bis-olefin, can be used as catalysts according to the present invention. E.g. by using the organic rhodium complexes, as described above, such cationic coordination rhodium complexes can be prepared by adding

berede en slurry av organisk rhodiumkompleks i en alkohol, prepare a slurry of organic rhodium complex in an alcohol,

som f.eks. etanol, og tilsetning av 2 ekvivalenter av det optisk aktive fosfin eller arsin slik at en ionelosning dannes, hvorefter man tilsetter et egnet anion, som f.eks. tetrafluorborat, tetrafenylborat eller et eller annet anion som kan bevirke ut-felling eller krystallisasjon av et fast, kationisk koordinasjonsmetallkompleks, enten direkte fra losningen eller efter behandling i et passende losningsmiddel. like for example. ethanol, and adding 2 equivalents of the optically active phosphine or arsine so that an ionic solution is formed, after which a suitable anion is added, such as e.g. tetrafluoroborate, tetraphenylborate or some other anion which can cause precipitation or crystallization of a solid, cationic coordination metal complex, either directly from the solution or after treatment in a suitable solvent.

Eksempler på kationiske koordinasjonsmetallkomplekser er cyklooktadien-1,5-bis(metylcykloheksyl-o-anisylfosfin) rhodium-tetrafluorborat, cyklooktadien-1,5-bis (metyl-cykloheksyl-1-anisylfosfin) rhodium-tetrafenylborat og bicyklo-2.2.1-hepta-2,5-dien-bis(metylcykloheksyl-o-anisylfosfin) thodium-tetrafluorborat . Examples of cationic coordination metal complexes are cyclooctadiene-1,5-bis(methylcyclohexyl-o-anisylphosphine)rhodium tetrafluoroborate, cyclooctadiene-1,5-bis(methyl-cyclohexyl-1-anisylphosphine)rhodium tetraphenylborate and bicyclo-2.2.1-hepta -2,5-diene-bis(methylcyclohexyl-o-anisylphosphine) thodium tetrafluoroborate .

Uten at det skal påvirke nærværende oppfinnelse kan det nevnes at det er tenkt at katalysatoren i virkeligheten er nærværende som en katalysator-prekursor, og at katalysatoren ved kontakt med hydrogen omdannes til en aktiv form. Denne omdannelse kan naturligvis utfores under den egentlige hydrogeneringen av olefinbindingen, eller den kan utfores ved å utsette katalysatoren (eller prekursoren) for hydrogen for tilsetningen til olefinmaterialet for hydrogenering. Without affecting the present invention, it can be mentioned that it is intended that the catalyst is actually present as a catalyst precursor, and that the catalyst is converted into an active form upon contact with hydrogen. This conversion can of course be carried out during the actual hydrogenation of the olefin bond, or it can be carried out by exposing the catalyst (or precursor) to hydrogen before the addition to the olefin material for hydrogenation.

Hydrogeneringsreaksjonen utfores vanligvis i et losningsmiddel, som f.eks. benzen, etanol, toluen, cykloheksan, og blandinger av disse losningsmidler. Et nesten hvilket som helst losningsmiddel av aromatisk eller mettet alkan eller cykloalkan, og som er inaktivt overfor hydrogeneringsbetingelsene under reaksjonen, kan anvendes. Da hydrogeneringsprosessen ifolge nærværende oppfinnelse er funnet å være spesiell kan losningsmidler som f.eks. nitrobenzen anvendes. Det foretrukkede losningsmidlet er metanol. The hydrogenation reaction is usually carried out in a solvent, such as e.g. benzene, ethanol, toluene, cyclohexane, and mixtures of these solvents. Almost any solvent of aromatic or saturated alkane or cycloalkane, and which is inactive to the hydrogenation conditions during the reaction, can be used. As the hydrogenation process according to the present invention has been found to be special, solvents such as e.g. nitrobenzene is used. The preferred solvent is methanol.

Som ovenfor nevnt blir katalysatoren tilsatt losningsmidlet enten som en forbindelse pr. se eller i form av dens komponenter som derefter danner katalysatoren in situ. Når katalysatoren tilsettes i form av dens komponenter, kan den tilsettes for eller samtidig med den |3-sub sti tuer te oc-acylamido-akrylsyren. Komponenter for fremstilling av katalysatoren in situ er loselige metallforbindelser og optisk aktiv fosfin- eller arsin-1igande. As mentioned above, the catalyst is added to the solvent either as a compound per see or in the form of its components which then form the catalyst in situ. When the catalyst is added in the form of its components, it can be added before or simultaneously with the β-substituted oc-acylamido-acrylic acid. Components for producing the catalyst in situ are soluble metal compounds and optically active phosphine or arsine ligands.

Katalysatoren kan tilsettes i en katalytisk virksom mengde, hvilken vanligvis ligger i området fra ca. 0,0001% til ca. 5 vekts-% metallinnhold basert på (3-substituert-oc-acylamido-akrylsyre og/eller innholdet av dennes salter. The catalyst can be added in a catalytically effective amount, which is usually in the range from approx. 0.0001% to approx. 5 weight-% metal content based on (3-substituted-oc-acylamido-acrylic acid and/or the content of its salts.

Innenfor praktiske grenser burde metoder fremskaffes for å Within practical limits, methods should be provided to

unngå kontakt mellom katalysatoren eller reaksjonsmassen og de oksyderende stoffer. Spesielt bor man unngå kontakt med avoid contact between the catalyst or the reaction mass and the oxidizing substances. In particular, you should avoid contact with

oksygen. Det foretrekkes å utfores hydrogeneringsreaksjonen og andre aktuelle reaksjoner i gasser (ikke H2) som er inerte til begge reaktanter samt katalysatorer, som f.eks. nitrogen eller karbondioksyd. oxygen. It is preferred to carry out the hydrogenation reaction and other relevant reactions in gases (not H2) which are inert to both reactants and catalysts, such as e.g. nitrogen or carbon dioxide.

Som tidligere nevnt har det blitt funnet at den asymmetriske hydrogeneringen forsterkes i nærvær av en base i reaksjonsmassen. Selv om den asymmetriske hydrogeneringen kan utfores i en reaksjonsmasse som er fri for base, og selv om den kan utfores under sure betingelser, så forsterkes hydrogeneringen ved tilsetning av små mengder, og som kan oppgå til en ekvivalent, basisk materiale pr. mol akrylsyre. Det er overraskende at en liten mengde tilsatt basisk materiale til selv en sur reaksjonsmasse, vil resultere i en forsterket asymmetrisk hydrogenering, og i virkeligheten er det funnet at dannelsen av en liten mengde salt av akrylsyre er tilstrekkelig for å oppnå disse for-bedrede resultater. As previously mentioned, it has been found that the asymmetric hydrogenation is enhanced in the presence of a base in the reaction mass. Although the asymmetric hydrogenation can be carried out in a reaction mass that is free of base, and even if it can be carried out under acidic conditions, the hydrogenation is enhanced by the addition of small amounts, which can amount to one equivalent basic material per moles of acrylic acid. It is surprising that a small amount of basic material added to even an acidic reaction mass will result in an enhanced asymmetric hydrogenation, and in fact it has been found that the formation of a small amount of salt of acrylic acid is sufficient to achieve these improved results.

