NO140637B - PAPER TREATMENT PROCEDURE - Google Patents

PAPER TREATMENT PROCEDURE Download PDF

Info

Publication number
NO140637B
NO140637B NO217673A NO217673A NO140637B NO 140637 B NO140637 B NO 140637B NO 217673 A NO217673 A NO 217673A NO 217673 A NO217673 A NO 217673A NO 140637 B NO140637 B NO 140637B
Authority
NO
Norway
Prior art keywords
fuel
ether
jet
glycerol
ethylene glycol
Prior art date
Application number
NO217673A
Other languages
Norwegian (no)
Other versions
NO140637C (en
Inventor
Michel Camp
Jean Dumoulin
Original Assignee
Rhone Poulenc Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Sa filed Critical Rhone Poulenc Sa
Publication of NO140637B publication Critical patent/NO140637B/en
Publication of NO140637C publication Critical patent/NO140637C/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/59Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/55Polyamides; Polyaminoamides; Polyester-amides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Silicon Polymers (AREA)

Description

Flytende hydrocarbon-brennstoff. Liquid hydrocarbon fuel.

Foreliggende oppfinnelse angår et flytende hydrocarbon-brennstoff med et i The present invention relates to a liquid hydrocarbon fuel with an i

dette inkorporert anti-isingtilsetningsstoff this incorporated anti-icing additive

som gjør brennstoffet egnet for bruk i for-brenningskraftmaskiner, innbefattet motorer for jet-fly. which makes the fuel suitable for use in internal combustion engines, including jet engines.

Dannelsen av is innen brennstoffsystemet i et jetfly har vært erkjent som et problem i lang tid. Flyvninger i store høyder i The formation of ice within the fuel system of a jet aircraft has been recognized as a problem for a long time. Flights at high altitudes i

lengre tid resulterer ofte i at brennstoffet longer time often results in the fuel

blir avkjølt til temperaturer som nærmer is cooled to temperatures approaching

seg temperaturen i den luft i hvilken flyet know the temperature of the air in which the aircraft is flying

opererer. Alt jet-brennstoff inneholder operates. All jet fuel contains

små mengder oppløst og/eller mekanisk small amounts dissolved and/or mechanically

medført vann. Når brennstoffet avkjøles, entrained water. As the fuel cools,

utskiller vannet seg fra brennstoffet og is the water separates from the fuel and ice

dannes. Isdannelse i et flys brennstoffsys-tem ved punkter med nedsatt flyt, så som is formed. Ice formation in an aircraft's fuel system at points with reduced flow, such as

filtre, skjermer, ventiler, dyser etc, er en filters, screens, valves, nozzles etc, are one

alvorlig sak, fordi motorens brennstofftil-førsel kan bli nedsatt og visse instrumenter serious matter, because the engine's fuel supply can be reduced and certain instruments

kan komme til å unnlate å reagere korrekt. may fail to react correctly.

Et antall motorutslukninger har vært hen-ført til isdannelse i brennstoffsystemet. A number of engine shutdowns have been attributed to ice formation in the fuel system.

En åpenbar måte å hindre ising i An obvious way to prevent icing

brennstoffsystemet på er å holde brennstoffet tørt. Imidlertid er dette meget the fuel system on is to keep the fuel dry. However, this is a lot

vanskelig når man tar i betraktning de forskjellige brennstoff kilder og det store difficult when you take into account the different fuel sources and the large

antall muligheter for forurensning av number of opportunities for contamination of

brennstoffet med vann gjennom håndter-ing og under flyvning. Under bruk av jet-drevet fly, forekommer akkumulering av the fuel with water through handling and during flight. During the use of jet-powered aircraft, accumulation of

vann i brennstoff-cellene eller tankene på water in the fuel cells or tanks

grunn av de ekstreme variasjoner i tempe- due to the extreme variations in tempe-

