NO141871B - VULCANIZABLE SEMI-CONDUCTING INSULATION SHELTER FOR ELECTRIC conductors - Google Patents

VULCANIZABLE SEMI-CONDUCTING INSULATION SHELTER FOR ELECTRIC conductors Download PDF

Info

Publication number
NO141871B
NO141871B NO761574A NO761574A NO141871B NO 141871 B NO141871 B NO 141871B NO 761574 A NO761574 A NO 761574A NO 761574 A NO761574 A NO 761574A NO 141871 B NO141871 B NO 141871B
Authority
NO
Norway
Prior art keywords
weight
cross
insulation
vinyl acetate
semi
Prior art date
Application number
NO761574A
Other languages
Norwegian (no)
Other versions
NO141871C (en
NO761574L (en
Inventor
Lucio Nmn Ongchin
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Publication of NO761574L publication Critical patent/NO761574L/no
Publication of NO141871B publication Critical patent/NO141871B/en
Publication of NO141871C publication Critical patent/NO141871C/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/448Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from other vinyl compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/027Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of semi-conducting layers

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Insulated Conductors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)

Description

Foreliggende oppfinnelse angår vulkaniserbare halvledende isolasjonshylstermasser som inneholder etylenvinylacetatkopolymer og sot. The present invention relates to vulcanizable semi-conductive insulating sheathing compounds containing ethylene vinyl acetate copolymer and carbon black.

Oppbygging av isolerte elektriske ledere som ledninger Construction of insulated electrical conductors such as wires

og kabler beregnet for middels til høy spenning er kjent på området og omfatter vanligvis en kjerne-leder som består av én eller flere tråder av ledende metall eller legering som kobber eller aluminium, et lag av halvledende isolasjonsmasse, et isolasjonslag av f.eks. kryssbundet polyetylen og et lag halvledende isolerende masse ovenpå isolasjonen. Flere nøy-trale tråder som vanligvis er av kobber eller aluminium kan innleires i eller vikles omkring laget av halvledende isolasjonsmasse, om ønsket, i form av en konsentrisk ring omkring den isolerte kabel. and cables intended for medium to high voltage are known in the field and usually comprise a core conductor consisting of one or more strands of conductive metal or alloy such as copper or aluminium, a layer of semi-conductive insulating material, an insulating layer of e.g. cross-linked polyethylene and a layer of semi-conductive insulating mass on top of the insulation. Several neutral wires which are usually made of copper or aluminum can be embedded in or wound around the layer of semi-conductive insulating mass, if desired, in the form of a concentric ring around the insulated cable.

Isolasjonssjiktet og dets overliggende halvledende isolasjonshylstermasse fremstilles vanligvis etter en metode som kalles tandem-ekstrudering hvorved disse lagene formes i rekkefølge ut fra tandemekstrudere og herdes samtidig i en enkelt operasjon for å redusere antall fremstillingstrinn. Imidlertid fører den samtidige herding av de to sjiktene The insulating layer and its overlying semi-conductive insulating sheath mass are usually produced by a method called tandem extrusion, whereby these layers are formed in sequence from tandem extruders and cured simultaneously in a single operation to reduce the number of manufacturing steps. However, it leads to simultaneous hardening of the two layers

ved varme og trykk til at sjiktene tilsynelatende blander seg i kontaktflaten og til dannelse av kryssbindinger i denne kontaktflaten. Dette synes å være tilfelle selv ved den metoden som skal kalles totrinns hvor isolasjonen herdes i et første trinn og den halvledende isolasjonsmasse derpå ekstruderes og herdes ovenpå isolasjonen. by heat and pressure so that the layers apparently mix in the contact surface and to the formation of cross-links in this contact surface. This seems to be the case even with the so-called two-stage method where the insulation is cured in a first step and the semi-conductive insulating mass is then extruded and cured on top of the insulation.

Dannelse av disse kryssbindinger mellom isolasjon og skjerming gjør senere atskillelse av de to lagene (isolasjon og halvlederskjerming), hvilket forekommer ved skjøting eller endetilslutninger av ledninger og kabler, meget vanskelig og tidkrevende. En slik kraftig binding mellom lagene har også tendens til å gjøre at det halvledende sjiktet etterlater en karbonrest på isolasjonen selv når laget trekkes av. Et halvledende hylster som lett og rent kan trekkes av fra isolasjonen på en isolert leder er derfor meget ønsket på området. Formation of these cross-links between insulation and shielding makes subsequent separation of the two layers (insulation and semiconductor shielding), which occurs when splicing or end connections of wires and cables, very difficult and time-consuming. Such a strong bond between the layers also tends to make the semi-conductive layer leave a carbon residue on the insulation even when the layer is pulled off. A semi-conductive sleeve that can be easily and cleanly pulled off from the insulation on an insulated conductor is therefore highly desired in the area.

Tidligere kjente metoder for fremstilling av avtrekkbare hylstere og isolasjoner er beskrevet i de amerikanske patenter nr. 3.424.631 og 3.719.769, i de britiske patenter nr. 1.103.098 og 1.103.099 samt i det tyske Offentlegungsschrift nr. 2.117.247. Previously known methods for the production of removable casings and insulations are described in the American patents no. 3,424,631 and 3,719,769, in the British patents no. 1,103,098 and 1,103,099 and in the German Offentlegungsschrift no. 2,117,247.