En del baser som kan anvendes er tertiære baser, som f.eks. trietylamin, NaOH, og nesten et hvilket som helst basiskt materiale som kan danne et salt med karboksylsyrene. Some bases that can be used are tertiary bases, such as e.g. triethylamine, NaOH, and almost any basic material that can form a salt with the carboxylic acids.

Efter tilsetning av komponentene til losningsmidlet, tilsettes hydrogen til blandingen inntil ca. 1 til ca. 5 ganger molmengden av P-substituert-oc-acylamido-akrylsyre, eller i et mengdeforhold som er nodvendig for å fullfore hydrogeneringen til det onskede punkt. Reaksjonssystemets trykk vil nodvendigvis variere beroende på typen |3-substituert-oc-acylamido-akrylsyre, katalysatortype, hydrogeneringsapparaturens storrelse, kom-ponentenes mengdeforhold og mengde losningsmiddel og/eller base. Lavere trykk, som omfatter atmosfærisk eller subatmos-færisk trykk, kan anvendes såvel som hoyere trykk. After adding the components to the solvent, hydrogen is added to the mixture until approx. 1 to approx. 5 times the molar amount of P-substituted-oc-acylamido-acrylic acid, or in an amount ratio necessary to complete the hydrogenation to the desired point. The pressure of the reaction system will necessarily vary depending on the type of β-substituted-oc-acylamido-acrylic acid, catalyst type, the size of the hydrogenation apparatus, the proportion of the components and the amount of solvent and/or base. Lower pressures, which include atmospheric or subatmospheric pressure, can be used as well as higher pressures.

Reaksjonstemperaturene kan ligge i området rundt ca. -20°C til ca. llO°C. Hoyere temperaturer kan anvendes, men er normalt ikke nodvendig og kan lede til en okning av bireaksjoner. The reaction temperatures can be in the range of approx. -20°C to approx. 110°C. Higher temperatures can be used, but are normally not necessary and can lead to an increase in side reactions.

Efter å ha fullfort reaksjonen, hvilket bestemmes ved hjelp av konvensjonelle metoder, fjernes losningsmidlet, og produktene og katalysatoren separeres ved hjelp av konvensjonelle metoder. After completion of the reaction, as determined by conventional methods, the solvent is removed, and the products and catalyst are separated by conventional methods.

Mange naturlig forekommende produkter og medikamenter eksisterer i en optisk aktiv form, hvorved bare en av L-eller D-formene vanligvis er effektive. Syntetiske fremstillinger av disse forbindelser i det forgangene har krevet et ekstra trinn for separering av produktene i deres enantiomorfer. Denne fremgangsmåte er dyr og tidskrevende. Fremgangsmåten ifolge nærværende oppfinnelse tillater dannelsen av optisk aktive produkter, hvorved man eliminerer meget av den tidskrevende og dyrebare separeringen av enantiomorfene, og hvorved utbyttet av de onskede enantiomorfer forbedres og utbyttet av de onskede enantiomorfer reduseres. Many naturally occurring products and drugs exist in an optically active form, whereby only one of the L or D forms is usually effective. Synthetic preparations of these compounds in the past have required an additional step to separate the products into their enantiomorphs. This procedure is expensive and time-consuming. The method according to the present invention allows the formation of optically active products, thereby eliminating much of the time-consuming and expensive separation of the enantiomorphs, and whereby the yield of the desired enantiomorphs is improved and the yield of the desired enantiomorphs is reduced.

Onskede enantiomorf er av a-aminosyrene kan fremstilles ved hydrogenering av den passende P-substituerte-a-acylamido-akrylsyren ifolge nærværende oppfinnelse, hvorefter man fjerner acylgruppen fra a-amino- og andre blokkeringsgrupper ved konvensjonelle metoder, for derved å erholde den onskede enantiomorfe forbindelse. The desired enantiomorph of the α-amino acids can be prepared by hydrogenation of the appropriate P-substituted-α-acylamido-acrylic acid according to the present invention, after which the acyl group is removed from the α-amino and other blocking groups by conventional methods, thereby obtaining the desired enantiomorph connection.

Det har blitt funnet at a-aminosyrer fremstilt av (3-sub sti tuer t-a-acylamido-akrylsyrer og/eller deres salter lett kan fremstilles med en stor overvekt av den onskede enantiomorfe forbindelse. Derved blir nærværende oppfinnelse spesielt verdifull. It has been found that α-amino acids prepared from (3-substituted t-α-acylamido-acrylic acids and/or their salts can be easily prepared with a large preponderance of the desired enantiomorphic compound. This makes the present invention particularly valuable.

Følgende eksempler skal illustrere i detalj utførelsen av fremgangsmåten ifølge oppfinnelsen. I det følgende betyr "deler" vektsdeler hvis ikke annet sies. I eksemplene bestemmes % optisk renhet ved hjelp av følgende ligning, (de optiske akti-viteter som uttrykkes som spesifikke roatsjoner måles i' sam- The following examples shall illustrate in detail the execution of the method according to the invention. In the following, "parts" means parts by weight unless otherwise stated. In the examples, % optical purity is determined using the following equation, (the optical activities expressed as specific rotations are measured in

me løsningsmiddel): me solvent):

FREMSTILLING 1 MANUFACTURE 1

De optiske aktive fosfiner og arsiner kan fremstilles ifolge fremgangsmåten til Mislow og Korpiun, J. Am. Chem. Soc. 89, 4784 (1967). The optically active phosphines and arsines can be prepared according to the method of Mislow and Korpiun, J. Am. Chem. Soc. 89, 4784 (1967).

Til en egnet beholder utstyrt med en rbreanordning, et tem-peraturmålingsinstrument og en materialbeskik-ningsanordning, ble det tilsatt 250 deler fenyldiklorfosfin, 240 deler pyridin og; 495 deler heksan. Losningen ble avkjolt til ca. 5 - 10°C 250 parts of phenyldichlorophosphine, 240 parts of pyridine and; 495 parts hexane. The solution was cooled to approx. 5 - 10°C

og en blanding som besto av 96 deler metanol og 2 7 deler heksan ble tilsatt under omroring og under en periode på ca. 1 - 1/2 time. Den erholdte blandingen ble ytterligere omrort 2 - 1/2 time under oppvarming til ca. 25°c. Derefter fant reaksjonen sted i en inert nitrogenatmosfære. and a mixture consisting of 96 parts methanol and 27 parts hexane was added with stirring and over a period of approx. 1 - 1/2 hour. The resulting mixture was further stirred for 2 - 1/2 hours while heating to approx. 25°c. The reaction then took place in an inert nitrogen atmosphere.

Pyridinhydroklorid, som ble dannet under reaksjonen, ble fjernet ved filtrering, og filtratet ble oppkonsentrert. Den gule resten ble destillert under oppsamling av en ved 95,5 - 97°c/17 mm kokende fargelbs fraksjon (82% utbytte dimetyl-f enylf osf onitt) . [Harwood and Grisley, J. Am. Chem. Soc, 82, 423 (1960)]. Pyridine hydrochloride, which was formed during the reaction, was removed by filtration, and the filtrate was concentrated. The yellow residue was distilled while collecting a colored fraction boiling at 95.5 - 97°c/17 mm (82% yield dimethyl-phenylphosphonite). [Harwood and Grisley, J. Am. Chem. Soc, 82, 423 (1960)].