ratur og trykk som møtes i store og lave høyder, og også på grunn av den stadige variasjon i brennstoff nivået i nevnte tan-ker forårsaket av brennstoff-forbruk og brennstoffoverførsel fra tank til tank for å vedlikeholde riktig fordeling av lasten. Ved disse variasjoner i trykk, temperatur og brennstoffnivå, kondenseres fuktighet som føres inn i brennstofftankene med luften. Den således akkumulerte vannmengde er tilstrekkelig til å mette brennstoffet (hvis det ikke allerede var mettet da det ble le-vert til flyet) og til å avsettes som en separat fase i brennstofftankene. temperature and pressure encountered at high and low altitudes, and also due to the constant variation in the fuel level in said tanks caused by fuel consumption and fuel transfer from tank to tank in order to maintain the correct distribution of the load. During these variations in pressure, temperature and fuel level, moisture that is introduced into the fuel tanks condenses with the air. The amount of water thus accumulated is sufficient to saturate the fuel (if it was not already saturated when it was delivered to the aircraft) and to be deposited as a separate phase in the fuel tanks.

Hittil har man møtt problemet med ising i forgasserne i automotive motorer o.l., som leder til det fenomen som er kjent som «ising». Tallrike brennstoff tilsetninger har vært utviklet til løsningen av dette problem og det skulle synes å være en temmelig inn-lysende løsning for isingproblemet i jetfly å anvende til brennstoffet et tilsetningsmiddel som har vært effektivt til hindring av «ising». Imidlertid er det i flyindustrien en alminnelig praksis å dekke den indre overflate av brennstoffcellene med en har-piksblanding for å beskytte legeringen som anvendes til deres fremstilling. Man har funnet at i slike harpiks-dekkede brenn-stoffceller angriper noen av de mest effek-tive tilsetningsstoffer til hindring av «ising» harpikslaget, idet det gjør dette bløtt og/eller får det til å atskilles fra det me-talliske underlag. Under slike omstendig-heter kan deler av harpiksen bli ført inn i brennstoff kanalene, skjermene og filtrene og nedsette eller blokkere strømmen av brennstoff til motorene. Until now, people have encountered the problem of icing in the carburettors in automotive engines etc., which leads to the phenomenon known as "icing". Numerous fuel additives have been developed to solve this problem and it would seem to be a rather obvious solution to the icing problem in jet aircraft to use an additive to the fuel that has been effective in preventing "icing". However, it is common practice in the aircraft industry to coat the inner surface of the fuel cells with a resin compound to protect the alloy used in their manufacture. It has been found that in such resin-covered fuel cells, some of the most effective additives attack the "icing" resin layer, making it soft and/or causing it to separate from the metallic substrate. Under such circumstances, parts of the resin can be introduced into the fuel channels, screens and filters and reduce or block the flow of fuel to the engines.

Vi har oppdaget et anti-isingstilsetningsmiddel som omfatter en blanding av en mettet acyclisk flerverdig alkohol (nærmere definert nedenfor) og en glycolether (nærmere definert nedenfor) som, ved anvendelse av dette tilsetningsmiddel eliminerer de ovenfor nevnte problemer eller reduserer dem vesentlig. We have discovered an anti-icing additive comprising a mixture of a saturated acyclic polyhydric alcohol (further defined below) and a glycol ether (further defined below) which, using this additive, eliminates or substantially reduces the above-mentioned problems.

Det flytende hydrocarbonbrennstoff i henhold til oppfinnelsen inneholder (1) en glycolether med formelen R(OCH2CH2)xOH i hvilken: R er et hydrogenatom eller en methyl-, ethyl-, propyl-, butyl-, fenyl- eller tolylgruppe, når R er hydrogen, er x et helt tall fra 2 til 4, og når R ikke er hydrogen, er x et helt tall fra 1 til 4, og (2) en mettet acyclisk polyhydroxyalkohol inneholdende fra 3 til 5 carbonatomer, fra 2 til 5 OH-grupper hver bundet til et forskjellig carbonatom, og hvor forholdet mellom OH-grupper og carbonatomet er i området 0,66 : 1 til 1 : 1, og nevnte glycolether og nevnte polyhydroxyalkohol er til stede hen-holdsvis i en hovedmengde og en mindre mengde av en totalmengde som er innenfor området 0,01 til 1 volumprosent av nevnte brennstoff. The liquid hydrocarbon fuel according to the invention contains (1) a glycol ether with the formula R(OCH2CH2)xOH in which: R is a hydrogen atom or a methyl, ethyl, propyl, butyl, phenyl or tolyl group, when R is hydrogen , x is an integer from 2 to 4, and when R is not hydrogen, x is an integer from 1 to 4, and (2) a saturated acyclic polyhydroxyalcohol containing from 3 to 5 carbon atoms, from 2 to 5 OH groups each bound to a different carbon atom, and where the ratio between OH groups and the carbon atom is in the range 0.66:1 to 1:1, and said glycol ether and said polyhydroxyalcohol are respectively present in a major amount and a minor amount of a total amount which is within the range of 0.01 to 1 volume percent of said fuel.