U.S. patent nr. 3.424.631 beskriver en isolasjon inneholdende etylen og maksimalt 4 5% kopolymerisert vinylacetat. Patentet nevner imidlertid intet om et innhold på 10 - 45% sot og heller ikke benevnes et innhold av "Vulcup" eller "Varox", dvs. av a, a'bis(t-butylperoksy)diisopropylbenzen eller 2,5-dimetyl-2<1>,5<1->di(t-butylperoksy)heksan. Dette U.S. patentet beskriver avtrekking av isolasjon fra metallhylster, mens det ønskede mål ifølge foreliggende oppfinnelse er et halvledende hylster som kan trekkes av fra en polymerisolasjon selv om de to herdes samtidig. U.S. patent no. 3,424,631 describes an insulation containing ethylene and a maximum of 45% copolymerized vinyl acetate. The patent, however, mentions nothing about a content of 10 - 45% soot and also does not mention a content of "Vulcup" or "Varox", i.e. of a, a'bis(t-butylperoxy)diisopropylbenzene or 2,5-dimethyl-2 <1>,5<1->di(t-butylperoxy)hexane. This U.S. the patent describes the stripping of insulation from a metal sheath, while the desired goal according to the present invention is a semi-conductive sheath that can be stripped from a polymer insulation even if the two are cured at the same time.

U.S. patent nr. 3.719.769 er rettet mot isolerte elektriske ledere der de halvledende isolasjonshylstere stammer fra vulkaniserbare preparater inneholdende (A) en etylenvinylacetatkopolymer (med 25 - 55% vinylacetat), (B) sot og (C) 2,5-dimetyl-2<1>,5<1->di(t-butylperoksy)heksyn-3. U.S. patent no. 3,719,769 is directed to insulated electrical conductors where the semi-conductive insulation sheaths are derived from vulcanizable preparations containing (A) an ethylene vinyl acetate copolymer (with 25 - 55% vinyl acetate), (B) carbon black and (C) 2,5-dimethyl-2 <1>,5<1->di(t-butylperoxy)hexyne-3.

Her beskrives bruken av kun et kryssbindingsmiddel The use of only one cross-linking agent is described here

som er forskjellig fra det som benyttes ifølge foreliggende søknad. Imidlertid er det eneste kryssbindingsmiddel som beskrives i dette mothold ikke bestandig tilgjengelig. which is different from that used according to the present application. However, the only cross-linking agent described in this section is not always available.

Heller ikke de to britiske patenter kaster lys over Nor do the two British patents shed any light

det mål som ønskes oppnådd med foreliggende søknad, idet de ikke benytter de tilstrebende kryssbindingsmidler. the goal that is desired to be achieved with the present application, in that they do not use the intended cross-linking agents.

Når det gjelder det sistnevnte dokument, tysk Offentlegungsschrift nr. 2.117.247 gjelder stort sett det samme som anført for U.S. patent nr. 3.719.769. Regarding the latter document, German Offentlegungsschrift No. 2,117,247 applies substantially the same as stated for the U.S. patent No. 3,719,769.

Målet for foreliggende oppfinnelse er en lett avtrekk-bar halvledende isolasjonshylstermasse som et lag der adhesjonen mellom isolasjonen og hylstermassen i en isolerert elektrisk leder ikke er over 5,7 kg/cm. Man har nå oppdaget at slike typer lett avtrekkbare halvledende isolasjonshylstermasser for kombinasjon med kryssbundet polyetylenisolasjon kan lages av vulkaniserbare halvledende isolasjonshylstermasser, og oppfinnelsen angår således slike omfattende, beregnet på The aim of the present invention is an easily peelable semi-conductive insulating sheath mass as a layer where the adhesion between the insulation and the sheath mass in an insulated electrical conductor is not over 5.7 kg/cm. It has now been discovered that such types of easily removable semi-conductive insulation sheathing compounds for combination with cross-linked polyethylene insulation can be made from vulcanizable semi-conductive insulation sheathing compounds, and the invention thus relates to such extensive, intended for

den totale vekt av sammensetningen, the total weight of the composition,

(a) 55 - 90 vekt-%, fortrinnsvis 60 - 75 vekt-% etylenvinylacetatkopolymer inneholdende fra 27-45 vekt-% og fortrinnsvis 29-35 vekt-% vinylacetat beregnet på vekten av kopolymeren, og (a) 55-90% by weight, preferably 60-75% by weight ethylene vinyl acetate copolymer containing from 27-45% by weight and preferably 29-35% by weight vinyl acetate based on the weight of the copolymer, and

(b) 10 - 45 vekt-% og fortrinnsvis 30 - 40 vekt-% (b) 10 - 45% by weight and preferably 30 - 40% by weight

ledende sot, og oppfinnelsen karakteriseres ved at massen som eneste kryssbindingsmiddel inneholder fra 0,2-5 vekt-% conductive soot, and the invention is characterized by the pulp as the only cross-linking agent containing from 0.2-5% by weight

av et middel valgt blant a,a'-bis-(tert.-butylperoksy)diiso-propylbenzen og 2,5-dimetyl-2',5'-di(tert.-butylperoksy) of an agent selected from α,α'-bis-(tert-butylperoxy)diisopropylbenzene and 2,5-dimethyl-2',5'-di(tert-butylperoxy)

heksen og blandinger derav. witch hazel and mixtures thereof.