Til en egnet beholder som var utstyrt med en rbreanordning, et temperaturmåleinstrument og materialbeskikningsanordninger ble tilfort 11 deler dimetylfenylfosfonitt, 2,5 deler metyljodid og 9 deler toluen. Den erholdte losningen ble oppvarmet langsomt. Reaksjonen er eksoterm og temperaturen oker fra ca. 110°C, reaksjonsblandingen holdes ved en temperatur på ca. 100 - 120°C og ytterligere 185 deler dimetylfenylfosfonitt tilsettes langsomt. Ytterligere mengder metyljodid, dvs. mengdebkninger på ca. 1 del, tilsettes leilighetsvis under fosfonitt-tilsetningen. Reaksjonsblandingen ble holdt ved ca. Il0°c ytterligere 1 time fulgt av tilsetning av komponentene. Reaksjonsblandingen ble derefter destillert, og fraksjonen som kokte ved 148 - 149°c/17 mm ble oppsamlet. (96% utbytte metylfenylmetylfosfinat.) [Harwood and Grisley J. Am Chem. Soc.,82, 423 (1960)]. 11 parts of dimethylphenylphosphonite, 2.5 parts of methyl iodide and 9 parts of toluene were added to a suitable container which was equipped with a refrigerating device, a temperature measuring instrument and material coating devices. The solution obtained was heated slowly. The reaction is exothermic and the temperature increases from approx. 110°C, the reaction mixture is kept at a temperature of approx. 100 - 120°C and a further 185 parts of dimethylphenylphosphonite are added slowly. Additional quantities of methyl iodide, i.e. quantity reductions of approx. 1 part, is added occasionally during the phosphonite addition. The reaction mixture was maintained at approx. Il0°c for a further 1 hour followed by the addition of the components. The reaction mixture was then distilled, and the fraction boiling at 148-149°c/17 mm was collected. (96% yield methylphenylmethylphosphinate.) [Harwood and Grisley J. Am Chem. Soc., 82, 423 (1960)].

Til en egnet beholder utstyrt med en rbreanordning, en konden-sasjonsanordning, temperaturmåleinstrument og en materialbeskikningsanordning, ble tilsatt 187 deler metylfenylmetylfosfinat og 1600 deler karbontetraklorid. Til denne blandingen ble det tilsatt 2 29 deler fosforpentaklorid fordelt på tre porsjoner på hver 50 deler og en porsjon på 79 deler. En temperaturøkning ble iakttatt under tilsetningen av de forste tre porsjoner. Blandingen ble omrort ved ca. 60°C to timer, og derefter ble karbontetraklorid og fosforoksyklorid fjernet ved destillasjon. Resten ble destillert og fraksjonen som kokte ved 138 - 141°c/17 mm ble oppsamlet (95% utbytte metylfenylfosfinklorid). [Metode ifolge organisk kjemi (Houben-Weyl) vol. XII/I s. 243]. 187 parts of methylphenylmethylphosphinate and 1600 parts of carbon tetrachloride were added to a suitable container equipped with a refrigerating device, a condensing device, a temperature measuring instrument and a material deposition device. To this mixture were added 229 parts of phosphorus pentachloride divided into three portions of 50 parts each and one portion of 79 parts. A temperature increase was observed during the addition of the first three portions. The mixture was stirred at approx. 60°C for two hours, and then carbon tetrachloride and phosphorus oxychloride were removed by distillation. The residue was distilled and the fraction boiling at 138 - 141°c/17 mm was collected (95% yield methylphenylphosphine chloride). [Method according to organic chemistry (Houben-Weyl) vol. XII/I p. 243].

Til en egnet beholder utstyrt med en rbreanordning, en konden-sasjonsanordning, et temperaturmåleinstrument og en materialbeskikningsanordning, ble det tilsatt 78 deler 1-mentol To a suitable container equipped with a refrigerating device, a condensing device, a temperature measuring instrument and a material coating device, 78 parts of 1-menthol were added

([oOq5 = -50° i etanol) og 72 deler dietyleter. Til den erholdte losning ble det tilsatt 119 deler trietylamin, og den erholdte blandingen ble avkjolt ved ca. 0°C. Til denne blandingen ble det under omroring tilsatt 87 deler metylfenylfosfinklorid over en tidsperiode på ca. 1 - 1/2 time og ved en temperatur på ca. 0°c. Blandingen fikk oppvarmes til ca. 25°c og ble derefter oppvarmet under tilbakelop ca. 10 - 1/2 time. ([oOq5 = -50° in ethanol) and 72 parts of diethyl ether. 119 parts of triethylamine were added to the resulting solution, and the resulting mixture was cooled at approx. 0°C. To this mixture, 87 parts of methylphenylphosphine chloride were added with stirring over a period of time of approx. 1 - 1/2 hour and at a temperature of approx. 0°c. The mixture was allowed to heat to approx. 25°c and was then heated under reflux approx. 10 - 1/2 hour.

For å fjerne trietylaminhydrokloridet ble blandingen filtrert og filtratet oppkonsentrert. Det konsentrerte filtratet ga et fast stoff-utbytte som smeltet ved 50 - 65°C, og som utgjor en blanding diastereoisomerer av 1-meilyl-metylfenylfosfinat (60% S og 40% R). To remove the triethylamine hydrochloride, the mixture was filtered and the filtrate concentrated. The concentrated filtrate gave a solid yield which melted at 50-65°C, and which constitutes a mixture of diastereoisomers of 1-methylyl-methylphenylphosphinate (60% S and 40% R).

Den oven fremstilte blandingen diastereoisomerer av 1-mentyl-metylfenylfosfinat ble renset ved krystallisasjon mange ganger i heksan fulgt av krystallisasjon i dietyleter og ga et fast stoff som smelter ved 78 - 82°C, og som foreligger i S form av 1-metyl-metylfenylfosfinat. The above-prepared mixture of diastereoisomers of 1-menthyl-methylphenylphosphinate was purified by crystallization several times in hexane followed by crystallization in diethyl ether and gave a solid melting at 78 - 82°C, which is in the S form of 1-methyl-methylphenylphosphinate .

Til en egnet beholder utstyrt med en rbreanordning, temperaturmåleinstrument, materialbeskikningsvanordning og kondensasjons-anordning, ble det under en inert nitrogenatmosfære tilsatt 9,5 deler magnesium, 7 deler dietyleter og en mengde jod som satte reaksjonen igang. En mindre mengde brompropan ble tilsatt for å sette reaksjonen i gang, og blandingen, som besto av 4 7 deler brompropan og 123 deler dietyleter, ble derefter langsomt tilsatt slik at et passende tilbakelbp av reaksjonsblandingen kunne holdes. Reaksjonsblandingen ble derefter kjblt til ca. 25°C og omrbrt ytterligere to timer. Under an inert nitrogen atmosphere, 9.5 parts magnesium, 7 parts diethyl ether and a quantity of iodine were added to a suitable container equipped with a freezing device, temperature measuring instrument, material coating device and condensation device, which set the reaction in motion. A small amount of bromopropane was added to initiate the reaction, and the mixture, which consisted of 47 parts of bromopropane and 123 parts of diethyl ether, was then added slowly so that a suitable reflux of the reaction mixture could be maintained. The reaction mixture was then heated to approx. 25°C and stirred for a further two hours.