Særlig fordelaktig omfatter nevnte totalmengde fra 0,5 til 49, særlig fra 1 til 40 vektprosent av nevnte polyhydroxyalkohol og fra 99,5 til 51, særlig fra 99 til 60 vektprosent av nevnte glycolether, basert på nevnte totalmengde. Som polyhydroxyalkohol er særlig glycerol egnet og som glycolether er særlig ethylenglycol-monomethylether egnet. Particularly advantageously, said total amount comprises from 0.5 to 49, in particular from 1 to 40 weight percent of said polyhydroxy alcohol and from 99.5 to 51, in particular from 99 to 60 weight percent of said glycol ether, based on said total amount. Glycerol is particularly suitable as a polyhydroxy alcohol and ethylene glycol monomethyl ether is particularly suitable as a glycol ether.

Det var overraskende og uventet at nevnte antiisingstilsetningsmiddel omfat-tende nevnte blanding er et meget bedre anti-isingstilsetningsmiddel enn enten (2) den foran nevnte flerverdige alkohol eller (1) nevnte glycolether, når disse anvendes hver for seg alene. En synergistisk effekt oppnåes altså, som tydelig vises ved de nedenfor gitte data, når nevnte flerverdige alkohol og nevnte glycolether anvendes i kombinasjon som et anti-isingstilsetningsmiddel. It was surprising and unexpected that said anti-icing additive including said mixture is a much better anti-icing additive than either (2) the aforementioned polyhydric alcohol or (1) said glycol ether, when these are used individually. A synergistic effect is thus achieved, which is clearly shown by the data given below, when said polyhydric alcohol and said glycol ether are used in combination as an anti-icing additive.

Nevnte kombinasj ons-anti-isingstilsetningsmiddel i henhold til oppfinnelsen medfører når dette inkorporeres i brennstoffet, i det minste to forbedringer i bru-ken av jet-motorer; (1) virker som et anti-isingsmiddel og hindrer tilstopping av brenselsystemet ved punkter med nedsatt flyt såsom filtrer, ventiler, dyser osv., forårsaket av isdannelse, og (2) eliminerer eller reduserer ødeleggende virkning på brennstofftankenes lakkering. Said combination anti-icing additive according to the invention entails, when incorporated into the fuel, at least two improvements in the use of jet engines; (1) acts as an anti-icing agent and prevents clogging of the fuel system at points of reduced flow such as filters, valves, nozzles, etc., caused by ice formation, and (2) eliminates or reduces the destructive effect on the paintwork of the fuel tanks.