Vulkaniserbare kopolymerer av etylenvinylacetat samt fremgangsmåter for fremstilling av slike blandinger som kan brukes i henhold til oppfinnelsen er kjent på området. Man har imidlertid oppdaget at for fremstilling av en halvledende hylstermasse som lett kan trekkes av fra det kryssbundede polyetylenlaget er det viktig å benytte en etylenvinylacetatkopolymer som ikke kan forenes med den kryssbundede polyetyl-enisolas jon. Denne uforenlighet betyr i denne forbindelsen at det ikke finnes fysikalsk-kjemisk binding eller affinitet mellom polyetylenet og etylenvinylacetatharpiksen under ekstrudering og herding. Uforenligheten gir en gjensidig fra-støtning mellom harpiksene som igjen hindrer blanding og bindingsdannelse mellom lagene. Vulcanizable copolymers of ethylene vinyl acetate as well as methods for producing such mixtures which can be used according to the invention are known in the field. However, it has been discovered that for the production of a semi-conductive casing compound which can be easily pulled off from the cross-linked polyethylene layer, it is important to use an ethylene vinyl acetate copolymer which cannot be combined with the cross-linked polyethylene insulation. This incompatibility means in this connection that there is no physicochemical bond or affinity between the polyethylene and the ethylene vinyl acetate resin during extrusion and curing. The incompatibility gives a mutual repulsion between the resins which in turn prevents mixing and bond formation between the layers.

Om en spesiell vulkaniserbar halvledende masse vil If a special vulcanizable semiconducting mass will

ha en slik uforenlighet og vil gi en elektrisk leder isolert med kryssbundet polyetylen som har et lett avtrekkbart halvledende hylster kan finnes ved å måle adhesjonen mellom et laminat av kryssbundet polyetylen og det kryssbundede produkt av den vulkaniserbare masse, i henhold til ASTM-D903. For å godtas som lett avtrekkbart hylster må bindingskraften mellom massen og det kryssbundede polyetylen ikke overstige have such an incompatibility and will provide an electrical conductor insulated with cross-linked polyethylene having an easily peelable semi-conductive sheath can be found by measuring the adhesion between a laminate of cross-linked polyethylene and the cross-linked product of the vulcanizable mass, according to ASTM-D903. In order to be accepted as an easily removable casing, the binding force between the mass and the cross-linked polyethylene must not exceed

5,7 kg/cm når kraften måles i henhold til den angitte forsøks-metode. 5.7 kg/cm when the force is measured according to the stated test method.

Således bør etylenvinylacetatkopolymerer i denne for-bindelse ha fra 27 - 45 og fortrinnsvis 29 - 35 vekt-% vinylacetat basert på kopolymerens totalvekt idet man antar at kopolymerer med under 27 vekt-% vinylacetat vil gi hylstere som Thus, ethylene vinyl acetate copolymers in this connection should have from 27 - 45 and preferably 29 - 35 weight-% vinyl acetate based on the total weight of the copolymer, assuming that copolymers with less than 27 weight-% vinyl acetate will give casings that

har for kraftig binding til isolasjonen av kryssbundet polyetylen, mens kopolymerer med over 45 vekt-% vinylacetat kan gi for svak adhesjon til kryssbundet polyetylen. Mengden etylenvinylacetatkopolymer som finnes i det vulkaniserbare hylster ifølge oppfinnelsen kan ligge på fra 55 - 90 vekt-%, has too strong a bond to the insulation of cross-linked polyethylene, while copolymers with more than 45% by weight of vinyl acetate can give too weak adhesion to cross-linked polyethylene. The amount of ethylene vinyl acetate copolymer contained in the vulcanizable casing according to the invention can be from 55 - 90% by weight,

og fortrinnsvis 60 - 75 vekt-%, basert på totalvekten av vulkaniserbar blanding. Slike etylenvinylacetatkopolymerer og/ and preferably 60-75% by weight, based on the total weight of vulcanizable mixture. Such ethylene vinyl acetate copolymers and/

eller fremgangsmåter for fremstilling av slike er vel kjent på området.. or methods for producing such are well known in the field.

Anvendelsen av ledende sot i halvledende hylstermasse The use of conductive carbon black in semi-conductive casing compound

er vel kjent på området og alle typer ledende sot i egnet form kan brukes inklusive røykkanalsot, oljeovnssot eller acetylensot, forutsatt at soten er ledende. Mengden ledende sot i den vulkaniserbare masse i henhold til foreliggende oppfinnelse kan ligge mellom ca. 10 - 45 vekt-%, fortrinnsvis 30 - 40 vekt-% basert på den vulkaniserbare sammensetningens totalvekt. is well known in the area and all types of conductive soot in a suitable form can be used including flue soot, oil furnace soot or acetylene soot, provided that the soot is conductive. The amount of conductive soot in the vulcanizable mass according to the present invention can be between approx. 10-45% by weight, preferably 30-40% by weight, based on the total weight of the vulcanizable composition.