Til denne blandingen ble det tilsatt en blanding bestående av 12 deler av S-formen av 1-mentyl-metylfenylfosfinat (tilberedt ifolge ovenstående) og 88 deler benzen. Dietyleteren ble derefter fjernet og den erholdte blandingen oppvarmet ved 78°c i 64 timer. To this mixture was added a mixture consisting of 12 parts of the S-form of 1-menthyl-methylphenylphosphinate (prepared as above) and 88 parts of benzene. The diethyl ether was then removed and the resulting mixture heated at 78°C for 64 hours.

Reaksjonsproduktet av magnesiumkomplekset ble dekomponert i en lbsning av ammoniumklorid og derefter filtrert. Presipitatet ble ekstrahert med varm benzen, og ekstraktet blandet med filtratet. Det organiske sjiktet ble tbrket over natriumsulfat, og løsningsmidlene fjernet. Derved erholdt man en gul olj erest. Oljen ble kromatografert ved hjelp av en sjlikagelsbyle og ved hjelp av heksan:benzen:dietyleter (3:1:1) blanding, og derved erholdt man et optiskt aktivt fenylmetylpropylfosfinoksyd med 61% utbytte. The reaction product of the magnesium complex was decomposed in a solution of ammonium chloride and then filtered. The precipitate was extracted with hot benzene, and the extract mixed with the filtrate. The organic layer was dried over sodium sulfate, and the solvents removed. Thereby a yellow oil residue was obtained. The oil was chromatographed using a silica gel column and using a hexane:benzene:diethyl ether (3:1:1) mixture, thereby obtaining an optically active phenylmethylpropylphosphine oxide with a 61% yield.

Under en inert nitrogenatmosfære ble det til en egnet beholder, som var utstyrt med roreanordninger, temperaturmåleinstrument og en materialbeskikningsanordning, tilsatt 16 deler triklorsilan og 88 deler benzen ved en temperatur på ca. 0°C. Til denne blanding og ved en temperatur på ca. 4 - 6°C, ble det tilsatt en blanding bestående.av 22 deler trietylamin og 44 deler benzen. Den erholdte blandingen ble derefter oppvarmet til ca. 25°c og en blanding bestående av 8,2 deler optisk aktiv fenylmetylpropylfosfinoksyd (tilberedt ifolge ovenstående) og 2 2 deler benzen ble tilsatt. Blandingen ble derefter oppvarmet til ca. 60°C i lopet av en to timers periode, og derefter avkjolt til ca. 25°c. Under an inert nitrogen atmosphere, 16 parts of trichlorosilane and 88 parts of benzene were added to a suitable container, which was equipped with stirring devices, a temperature measuring instrument and a material coating device, at a temperature of approx. 0°C. For this mixture and at a temperature of approx. 4 - 6°C, a mixture consisting of 22 parts triethylamine and 44 parts benzene was added. The resulting mixture was then heated to approx. 25°c and a mixture consisting of 8.2 parts of optically active phenylmethylpropylphosphine oxide (prepared according to the above) and 2 2 parts of benzene was added. The mixture was then heated to approx. 60°C over a two-hour period, and then cooled to approx. 25°c.

Reaksjonsproduktet av silikonkomplekset ble dekomponert i 75 deler av en 20%'ig losning av natriumhydroksyd fulgt av 35 deler vann. Den erholdte blandingen fikk stå ca. 15 timer, og sjiktene ble derved separert. Det organiske sjiktet ble derefter ekstrahert med 5% saltsyre, to ganger med vann og derefter torket over natriumsulfat. Losningsmidlet ble derefter fjernet ved destillasjon, og man erholdt metylpropylfenyl-fosfin med 95% utbytte og med 69% optisk renhet. The reaction product of the silicone complex was decomposed in 75 parts of a 20% solution of sodium hydroxide followed by 35 parts of water. The resulting mixture was allowed to stand for approx. 15 hours, and the layers were thereby separated. The organic layer was then extracted with 5% hydrochloric acid, twice with water and then dried over sodium sulfate. The solvent was then removed by distillation, and methylpropylphenylphosphine was obtained in 95% yield and with 69% optical purity.

Fremstilling av rhodium-III-klorid-tris-(metyl-propylfenylfosfin) siger på folgende måte: Under en nitrogenatmosfære blir det til en egnet beholder tilsatt 0,342 g (0,0013 mol) rhodium-III-klorid-trihydrat og 10 ml metanol. Til dette ble det dråpevis tilsatt i lopet av en 15 minutters periode 0,76 g (0.0046 mol) optisk aktiv metyl-propylf enylf osf in , som var tilberedt ifolge ovenstående, i 3 ml metanol. Blandingen fikk stå 1 time, og herved erholdt man et gult bunnfall som separerte fra losningen. Bunnfallet ble fjernet ved filtrering og ga 0,21 g rhodiumkompleks med en spesifikk rotasjon på [oc]^ = -69,2° (benzen-etanol, 1:1 v/v). Preparation of rhodium-III-chloride-tris-(methyl-propylphenylphosphine) is as follows: Under a nitrogen atmosphere, 0.342 g (0.0013 mol) rhodium-III-chloride trihydrate and 10 ml of methanol are added to a suitable container. To this was added dropwise over a 15 minute period 0.76 g (0.0046 mol) of optically active methyl-propylphenylphosphine, which had been prepared according to the above, in 3 ml of methanol. The mixture was allowed to stand for 1 hour, and this resulted in a yellow precipitate that separated from the solution. The precipitate was removed by filtration to give 0.21 g of rhodium complex with a specific rotation of [oc]^ = -69.2° (benzene-ethanol, 1:1 v/v).

Oppkonsentrering av filtratet ga ytterligere 0,13 g produkt Concentration of the filtrate gave an additional 0.13 g of product

med en spesifikk rotasjon på [cc]^<5> = -56,4° (benzen-etanol, with a specific rotation of [cc]^<5> = -56.4° (benzene-ethanol,

1:1 v/v). 1:1 v/v).

FREMSTILLING 2 MANUFACTURE 2

Den samme generelle fremgangsmåte som i eksempel 1 ble fulgt med blandingen av 1-mentyl-metylfenylfosfinat-diastereoisomerer, som ble opplost og krystallisert i heksan og/eller heksan-eter. Dette resulterte i en S-form, som smelter ved 78 - 82 C, og som har en spesifikk rotasjon [cc]^<5> = -94° (benzen) og en R-form som smelter ved 86 - 87°c og som har en spesifikk rotasjon [oc]^ = -17° (benzen). The same general procedure as in Example 1 was followed with the mixture of 1-menthyl-methylphenylphosphinate diastereoisomers, which were dissolved and crystallized in hexane and/or hexane-ether. This resulted in an S form, which melts at 78 - 82 C, and which has a specific rotation [cc]^<5> = -94° (benzene) and an R form, which melts at 86 - 87°c and which has a specific rotation [oc]^ = -17° (benzene).