En videre fordel ved brennstoffbland-ingene i henhold til oppfinnelsen ligger i den letthet med hvilken en separat vannfase kan fjernes fra brennstoffcellene. I moderne fly er det sørget for drenering av sådan vannfase gjennom såkalte «jiffy drains» anbrakt ved bunnen av brennstoff-cellene. I kolde klima og når man opererer med standard jetbrennstoffer alene, kan vannfasen fryse til størkning, hvorved slik fjernelse umuliggjøres uten oppvarmning av brennstoffcellene, hvilket er en vanskelig og ofte hasardiøs operasjon. Hvis man imidlertid opererer med brennstoffblan-dinger i henhold til foreliggende oppfinnelse, vil i det minste en del av tilsetningsmidlet migrere fra brennstoff komposisjonen til vannfasen i en tilstrekkelig mengde til å hindre frysing av nevnte vannfase selv ved meget lave forekommende temperaturer. A further advantage of the fuel mixtures according to the invention lies in the ease with which a separate water phase can be removed from the fuel cells. In modern aircraft, provision is made for the drainage of such a water phase through so-called "jiffy drains" placed at the bottom of the fuel cells. In cold climates and when operating with standard jet fuels alone, the water phase can freeze to solidification, making such removal impossible without heating the fuel cells, which is a difficult and often hazardous operation. If, however, one operates with fuel mixtures according to the present invention, at least part of the additive will migrate from the fuel composition to the water phase in a sufficient quantity to prevent freezing of said water phase even at very low occurring temperatures.

Når nevnte tilsetningssubstans anvendes i et hydrocarbonbrennstoff som her beskrevet, er de faktiske mengder av de enkelte bestanddeler av tilsetningsmidlet til brennstoffet meget små. Når det f.eks. anvendes det spesielle tilsetningsstoff glycerol og ethylenglycolmonomethylether, som er anført i de i det følgende angitte When said additive is used in a hydrocarbon fuel as described here, the actual amounts of the individual components of the additive to the fuel are very small. When it e.g. the special additives glycerol and ethylene glycol monomethyl ether are used, which are listed in the following

eksempler, svarer området av 0,5 til 50 examples, the range of 0.5 to 50 corresponds

vektprosent glycerol til området av 0,38 til weight percent glycerol to the range of 0.38 to

43,41 volumprosent glycerol, og området av fra 50 til 99,5 vektprosent ethylenglycol-monomethylether svarer til området 56, 59 til 99, 62 volumprosent ethylenglycolmonomethylether. I et brennstoff som inneholder fra 0,01 til 1 volumprosent av nevnte spesifikke tilsetningsmiddel, hvor prepara-tet kan variere fra 0,5 til 50 vektprosent glycerol og fra 50 til 99,5 vektprosent ethylenglycolmonomethylether, er således totalområdet for konsentrasjonene av hver av tilsetningskomponentene i brennstoffet fra 0,000038 til 0,43 volumprosent glycerol, og fra 0,0057 til 1,0 volumprosent ethylenglycolmonomethylether . 43.41 volume percent glycerol, and the range of from 50 to 99.5 weight percent ethylene glycol monomethyl ether corresponds to the range 56.59 to 99.62 volume percent ethylene glycol monomethyl ether. In a fuel containing from 0.01 to 1 volume percent of said specific additive, where the preparation can vary from 0.5 to 50 weight percent glycerol and from 50 to 99.5 weight percent ethylene glycol monomethyl ether, the total range for the concentrations of each of the additive components is thus in the fuel from 0.000038 to 0.43 volume percent glycerol, and from 0.0057 to 1.0 volume percent ethylene glycol monomethylether.

Eksempler på mettede acycliske poly-hydroxyalkoholer som kan anvendes ved Examples of saturated acyclic polyhydroxyalcohols that can be used in

utførelsen av oppfinnelsen inkluderer de følgende: 1,2-dihydroxypropan, 1,3-dihydroxypropan, glycerol, 1,2,3-trihydroxybutan, 1,2,4-trihydroxybutan, 2-(hydroxymet-hyl)-l,3-dihydroxypropan, erythritol, pen-taerythritol, 1,2,3,4-tetrahydroxypentan, 1,2,3,5-tetrahydroxypentan, 1,2,4,5-tetrahydroxypentan, 2-(hydroxymethyl)-l,3,4- the embodiment of the invention includes the following: 1,2-dihydroxypropane, 1,3-dihydroxypropane, glycerol, 1,2,3-trihydroxybutane, 1,2,4-trihydroxybutane, 2-(hydroxymethyl)-1,3-dihydroxypropane , erythritol, pentaerythritol, 1,2,3,4-tetrahydroxypentane, 1,2,3,5-tetrahydroxypentane, 1,2,4,5-tetrahydroxypentane, 2-(hydroxymethyl)-l,3,4-

trihydroxybutan og 1,2,3,4,5-pentahydroxy-pentan. trihydroxybutane and 1,2,3,4,5-pentahydroxy-pentane.