De eneste kryssbindingsmidler som benyttes til halv-lederblandinger i henhold til oppfinnelsen består av ot,a'-bis-(t-butylperoksy)-diisopropylbenzen ("Vulcup"), 2,5-di-metyl-2',5'-di(t-butylperoksy)heksan ("Varox") eller bland- The only cross-linking agents used for semiconductor mixtures according to the invention consist of ot,a'-bis-(t-butylperoxy)-diisopropylbenzene ("Vulcup"), 2,5-dimethyl-2',5'-di (t-butylperoxy)hexane ("Varox") or mix-

inger av disse. Selv om den foretrukne mengde kryssbindingsmiddel vil variere avhengig av den spesielle etylenvinylacetatkopolymer som brukes og andre slike åpenbare forhold, an- ings of these. Although the preferred amount of cross-linking agent will vary depending on the particular ethylene vinyl acetate copolymer used and other such obvious factors, an

tar man generelt at mengden kryssbindingsmiddel normalt vil være 0,2 - 5 og fortrinnsvis 0,6 - 2 vekt-%, basert på totalvekten av den vulkaniserbare halvledende blanding. it is generally assumed that the amount of crosslinking agent will normally be 0.2 - 5 and preferably 0.6 - 2% by weight, based on the total weight of the vulcanizable semiconducting mixture.

Man vil naturligvis forstå at disse grenseområder eventuelt It will of course be understood that these border areas possibly

ikke vil være egnet for alle mulige masser i henhold til foreliggende oppfinnelse, og at for en bestemt vulkaniserbar masse vil anvendelse av kryssbindingsmidler som gir et will not be suitable for all possible masses according to the present invention, and that for a particular vulcanizable mass the use of cross-linking agents which give a

kryssbundet produkt med adhesjonskraft på over 5,7 kg/cm målt som definert ovenfor, til kryssbundet polyetylen, ikke være egnet, og at de aktuelle mengder da må bestemmes ved rutine-eksperimenter. cross-linked product with an adhesion force of more than 5.7 kg/cm measured as defined above, to cross-linked polyethylene, will not be suitable, and that the relevant quantities must then be determined by routine experiments.

Det vil naturligvis videre forstås at vulkaniserbar halvledende isolasjonshylstermasse i henhold til oppfinnelsen om ønsket kan inneholde andre vanlige additiver i de mengder som vanligvis brukes i slike masser. It will of course also be understood that vulcanizable semi-conductive insulation sheathing compound according to the invention can, if desired, contain other common additives in the quantities that are usually used in such compounds.

Eksempler på slike tilsetninger er aldringsmotvirkende hjelpestoffer, stabilisatorer, antioksydasjonsmidler, tverr-bindingsakselleratorer og -forsinkere, pigmenter, fyllstoffer, smøremidler, ultrafiolett-stabilisatorer, antiblokkdannelses-midler o.l. Den samlede mengde slike tilsetninger som vanligvis brukes er høyst ca. 0,05 - 3 vekt-% basert på totalvekten av hylstermassen. Examples of such additives are anti-aging auxiliaries, stabilizers, antioxidants, cross-linking accelerators and retarders, pigments, fillers, lubricants, ultraviolet stabilizers, anti-blocking agents and the like. The total amount of such additives that are usually used is at most approx. 0.05 - 3% by weight based on the total weight of the casing mass.

Betegnelsen "kryssbundet polyetylen" omfatter naturligvis isolasjons-preparater som er avledet fra en kryssbundet polyetylenhomopolymer eller en kryssbundet polyetylenkopolymer som har et komonomerinnhold som ikke på uheldig måte innvirker på det ønskede resultat ifølge oppfinnelsen. Normalt vil isolasjonen av kryssbundet polyetylen være av ren kryssbundet polyetylenhomopolymer. Bruk av polyetylenisolasjonsmasser og halvledende hylstermasser, fremstillingsmåte og selve fremstillingen av isolerte ledere er så godt kjent at det ikke kreves ytterligere beskrivelse her for å gjøre det mulig for fagfolk å forstå hvorledes polymerbestanddelene fremstilles og brukes for produksjon av isolerte ledere. F.eks. kan LD-polyetylensammensetninger om ønsket inneholde vanlige tilsetninger som fyllstoffer, aldrings-dempere, talkum, The term "cross-linked polyethylene" naturally includes insulation preparations which are derived from a cross-linked polyethylene homopolymer or a cross-linked polyethylene copolymer which has a comonomer content which does not adversely affect the desired result according to the invention. Normally, the cross-linked polyethylene insulation will be pure cross-linked polyethylene homopolymer. The use of polyethylene insulating compounds and semi-conductive casing compounds, the method of manufacture and the actual manufacture of insulated conductors are so well known that no further description is required here to enable those skilled in the art to understand how the polymer components are manufactured and used for the manufacture of insulated conductors. E.g. LD polyethylene compositions can, if desired, contain common additives such as fillers, aging inhibitors, talc,

leire, kalsiumkarbonat og andre bearbeidings-hjelpestoffer samt vanlige kryssbindingsmidler som er vel kjent på området i likhet med vanlige halvledende hylstermasser. Isolerte elektriske ledere kan også fremstilles på vanlig måte ved f.eks. tandem-ekstrudering hvorved isolasjonslaget ekstruderes over lederen som på forhånd er belagt med et vanlig ekstrudert halvledende hylster fulgt av det vulkaniserbare sjiktet hvorpå isolasjons- og hylstersjikt herdes (kryss- clay, calcium carbonate and other processing aids as well as common cross-linking agents which are well known in the field, as well as common semi-conductive casing compounds. Insulated electrical conductors can also be produced in the usual way by e.g. tandem extrusion whereby the insulation layer is extruded over the conductor which is previously coated with a conventional extruded semi-conductive sheath followed by the vulcanizable layer on which the insulation and sheath layers are cured (cross-