Til en egnet beholder utstyrt med en rbreanordning, temperaturmåleinstrument, materialbeskikningsanordning og kondensator, To a suitable container equipped with a refrigerating device, temperature measuring instrument, material deposition device and condenser,

ble det under en inert nitrogenatmosfære tilsatt 18,3 deler magnesiumspon, 13 deler dietyleter og en for igangsettelsen av reaksjonen nodvendig mengde jod. En mindre mengde o-anisylbromid ble tilsatt for å starte reaksjonen, og derefter ble en blanding bestående av 138 deler o-bromanisol og 400 deler dietyl- 18.3 parts of magnesium shavings, 13 parts of diethyl ether and an amount of iodine necessary to initiate the reaction were added under an inert nitrogen atmosphere. A small amount of o-anisyl bromide was added to initiate the reaction, and then a mixture consisting of 138 parts of o-bromoanisole and 400 parts of diethyl-

eter tilsatt så langsomt at et passende tilbakelbp av reaksjons- </ blandingen kunne holdes. Efter at blandingen var tilsatt alt ether added so slowly that a suitable reflux of the reaction mixture could be maintained. After the mixture was added everything

ble den holdt under tilbakelop ytterligere 2 timer. it was kept under reflux for a further 2 hours.

Til denne blandingen ble det tilsatt en blanding bestående av 74 deler av enten R- eller S-formen av 1-mentyl-metylfenylfosfinat (valget av S- eller R-formen avhenger av den enantiomorf som 6n-skes efter den asymmetriske hydrogeneringen) og 450 deler benzen. Dietyleteren ble derefter fjernet og den erholdte blandingen oppvarmet 64 timer ved 78°C. To this mixture was added a mixture consisting of 74 parts of either the R- or S-form of 1-menthyl-methylphenylphosphinate (the choice of the S- or R-form depends on the enantiomorph obtained after the asymmetric hydrogenation) and 450 splits benzene. The diethyl ether was then removed and the resulting mixture heated for 64 hours at 78°C.

Reaksjonsproduktet av magnesiumkomplekset ble dekomponert i en losning av ammoniumklorid, og produktet ekstrahert fra den, vandige fasen med benzen. Efter fjerning av benzen ble rest-oljen destillert, hvorved man efter en forfraksjon bestående av mentol erholdt et produkt med kokepunkt fra 180 - 190°C The reaction product of the magnesium complex was decomposed in a solution of ammonium chloride, and the product extracted from the aqueous phase with benzene. After removal of benzene, the residual oil was distilled, whereby after a pre-fraction consisting of menthol a product with a boiling point of 180 - 190°C was obtained

ved 0,5 mm trykk. Det rå metylfenyl-o-anisylfosfinoksydet ble erholdt med 60%'ig utbytte. Ved å anvende R-formen erholdt man et produkt med en spesifikk rotasjon [oc] 25 = +27 o (metanol). Ved å anvende S-formen erholdt man et produkt med den motsatte rotasjon. at 0.5 mm pressure. The crude methylphenyl-o-anisylphosphine oxide was obtained in 60% yield. By using the R form, a product with a specific rotation [oc] 25 = +27 o (methanol) was obtained. By using the S-shape, a product with the opposite rotation was obtained.

Til en egnet beholder utstyrt med rbreanordning, temperaturmåleinstrument og en materialbeskikningsanordning, ble det under inert nitrogenatmosfære tilsatt 16 deler triklorsilan og 100 Under an inert nitrogen atmosphere, 16 parts of trichlorosilane and 100

deler benzen ved ca. 5°C. Til denne blandingen ble det ved 4 - 6 C tilsatt en blanding av 12 deler trietylamin og 50 deler benzen. Den erholdte blandingen ble oppvarmet til 70°C og en blanding bestående av 7,5 deler optisk aktiv metylfenyl-o-anisylfosfin-oksyd i 30 deler benzen ble tilsatt. Blandingen ble oppvarmet til 70°C en time og derefter avkjolt til 25°C. splits benzene at approx. 5°C. A mixture of 12 parts triethylamine and 50 parts benzene was added to this mixture at 4 - 6 C. The resulting mixture was heated to 70°C and a mixture consisting of 7.5 parts of optically active methylphenyl-o-anisylphosphine oxide in 30 parts of benzene was added. The mixture was heated to 70°C for one hour and then cooled to 25°C.

Reaksjonsproduktet bestående av silikonkomplekset ble de- The reaction product consisting of the silicone complex was de-

komponert ved tilsetning under nitrogenatmosfære av 75 deler 20%'ig natriumhydroksyd ved 25 o c under kjoling. Fra det organiske sjiktet erholdt man det onskede metylfenyl-o-anisylfosfin, som. composed by adding under a nitrogen atmosphere 75 parts of 20% sodium hydroxide at 25 o c under cooling. From the organic layer, the desired methylphenyl-o-anisylphosphine was obtained, which

hadde en spesifikk rotasjon [oc]D 25 = +41 o (metanol) når det ovennevnte fremstilte fosfinoksydet med en spesifikk rotasjon [a]D 25 = +2 7 o (metanol) ble anvendt. Med det motsatt enantio- had a specific rotation [oc]D 25 = +41 o (methanol) when the above-mentioned prepared phosphine oxide with a specific rotation [a]D 25 = +2 7 o (methanol) was used. With the opposite enantio-

morf e fosfinoksydet ble et fosfin med motsatt rotasjon erholdt. morph e the phosphine oxide, a phosphine with opposite rotation was obtained.

FREMSTILLING 3 MANUFACTURE 3

Fremstilling av metylcykloheksyl- o- anisylfosfin Preparation of methylcyclohexyl-o-anisylphosphine

Til en 1 liter autoklav ble det tilsatt 143 deler (+)-metylfenyl-o-anisylf osf inoksyd (fremstilt ifolge ovennevnte), 28 deler 5%'ig rhodium på karbon og 250 deler metanol. Satsen ble oppvarmet til 75 o c og omrbrt under 56 kg/cm 2 hydrogen. Efter avsluttet hydrogenopptagelse viste nmr-analyser at reaksjonen, To a 1 liter autoclave were added 143 parts of (+)-methylphenyl-o-anisyl phosphinoxide (prepared according to the above), 28 parts of 5% rhodium on carbon and 250 parts of methanol. The batch was heated to 75°C and stirred under 56 kg/cm 2 of hydrogen. After completion of hydrogen absorption, nmr analyzes showed that the reaction,

som illustreres ved ovennevnte ligning, var 75% fullstendig. Ytterligere 7,0 deler katalysator ble'tilsatt, hvorefter et as illustrated by the above equation, 75% was complete. A further 7.0 parts of catalyst were added, after which a

trykk tilsvarende 56 kg/cm ble pålagt og satsen fikk gå til 96% reaksjon. pressure corresponding to 56 kg/cm was imposed and the rate was allowed to go to 96% reaction.

Katalysatoren ble filtrert og metanol fjernet i vakuum. Rå- The catalyst was filtered and methanol removed in vacuo. Raw-

oljen ble opptatt i 200 deler dibutyleter og avkjolt til 0 oC. Krystallene, som ble separert, ble filtrert og vasket med heksan. Det ble erholdt 63 deler metylcykloheksyl-o-anisyl-fosfinoksyd, som smelter ved 108 - 110°C, og som har en spesifikk rotasjon [ccjD 20 = +63 (metanol). the oil was taken up in 200 parts of dibutyl ether and cooled to 0 oC. The crystals, which were separated, were filtered and washed with hexane. 63 parts of methylcyclohexyl-o-anisyl-phosphine oxide were obtained, which melts at 108-110°C and has a specific rotation [ccjD 20 = +63 (methanol).

Det ovenstående fosfinoksydet kan reduseres til metylcykloheksyl-o-anisylfosfin med 95%'ig utbytte ved å anvende HSiCl3 og trietylamin, og som er beskrevet tidligere for metylfenyl-o-anisylfosfin. Det resulterende metylcykloheksyl-o-anisylfosfinet er en losning med den spesifikke rotasjon [cc]^° = +98.5° (metanol). The above phosphine oxide can be reduced to methylcyclohexyl-o-anisylphosphine with a 95% yield by using HSiCl3 and triethylamine, and which has been described previously for methylphenyl-o-anisylphosphine. The resulting methylcyclohexyl-o-anisylphosphine is a solution with the specific rotation [cc]^° = +98.5° (methanol).

EKSEMPEL 1 EXAMPLE 1

Asymmetrisk hydrogenering av g- benzamido- 4- hydroksy- 3- metoksy-cinnaminsyre Asymmetric hydrogenation of g-benzamido-4-hydroxy-3-methoxy-cinnamic acid

Til en hydrogeneringsapparatur utstyrt med en trykkmåler, temperaturmåleinstrument og oppvarmingsanordning, ble det tilsatt 25 deler a-benzamido-4-hydroksy-3-metoksy-cinnaminsyre og 186 deler metanol og 64 deler 5%'ig natriumhydroksyd. Satsen ble omhyggelig spylt for å fjerne ethvert spor av luft, og tilslutt ble trykket regulert til 3,5 kg/cm^ med hydrogen ved 25°c. To a hydrogenation apparatus equipped with a pressure gauge, temperature measuring instrument and heating device, 25 parts of α-benzamido-4-hydroxy-3-methoxy-cinnamic acid and 186 parts of methanol and 64 parts of 5% sodium hydroxide were added. The batch was carefully purged to remove any trace of air, and finally the pressure was regulated to 3.5 kg/cm 2 with hydrogen at 25°C.

En katalysatorlosning ble tilberedt ved å opplose 0,0059 g rhodium-1,5-heksadienklorid ([Rh (1,5-heksadien)Cl]2) A catalyst solution was prepared by dissolving 0.0059 g of rhodium-1,5-hexadiene chloride ([Rh (1,5-hexadiene)Cl]2)

J. Am. Chem. Soc. 86, 217 (1964) i 2 ml benzen under nitrogenatmosfære. Derefter ble 0,0139 g (+)-metylfenyl-o-anisylfos- J. Am. Chem. Soc. 86, 217 (1964) in 2 ml of benzene under a nitrogen atmosphere. Then 0.0139 g of (+)-methylphenyl-o-anisylphos-

fin i 1,3 ml benzen tilsatt. Derefter fikk hydrogen stromme gjennom blandingen 5 minutter. Den erholdte katalysatorlosningen ble derefter trykket inn i en autoklav ved hjelp av hydrogen-trykk. Hydrogeneringen starter med en gang og er fullfort efter 3-4 timer ved 25°C og 3,5 kg/cm^. fine in 1.3 ml of benzene added. Hydrogen was then allowed to flow through the mixture for 5 minutes. The resulting catalyst solution was then pressed into an autoclave using hydrogen pressure. The hydrogenation starts immediately and is complete after 3-4 hours at 25°C and 3.5 kg/cm^.

En prove av den erholdte losningen viser en optisk renhet på 56,4%, og dette tilsvarer 78/22 L/D-blariding av natriumsaltet til N-benzoyl-3- (4-hydroksy-3-metoksyfenyl)-alanin. A sample of the obtained solution shows an optical purity of 56.4%, and this corresponds to 78/22 L/D bilayering of the sodium salt of N-benzoyl-3-(4-hydroxy-3-methoxyphenyl)-alanine.

Den N-benzoylsubstituerte aminosyren kan erholdes ved 95%'ig utbytte ved å fordampe bort metanolen og noytralisere natriumsaltet med saltsyre. The N-benzoyl-substituted amino acid can be obtained in 95% yield by evaporating away the methanol and neutralizing the sodium salt with hydrochloric acid.

Den erholdte L-enantiomorf kan omdannes til L-DOPA ved hjelp av enkel hydrolyse, som derved fjerner de blokkerende grupper, benzoyl og metyl i 3-substitusjonsstilling i fenyl. The obtained L-enantiomorph can be converted to L-DOPA by means of simple hydrolysis, which thereby removes the blocking groups, benzoyl and methyl in the 3-substitution position in phenyl.

EKSEMPEL 2 EXAMPLE 2

En 1 liter autoklav ble tilsatt 25,0 g a-benzamido-4-hydroksy-3-metoksy-cinnaminsyre, 300 ml metanol og 0,6 ml 5%'ig vandig NaOH. Satsen ble omrort ved 25°c under 2,8 kg/cm^ ren hydrogen inntil man hadde forsikret seg om at det ikke var noen lekkasje. Derefter ble ca. 1 ml (0,01% Rh, 0,05% fosfin) av den folgende katalysatorlosning tilsatt ved hjelp av et membran slik at trykket ikke blir påvirket. [katalysatorlosningen ble tilberedt ved å lose under nitrogenatmosfære 0,0050 g [Rh (1,5-heksadien)Cl]0 i 0,33 ml losning av metylfenyl-o-anisylfosfin med en spesifikk rotasjon [<x]D 25 = +42 o (metanol) i benzen, 25.0 g of α-benzamido-4-hydroxy-3-methoxy-cinnamic acid, 300 ml of methanol and 0.6 ml of 5% aqueous NaOH were added to a 1 liter autoclave. The batch was stirred at 25°C under 2.8 kg/cm 2 of pure hydrogen until it was ensured that there was no leakage. After that, approx. 1 ml (0.01% Rh, 0.05% phosphine) of the following catalyst solution added by means of a membrane so that the pressure is not affected. [the catalyst solution was prepared by dissolving under nitrogen atmosphere 0.0050 g [Rh (1,5-hexadiene)Cl]0 in 0.33 ml solution of methylphenyl-o-anisylphosphine with a specific rotation [<x]D 25 = +42 o (methanol) in benzene,

som inneholdt 0,041 g/ml og utspedning til 1 ml med metanol]. which contained 0.041 g/ml and diluted to 1 ml with methanol].

En omroringshastighet på 1400 opm. holdes i reaksjonsmassen, A stirring speed of 1400 rpm. kept in the reaction mass,

og hydrogen begynner å absorbere efter 2-5 minutters induk-sjonsperiode og hydrogeneringen er avsluttet på 2 timer. and hydrogen begins to absorb after a 2-5 minute induction period and the hydrogenation is finished in 2 hours.