bindes) samtidig under trykk. En annen vanlig metode består i å herde isolasjonssjiktet før kontakt med den vulkaniserbare massen som derpå selv herdes mens sjiktet er i kontakt under trykk med nevnte herdede isolasjonssjikt. Det antas å være gunstig å hindre enhver forblanding av isolasjonsmassen og den vulkaniserbare masse før blandingene herdes siden eventuell slik blanding vil kunne gjøre at kryssbindingsmidlet påvirker adhesjonen mellom de to lagene ved innbyrdes kryssbinding mellom overflatene av de to sjikt. Andre spesielle sider ved isolerte elektriske ledere som anvender foreliggende oppfinnelse kan også være som for vanlige isolerte elektriske ledere og er ikke avgjørende i det de for størstedelen avhenger av ønsket bruksområde for produktet. are tied) simultaneously under pressure. Another common method consists in hardening the insulation layer before contact with the vulcanizable mass which is then itself hardened while the layer is in contact under pressure with said hardened insulation layer. It is believed to be beneficial to prevent any pre-mixing of the insulating mass and the vulcanizable mass before the mixtures harden since any such mixing could cause the cross-linking agent to affect the adhesion between the two layers by mutual cross-linking between the surfaces of the two layers. Other special aspects of insulated electrical conductors that use the present invention can also be the same as for ordinary insulated electrical conductors and are not decisive in that they depend for the most part on the desired area of use for the product.

De isolerte elektriske ledere som anvender foreliggende oppfinnelse er enestående på grunn av at den kryssbundede isolasjonshylstermasse lett og rent kan trekkes av, vanligvis i ett stykke, fra kryssbundet polyetylenisolasjon. The insulated electrical conductors using the present invention are unique in that the cross-linked insulating sheathing compound can be easily and cleanly pulled off, usually in one piece, from cross-linked polyethylene insulation.

De følgende eksempler illustrerer oppfinnelsen. Alle mengde-angivelser, prosentforhold og relative forhold som anføres er på vektbasis hvor intet annet er angitt. The following examples illustrate the invention. All quantities, percentages and relative ratios stated are on a weight basis where nothing else is stated.

EVA - etylenvinylacetatkopolymer EVA - ethylene vinyl acetate copolymer

VA - vekt-% vinylacetat i kopolymeren VA - % vinyl acetate by weight in the copolymer

MI - smelteindeks MI - melting index

Dicup - di-a-cumylperoksyd Dicup - di-a-cumyl peroxide

"Lupersol-130" - 2,5-dimetyl-2',5<1->di(t-butylperoksy)-heksyn-3 "Vulcup" - a,a 1-bis-(t-butylperoksy)-diisopropylbenzen "Lupersol-130" - 2,5-dimethyl-2',5<1->di(t-butylperoxy)-hexyne-3 "Vulcup" - a,a 1-bis-(t-butylperoxy)-diisopropylbenzene

"Varox" - 2,5-dimetyl-2',5'-di(t-butylperoksy)-heksan Eksempel_l_2_16 "Varox" - 2,5-dimethyl-2',5'-di(t-butylperoxy)-hexane Example_l_2_16

Man fremstilte en serie vulkaniserbare halvledende masser hvor vekt-% vinylacetat i kopolymeren av etylenvinylacetat ble variert i likhet med kryssbindingsmidlene. Be-standdelene i hver blanding er oppført i tabell I og hver sammensetning inneholdt i tillegg til de angitte bestanddeler 40 vekt-% ledende sot og 0,4 vekt-% polymerisert 1,2-dihydro-2,2,4-trimetyl-kinolin, et antioksydasjonsmiddel, og slik at mengdene av alle bestanddeler i hvert—preparat er basert A series of vulcanizable semi-conductive masses were produced in which the weight % of vinyl acetate in the copolymer of ethylene vinyl acetate was varied in the same way as the cross-linking agents. The ingredients in each mixture are listed in Table I and each composition contained, in addition to the listed ingredients, 40% by weight of conductive carbon black and 0.4% by weight of polymerized 1,2-dihydro-2,2,4-trimethyl-quinoline , an antioxidant, and so that the quantities of all components in each preparation are based

på totalvekten av sammensetningen. on the total weight of the composition.

Sammensetningene fremstilles ved jevn blanding av bestand-delene i en laboratorieblander av "Banbury"-typen og det ble laget ca. 1300 g av hver masse. The compositions are produced by evenly mixing the component parts in a laboratory mixer of the "Banbury" type, and approx. 1300 g of each mass.

For å bedømme avtrekkbarheten av blandingene som halvledende hylster, ble hver sammensetning benyttet for fremstilling av et laminat av polyetylen/etylenvinylacetat. Laminatene ble laget av laboratorie-forsøksplater hvor polyetylenplaten i alle tilfeller ble fremstilt av en. polyetylenhomopolymer-masse bestående av polyetylenhomopolymer (98%), di-a-cumylperoksyd (2%) og bis(2-metyl,5-t-butyl-4-hydroksyfenyl)-sulfid (0,2%) som antioksydasjonsmiddel. To assess the peelability of the compositions as semiconducting sheaths, each composition was used to prepare a laminate of polyethylene/ethylene vinyl acetate. The laminates were made from laboratory test plates where the polyethylene plate was in all cases produced by a. polyethylene homopolymer mass consisting of polyethylene homopolymer (98%), di-α-cumyl peroxide (2%) and bis(2-methyl,5-t-butyl-4-hydroxyphenyl)-sulphide (0.2%) as antioxidant.