Metanol fordampes og syren loses i en mol vandig NaOH. Den noytrale katalysatoren blir ekstrahert med benzen og satt bort for gjenvinning. Den frie aminosyren blir derefter bunnfelt ved hjelp av konsentrert HCl under krystallisering. Man erholder 24 g N-benzoyl-3-(4-hydroksy-3-metoksyfenyl)-alanin, som inneholder 73% L-enantiomorf og 2 7% D-enantiomorf. L-enantiomorfen kan omdannes til L-DOPA ved hydrolysering som vist i eksempel 4. Methanol is evaporated and the acid is dissolved in one mole of aqueous NaOH. The neutral catalyst is extracted with benzene and set aside for recovery. The free amino acid is then precipitated using concentrated HCl during crystallization. 24 g of N-benzoyl-3-(4-hydroxy-3-methoxyphenyl)-alanine are obtained, which contains 73% L-enantiomorph and 27% D-enantiomorph. The L-enantiomorph can be converted to L-DOPA by hydrolysis as shown in example 4.

EKSEMPLENE 3- 17 EXAMPLES 3-17

Andre optiske aktive a-aminosyrer fremstilt ifolge en fremgangsmåte som er lik fremgangsmåtene som er beskrevet i eksemplene 4 og 5, sammen med de hydrogenerte olefinforbindelsene, fosfin-liganden som anvendes i rhodiumkatalysatoren og den erholdte optiske renheten er som folger: Other optically active α-amino acids prepared according to a method similar to the methods described in Examples 4 and 5, together with the hydrogenated olefin compounds, the phosphine ligand used in the rhodium catalyst and the optical purity obtained are as follows:

EKSEMPEL 18 EXAMPLE 18

En autoklav ble tilsatt 25,0 g (0,085 mol) oc-acetamido-4-hydroksy-3-metoksy-cinnaminsyreacetat, 300 ml metanol og 0,36 To an autoclave was added 25.0 g (0.085 mol) of α-acetamido-4-hydroxy-3-methoxy-cinnamic acid acetate, 300 ml of methanol and 0.36

ml 50%'ig NaOH. Autoklaven ble satt under 2,5 kg/cm 2trykk med en 50/50 blanding av og H2. ml of 50% NaOH. The autoclave was put under 2.5 kg/cm 2 pressure with a 50/50 mixture of and H2.

En katalysatorlosning ble tilberedt ved å opplose 0,0050 g A catalyst solution was prepared by dissolving 0.0050 g

(0,023 mekv.) av [Rh(1,5-heksadien)Cl]2 i 0,5 ml benzen og (0.023 meq.) of [Rh(1,5-hexadiene)Cl]2 in 0.5 ml of benzene and

under nitrogenatmosfære å tilsette 0,051 mekv. (+)-metylcykloheksyl-o-anisyl-fosfin (optisk renhet = ca. 90%) i 2,4 ml benzen. Hydrogen fikk boble gjennom losningen 10 minutter. under a nitrogen atmosphere to add 0.051 meq. (+)-methylcyclohexyl-o-anisyl-phosphine (optical purity = about 90%) in 2.4 ml of benzene. Hydrogen was bubbled through the solution for 10 minutes.

Katalysatorlosningen ble derefter tilsatt til autoklaven. Hydrogeneringen ble utfort ved 60°C og avsluttet på 4 timer. The catalyst solution was then added to the autoclave. The hydrogenation was carried out at 60°C and finished in 4 hours.

Produktet som ble erholdt ved fordampning av losningsmidlet The product obtained by evaporation of the solvent

var N-acetyl-3- (4-hydroksy-3-metoksyfenyl)-alanin-acetat, was N-acetyl-3-(4-hydroxy-3-methoxyphenyl)-alanine acetate,

som hadde en spesifikk rotasjon [oc]D 25 = +38.2 (Na-salt i vann). which had a specific rotation [oc]D 25 = +38.2 (Na salt in water).

Ren N-acetyl-3- (4-hydroksy-3-metoksyfenyl)-L-alanin-acetat, Pure N-acetyl-3-(4-hydroxy-3-methoxyphenyl)-L-alanine acetate,

såvel som et natriumsalt i vann, hadde en spesifikk rotasjon [a]<25> = +54,0°: as well as a sodium salt in water, had a specific rotation [a]<25> = +54.0°:

Således var den optiske renheten til hydrogeneringsproduktet Thus was the optical purity of the hydrogenation product

70,7% eller bedre enn 85% av L-enantiomorf og 15% av D-enantiomorf. 70.7% or better than 85% of L-enantiomorph and 15% of D-enantiomorph.

Ved å anvende en lignende fremgangsmåte og med (-)-metylcykloheksyl-o-anisylfosfin (optisk renhet = ca. 80%) erholdt man et hydrogeneringsprodukt som inneholdt hovedsakelig D-enantio- By using a similar procedure and with (-)-methylcyclohexyl-o-anisylphosphine (optical purity = approx. 80%), a hydrogenation product containing mainly D-enantio-

morf (optisk renhet for reaksjonsproduktblandingen var 65%). morph (optical purity of the reaction product mixture was 65%).

Således kunne ved passende valg av (+)- eller (-)-fosfin hovedsakelig en enantiomorf fremstilles. Thus, by suitable choice of (+)- or (-)-phosphine, mainly one enantiomorph could be prepared.

EKSEMPEL 19 EXAMPLE 19

En lignende fremgangsmåte som beskrevet i eksempel 18 ble anvendt A similar method as described in example 18 was used

på (-)-metylcykloheksyl-o-anisylfosfin, som optisk aktiv ligande og a-benzamido-4-hydroksy-3-metoksy-cinnaminsyre som (3-substituert-oc-acylamido-akrylsyre. on (-)-methylcyclohexyl-o-anisylphosphine, as optically active ligand and α-benzamido-4-hydroxy-3-methoxy-cinnamic acid as (3-substituted-oc-acylamido-acrylic acid.

Det erholdte hydrogeneringsproduktet var N-benzoyl-3-(4-hydroksy-3-metoksyfenyl)-alanin som inneholdt hovedsakelig D-enantiomorf (reaksjonsproduktblandingens optiske renhet = The hydrogenation product obtained was N-benzoyl-3-(4-hydroxy-3-methoxyphenyl)-alanine which contained mainly the D-enantiomorph (the optical purity of the reaction product mixture =

ca. 65%). about. 65%).