I eksempel 1-9 laget man laminatene av polyetylen/ etylenvinylacetat ved først å støpe ut polyetylenplater (med målene 20 x 20 cm x 6,3 mm i tykkelse) ved 175°C i 15 minutter og kryssbinde platen, derpå ble vulkaniserbare plater av etylenvinylacetat (20 x 20 cm x 3,2 mm tykkelse) utstøpt separat, men ikke kryssbundet, og laminater fremstilt ved å presse hver vulkaniserbare etylenvinylacetatplate sammen med én av de kryssbundede polyetylenplater ved 200°C og 14 kg/cm^ In examples 1-9, the laminates were made of polyethylene/ethylene vinyl acetate by first casting polyethylene sheets (with dimensions 20 x 20 cm x 6.3 mm in thickness) at 175°C for 15 minutes and cross-linking the sheet, then vulcanizable sheets of ethylene vinyl acetate (20 x 20 cm x 3.2 mm thickness) cast separately, but not cross-linked, and laminates prepared by pressing each vulcanizable ethylene vinyl acetate sheet together with one of the cross-linked polyethylene sheets at 200°C and 14 kg/cm^

i 20 minutter hvorunder den vulkaniserbare etylenvinylacetat-masse ble kryssbundet. for 20 minutes during which the vulcanizable ethylene vinyl acetate mass was cross-linked.

I eksempel 10 - 16 ble polyetylen/etylenvinylacetat-laminatene laget på samme måten som ovenfor bortsett fra at polyetylenplatene ble støpt ut ved 110°C slik at de ikke ble kryssbundet. Kryssbinding av begge plater foregikk samtidig med at laminatet ble dannet. In Examples 10-16, the polyethylene/ethylene vinyl acetate laminates were made in the same manner as above except that the polyethylene sheets were cast at 110°C so that they were not cross-linked. Cross-bonding of both boards took place at the same time as the laminate was formed.

Adhesjonen mellom forsøksplatene (skåret til strimler The adhesion between the test plates (cut into strips

20 x 2,5 cm) ble målt i henhold til ASTM metode D9 03 som måler adhesjonen eller avtrekksstyrken mellom to plater i laminatet uttrykt som kg pr. cm og som benyttes som mål for graden av avtrekkbarhet hos halvledende isolasjonshylstre av etylenvinylacetat fra kryssbundet polyetylenisolasjon. Forsøksresultatene for hvert laminat av polyetylen/etylen-vinylacetathylster fremstilt som omtalt ovenfor er også oppført i tabell I. 20 x 2.5 cm) was measured according to ASTM method D9 03 which measures the adhesion or pull-off strength between two plates in the laminate expressed as kg per cm and which is used as a measure of the degree of peelability of semi-conductive insulation sleeves made of ethylene vinyl acetate from cross-linked polyethylene insulation. The test results for each polyethylene/ethylene vinyl acetate sheath laminate prepared as discussed above are also listed in Table I.

Eksempel 5, 7, 9 og 12 - 15 som gjengir resultater for produkter i henhold til foreliggende oppfinnelse viser den fremragende avtrekksevne for de foreliggende hylstermasser, og hyl-sterlaget i hvert eksempel er avtrukket rent og i ett stykke fra isolasjonslaget. Examples 5, 7, 9 and 12 - 15, which reproduce results for products according to the present invention, show the excellent pull-off capability of the present casing masses, and the casing layer in each example is pulled off cleanly and in one piece from the insulation layer.

Eksemp_el_17 Example_el_17

Eksemplet illustrerer fremstilling av en isolert elektrisk kabel. The example illustrates the manufacture of an insulated electric cable.

En vanlig aluminiumleder ble sekvens-belagt med vanlig halvledende hylster (8,63 mm), et polyetylenisolasjonssjikt (6, 78 mm) og et halvledende isolasjonshylster (1,40 mm) som besto av polyetylen/vinylacetat (29% vinylacetat, MI - 20), A common aluminum conductor was sequentially coated with a common semiconducting sheath (8.63 mm), a polyethylene insulating layer (6.78 mm) and a semiconducting insulating sheath (1.40 mm) consisting of polyethylene/vinyl acetate (29% vinyl acetate, MI - 20 ),

og 0,6% "Vulcup". and 0.6% "Vulcup".

Ved fremstilling av kabelen ble det ekstruderte hylster og isolasjonssjiktet herdet i et dampvulkaniseringsrør (17,5 kg/cm 2 damptrykk) før ekstrudering av isolasjonshylstermassen over isolasjonen, idet hylstermassen derpå ble herdet ved fornyet gjennomføring gjennom dampvulkaniseringsrøret. Denne metode er kjent på området som totrinns ekstrudering. When manufacturing the cable, the extruded sheath and the insulation layer were cured in a steam vulcanization tube (17.5 kg/cm 2 steam pressure) before extruding the insulation sheath mass over the insulation, the sheath mass then being hardened by renewed passage through the steam vulcanization tube. This method is known in the art as two-stage extrusion.

To parallelle innsnitt i hylsteret på den isolerte kabelen ble foretatt 13 mm fra hverandre i aksial retning av kabelen og det isolerende sjiktet gjennomgikk en strekk-avtrekksprøve for å finne isjolasjonens adhesjons- eller hefte-kraft. Det isolasjonshylsteret ble trukket av rent og i ett stykke fra isolasjonen og oppviste en bindingskraft på 34 - 46 kg/cm hvilket betegner fremragende avtrekksevne for hylsteret ifølge oppfinnelsen. Two parallel incisions in the sheath of the insulated cable were made 13 mm apart in the axial direction of the cable and the insulating layer underwent a tensile pull-off test to determine the adhesion or tack force of the insulation. The insulation sleeve was pulled off cleanly and in one piece from the insulation and exhibited a binding force of 34 - 46 kg/cm, which indicates excellent pull-off capability for the sleeve according to the invention.

Det ble laget en elektrisk isolert kabel for sammen-ligningsformål, som ble prøvet på samme måten, idet man som hylstermasse benyttet en blanding av vinylacetat og 2% "Di- An electrically insulated cable was made for comparison purposes, which was tested in the same way, using a mixture of vinyl acetate and 2% "Di-

cup" hvilket ga en kabel med et hylster som viste en bindingskraft på 114 - 142 kg/cm og som ikke ble trukket av rent, cup" which produced a cable with a sheath that showed a binding force of 114 - 142 kg/cm and which did not pull off cleanly,

men i biter fra isolasjonen. but in pieces from the insulation.

Eksempel_18 Example_18

Eksemplet illustrerer fremstilling av en isolert elektrisk kabel. The example illustrates the manufacture of an insulated electric cable.

En vanlig aluminiumleder ble sekvensbelagt med vanlig halvledende hylster (0,63 mm), polyetylenisolasjonslag (6,78 mm) og et halvledende isolasjonshylster (1,40 mm) bestående av polyetylen/vinylacetat (29% vinylacetat, Mi - 20) og 0,6% "Vulcup". A plain aluminum conductor was sequentially coated with plain semi-conductive sheath (0.63 mm), polyethylene insulating layer (6.78 mm) and a semi-conductive insulating sheath (1.40 mm) consisting of polyethylene/vinyl acetate (29% vinyl acetate, Mi - 20) and 0, 6% "Vulcup".

Ved fremstilling av kabelen ble alle tre lagene bestående av lederhylster, isolasjon og isolasjonshylster ekstrudert etter hverandre og herdet samtidig i dampvulkaniseringsrør (17,5 kg/cm 2). Denne fremgangsmåten kan betegnes som ett-trinns trippelekstrudering. When manufacturing the cable, all three layers consisting of conductor sleeve, insulation and insulation sleeve were extruded one after the other and cured simultaneously in steam vulcanization tubes (17.5 kg/cm 2 ). This method can be described as one-stage triple extrusion.

Bindingskraften for isolasjonshylsteret på isolasjonen over kabelen ble målt som beskrevet i eksempel 17. Isolasjonshylsteret ble trukket av rent og i ett stykke fra isolasjonen og hadde en bindingskraft på 80 - 91 kg/cm som viser den fremragende avtrekksevne for isolasjonshylsteret ifølge oppfinnelsen . The binding force for the insulation sleeve on the insulation above the cable was measured as described in example 17. The insulation sleeve was pulled off cleanly and in one piece from the insulation and had a binding force of 80 - 91 kg/cm which shows the outstanding pulling ability of the insulation sleeve according to the invention.

Man laget for sammenligning en isolert elektrisk kabel som ble prøvet på samme måten idet isolasjonshylstermassen besto av vinylacetat og 2% "Dicup", hvilket ga en kabel med så kraftig bindingskraft mellom isolasjonshylster og isolasjonen at avtrekksevnen ikke kunne måles ved den angitte prøve siden de to lagene var sterkt sammensmeltet i kontaktflaten . For comparison, an insulated electric cable was made which was tested in the same way, with the insulation sheath mass consisting of vinyl acetate and 2% "Dicup", which gave a cable with such a strong binding force between the insulation sheath and the insulation that the pull-off capacity could not be measured in the specified test since the two the layers were strongly fused at the contact surface.

Claims (2)

1. Vulkaniserbar halvledende isolasjonshylstermasse omfattende, beregnet på den totale vekt av sammensetningen, (a) 55 - 90 vekt-%, fortrinnsvis 60 - 75 vekt-% etylenvinylacetatkopolymer inneholdende fra 27 - 45 vekt-% og fortrinnsvis 29 - 35 vekt-% vinylacetat beregnet på vekten av kopolymeren, og (b) 10 - 45 vekt-% og fortrinnsvis 30 - 40 vekt-% ledende sot, karakterisert ved åt massen som eneste kryssbindingsmiddel inneholder fra 0,2-5 vekt-% av et middel valgt blant a, a'-bis(tert.-butylperoksy)diiso-propylbenzen og 2,5-dimetyl-2',5'-di(tert.-butylperoksy)-heksen og blandinger derav.1. Vulcanizable semi-conductive insulating sheath composition comprising, based on the total weight of the composition, (a) 55-90% by weight, preferably 60-75% by weight ethylene vinyl acetate copolymer containing from 27-45% by weight and preferably 29-35% by weight vinyl acetate calculated on the weight of the copolymer, and (b) 10 - 45% by weight and preferably 30 - 40% by weight conductive carbon black, characterized in that the mass as the only cross-linking agent contains from 0.2-5% by weight of an agent selected from a , α'-bis(tert-butylperoxy)diisopropylbenzene and 2,5-dimethyl-2',5'-di(tert-butylperoxy)-hexene and mixtures thereof. 2. Masse ifølge krav 1,karakterisert ved at den inneholder 0,6-2 vekt-% kryssbindingsmiddel.2. Mass according to claim 1, characterized in that it contains 0.6-2% by weight cross-linking agent.
NO761574A 1975-05-07 1976-05-06 VULCANIZABLE SEMI-CONDUCTING INSULATION SHELTER FOR ELECTRIC conductors. NO141871C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US57519375A 1975-05-07 1975-05-07