Claims (2)

1. Fremgangsmåte ved asymmetrisk hydrogenering av en umettet forbindelse inneholdende gruppen1. Procedure for asymmetric hydrogenation of an unsaturated compound containing the group til å gi en ikke-racemisk blanding av en forbindelse inne- holdende gruppenkarakterisert ved at den umettede forbindelse hydrogeneres i nærvær av en katalysator som er: eller hvor M er et metall utvalgt fra gruppen bestående av rhodium, ruthenium, iridium og osmium, M 2er et metall utvalgt fra gruppen bestående av palladium og platina, X er utvalgt fra gruppen bestående av hydrogen, klor, fluor, brom og jod, L betyr en fosfin- eller arsin-ligand , forutsatt at minst en L-gruppe er optisk aktiv og n betyr tallet en eller tre, eller (c) en losning av et metall utvalgt fra gruppen bestående av rhodium, iridium, ruthenium, osmium, palladium og platina og minst en ekvivalent fosfin-eller arsin-ligand pr. mol metall i losningen, forutsatt at liganden er optisk aktiv; eller (d) kationiske koordinasjonsrhodiumkomplekser som inneholder to ekvivalenter av en optisk aktiv fosfin-eller arsin-ligande pr. mol rhodium og en chelat-dannende bis-olefin. to give a non-racemic mixture of a compound containing the group characterized in that the unsaturated compound is hydrogenated in the presence of a catalyst which is: or where M is a metal selected from the group consisting of rhodium, ruthenium, iridium and osmium, M 2 is a metal selected from the group consisting of palladium and platinum, X is selected from the group consisting of hydrogen, chlorine, fluorine, bromine and iodine, L means a phosphine or arsine ligand, provided that at least one L group is optically active and n means the number one or three, or (c) a solution of a metal selected from the group consisting of rhodium, iridium, ruthenium, osmium, palladium and platinum and at least one equivalent phosphine or arsine ligand per moles of metal in the solution, assuming the ligand is optically active; or (d) cationic coordination rhodium complexes containing two equivalents of an optically active phosphine or arsine ligand per moles of rhodium and a chelating bis-olefin. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at hydrogeneringen utføres i nærvær av en base.2. Method according to claim 1, characterized in that the hydrogenation is carried out in the presence of a base.
NO1757/71A 1970-05-11 1971-05-10 PROCEDURE FOR ASYMMETRIC HYDROGENERATION NO142075C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO770472A NO148322C (en) 1970-05-11 1977-02-11 CATALYST FOR ASYMMETRIC HYDROGENERATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3647170A 1970-05-11 1970-05-11
US12211671A 1971-03-08 1971-03-08

Publications (2)

Publication Number Publication Date
NO142075B true NO142075B (en) 1980-03-17
NO142075C NO142075C (en) 1980-06-25

Family

ID=26713195

Family Applications (1)

Application Number Title Priority Date Filing Date
NO1757/71A NO142075C (en) 1970-05-11 1971-05-10 PROCEDURE FOR ASYMMETRIC HYDROGENERATION

Country Status (16)

Country Link
JP (1) JPS5320011B1 (en)
BE (1) BE766960A (en)
CA (1) CA937573A (en)
CH (1) CH563346A5 (en)
DE (1) DE2123063C3 (en)
FI (1) FI55992C (en)
FR (1) FR2100644A1 (en)
HU (1) HU164803B (en)
IL (1) IL36804A (en)
IT (1) IT1019513B (en)
NL (1) NL155004B (en)
NO (1) NO142075C (en)
RO (1) RO80693A (en)
SE (5) SE400552B (en)
SU (2) SU640659A3 (en)
YU (1) YU35559B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008281A (en) 1973-12-03 1977-02-15 Monsanto Company Asymmetric catalysis
US4376870A (en) * 1980-12-05 1983-03-15 Monsanto Company Optically active phosphine compounds
EP0077099A3 (en) * 1981-10-08 1983-08-03 ANIC S.p.A. Process for preparing amino acids and their esters

Also Published As

Publication number Publication date
SE430219B (en) 1983-10-31
NO142075C (en) 1980-06-25
FI55992B (en) 1979-07-31
SE400552B (en) 1978-04-03
SE7409525L (en) 1974-07-22
CH563346A5 (en) 1975-06-30
DE2123063B2 (en) 1977-11-24
IL36804A0 (en) 1971-07-28
DE2123063A1 (en) 1971-12-02
SE410463B (en) 1979-10-15
SU640659A3 (en) 1978-12-30
YU116071A (en) 1980-10-31
SE7900354L (en) 1979-01-15
SE7900355L (en) 1979-01-15
BE766960A (en) 1971-11-10
NL7106286A (en) 1971-11-15
HU164803B (en) 1974-04-11
NL155004B (en) 1977-11-15
SE7409524L (en) 1974-07-22
SE412394B (en) 1980-03-03
SU526279A3 (en) 1976-08-25
FR2100644B1 (en) 1973-06-08
RO80693A (en) 1982-12-06
CA937573A (en) 1973-11-27
IT1019513B (en) 1977-11-30
FI55992C (en) 1979-11-12
IL36804A (en) 1978-06-15
SE430220B (en) 1983-10-31
DE2123063C3 (en) 1978-07-20
JPS5320011B1 (en) 1978-06-24
FR2100644A1 (en) 1972-03-24
YU35559B (en) 1981-04-30

Similar Documents

Publication Publication Date Title
SU663273A3 (en) Optically active catalyst for asymmetrical hydrogenation of substituted acrylic acids
EP0036741B1 (en) Phosphine compounds, transition metal complexes thereof and use thereof as chiral hydrogenation catalysts
Fryzuk et al. Asymmetric synthesis. Production of optically active amino acids by catalytic hydrogenation
Vineyard et al. Asymmetric hydrogenation. Rhodium chiral bisphosphine catalyst
Knowles et al. Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex
US4119652A (en) Catalytic asymmetric hydrogenation
US3849480A (en) Catalytic asymmetric hydrogenation
ES2708693T3 (en) Method for producing compound with carbonyl group using ruthenium-carbonyl complex having tridentate ligand as oxidation dehydrogenation catalyst
JPS6152139B2 (en)
US4124533A (en) Metal coordination complexes containing optically active phosphine or arsine ligands
Koola et al. Activation of hydrocarbons by a ruthenium (II)(fluoroalkyl) phosphine hydride complex
US4261919A (en) Catalytic asymmetric hydrogenation
US4265827A (en) Catalytic asymmetric hydrogenation
US4142992A (en) Asymmetric catalysis
Dobson et al. Coordination, Oligomerisation and Transfer Hydrogenation of Acetylenes by Some Ruthenium and Osmium Carboxylato Complexes: Crystal and Molecular Structure of (1, 4-Diphenylbut-1-en-3-yn-2-yl) trifluoroacetato (carbonyl) bis (triphenylphosphine) ruthenium (II)
Faure et al. Reactions of a Transient Carbonyl (chloro)(hydrido) ruthenium (ii) Complex with Ethylene, Alkynes, and CO; Chemistry of the New Anion [Ru2 (CO) 4Cl5]−
JPS6154036B2 (en)
US4166824A (en) Chiral rhodium-diphosphine catalyst capable of catalytic reduction of a tetramisole precursor to give a significant excess of the desired S-(-)isomer, levamisole
NO142075B (en) PROCEDURE FOR ASYMMETRIC HYDROGENERATION
JP4201916B2 (en) Optically active 1,2-bis (dialkylphosphino) benzene derivative, process for producing the same, and rhodium metal complex having the compound as a ligand
US4294989A (en) Methylcyclohexyl-O-anisylphosphine
NO148322B (en) CATALYST FOR ASYMMETRIC HYDROGENERATION
ES2624430T3 (en) Purification method of a crude PNPNH compound
CA1094095A (en) Asymmetric catalysis
US4515731A (en) Asymmetric catalysis