Publications (3)

Publication Number Publication Date
NO761574L NO761574L (en) 1976-11-09
NO141871B true NO141871B (en) 1980-02-11
NO141871C NO141871C (en) 1980-05-21

Family

ID=24299310

Family Applications (1)

Application Number Title Priority Date Filing Date
NO761574A NO141871C (en) 1975-05-07 1976-05-06 VULCANIZABLE SEMI-CONDUCTING INSULATION SHELTER FOR ELECTRIC conductors.

Country Status (10)

Country Link
JP (1) JPS51138894A (en)
AU (1) AU510947B2 (en)
BE (1) BE841518A (en)
CA (1) CA1084696A (en)
DE (1) DE2620105B2 (en)
FR (1) FR2310618A1 (en)
GB (1) GB1543212A (en)
IT (1) IT1061028B (en)
NO (1) NO141871C (en)
SE (1) SE7605205L (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325886A (en) * 1976-08-21 1978-03-10 Sumitomo Electric Ind Ltd Brid ged polyolefine insulating hightension cable having outer semiconductor layers which can be treated off easily
US4990231A (en) * 1981-06-12 1991-02-05 Raychem Corporation Corrosion protection system
DE3375619D1 (en) * 1983-06-13 1988-03-10 Mitsui Du Pont Polychemical Semiconducting compositions and wires and cables using the same
US5575965A (en) * 1995-05-19 1996-11-19 Union Carbide Chemicals & Plastics Technology Corporation Process for extrusion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4210587Y1 (en) * 1965-02-15 1967-06-12
DE2051268B2 (en) * 1970-06-13 1972-09-14 Sumitomo Electric Industries Ltd., Osaka (Japan) INSULATED CABLE
US3719769A (en) * 1970-10-05 1973-03-06 Sumitomo Electric Industries Insulated electric cable having an external semiconductive layer
JPS4827111A (en) * 1971-08-13 1973-04-10

Also Published As

Publication number Publication date
AU510947B2 (en) 1980-07-24
GB1543212A (en) 1979-03-28
SE7605205L (en) 1976-11-08
DE2620105A1 (en) 1976-11-18
FR2310618A1 (en) 1976-12-03
NO141871C (en) 1980-05-21
FR2310618B1 (en) 1982-04-16
NO761574L (en) 1976-11-09
JPS5619939B2 (en) 1981-05-11
JPS51138894A (en) 1976-11-30
DE2620105B2 (en) 1978-04-06
AU1359876A (en) 1977-11-10
BE841518A (en) 1976-11-08
IT1061028B (en) 1982-10-20
CA1084696A (en) 1980-09-02

Similar Documents

Publication Publication Date Title
US4286023A (en) Article of manufacture, the cross-linked product of a semi-conductive composition bonded to a crosslinked polyolefin substrate
EP0420271B1 (en) Insulated electrical conductors
US4150193A (en) Insulated electrical conductors
EP0188118B1 (en) Laminated construction having strippable layers
US4246142A (en) Vulcanizable semi-conductive compositions
US3793476A (en) Insulated conductor with a strippable layer
US6972099B2 (en) Strippable cable shield compositions
JPS6320266B2 (en)
US6207277B1 (en) Multiple insulating layer high voltage wire insulation
WO2004088674A1 (en) Power cable compositions for strippable adhesion
CA3001160C (en) Semiconductive shield composition
EP2128195A1 (en) Strippable semiconductive composition comprising low melt temperature polyolefin
US20110240330A1 (en) Semiconducting composition for electric cables
FI68924C (en) FOER FARING FOR FRAMSTAELLNING AV EN MEDIABUILD POLYETHYLEN INSULATED CABLE
NO141871B (en) VULCANIZABLE SEMI-CONDUCTING INSULATION SHELTER FOR ELECTRIC conductors
US4598127A (en) Compositions based on mixtures of ethylene-ethyl acrylate copolymers and ethylene-vinyl acetate-vinyl chloride terpolymers
CN109348719B (en) Solderless and bumpless semiconductor shield
EP0210425A2 (en) Compositions based on mixtures of ethylene-ethyl, acrylate copolymers and ethylene-vinyl acetate-vinyl chloride terpolymers
NO761573L (en)
CA1068035A (en) Semiconductive chlorinated ethylene vinyl acetate copolymer and carbon black composition
CN111349282A (en) Cable comprising an easily strippable semi-conducting layer
KR19990088160A (en) Cable Semiconducting Shield Compositions
CA1100752A (en) Insulated electrical conductors
JPH02289643A (en) Fire retardant resin composition and fire retardant insulating electric wire