En for tiden foretrukket gruppe poly-hydroxyalkoholer er: glycerol, 1,2,3-trihydroxybutan, 1,2,4-trihydroxybutan og erythritol. Glycerol er for nærværende den mest foretrukkede polyhydroxyalkohol. A currently preferred group of polyhydroxyalcohols are: glycerol, 1,2,3-trihydroxybutane, 1,2,4-trihydroxybutane and erythritol. Glycerol is currently the most preferred polyhydroxy alcohol.

Eksempler på nevnte glycolethere som kan anvendes ved praktisering av oppfinnelsen inkluderer, blandt andre, de føl-gende: methylether av ethylenglycol (methyl cellosolve), ethylether av ethylenglycol (ethylcellosolve), butylether av ethylenglycol (butyl cellosolve), methylether av diethylenglycol (methylcarbitol), butylether av diethylenglycol (ethyl carbitol), butylether av diethylenglycol (butyl carbitol), methylether av triethylenglycol, ethylether av triethylenglycol, phenylether av ethylenglycol, tolylether av ethylenglycol, phenylether av diethylenglycol, tolylether av diethylenglycol, phenylether av triethylenglycol, tolylether av triethylenglycol, diethylenglycol, triethylenglycol og tetraet-hylenglycol. Examples of said glycol ethers which can be used in practicing the invention include, among others, the following: methyl ether of ethylene glycol (methyl cellosolve), ethyl ether of ethylene glycol (ethyl cellosolve), butyl ether of ethylene glycol (butyl cellosolve), methyl ether of diethylene glycol (methylcarbitol) , butyl ether of diethylene glycol (ethyl carbitol), butyl ether of diethylene glycol (butyl carbitol), methyl ether of triethylene glycol, ethyl ether of triethylene glycol, phenyl ether of ethylene glycol, tolyl ether of ethylene glycol, phenyl ether of diethylene glycol, tolyl ether of diethylene glycol, phenyl ether of triethylene glycol, toly ether of triethylene glycol, diethylene glycol , triethylene glycol and tetraethylene glycol.

En for tiden foretrukket gruppe av glycolethere som hensiktsmessig finner anvendelse ved praktisering av oppfinnelsen er de med formelen R(OCH2CH2)xOH i hvilken R velges fra gruppen bestående av methyl-, ethyl-, propyl- og butylgrupper, og x er et helt tall fra 1—4. De mest fore-trukne glycolethere er de efter formelen ovenfor i hvilken R er methyl eller ethyl og x er 1 eller 2. A currently preferred group of glycol ethers which conveniently find use in practicing the invention are those with the formula R(OCH2CH2)xOH in which R is selected from the group consisting of methyl, ethyl, propyl and butyl groups, and x is an integer from 1—4. The most preferred glycol ethers are those according to the formula above in which R is methyl or ethyl and x is 1 or 2.

De følgende eksempler vil tjene til videre å illustrere oppfinnelsen. The following examples will serve to further illustrate the invention.

Eksempel 1. Example 1.

I motorens brennstofftilførselssystem i et jetfly er brennstoff-fUtrene de punkter som hyppigst tilstoppes på grunn av isdannelse. Således er filtertilstopnings-karakteristika ved et jetmotor-brennstoff inneholdende et anti-ising-tilsetningsmiddel et godt mål for nevnte tilsetningsmid-dels effektivitet som anti-isingsmiddel. In the engine's fuel supply system in a jet aircraft, the fuel lines are the points most frequently blocked due to ice formation. Thus, the filter clogging characteristics of a jet engine fuel containing an anti-icing additive is a good measure of said additive's effectiveness as an anti-icing agent.

Et jetmotorbrennstoffs filtertilstop-ningskarakteristika testes ved en frem- A jet engine fuel's filter clogging characteristics are tested by a

gangsmåte og ved hjelp av et apparat som er tilrettelagt og konstruert spesielt for dette formål. Apparatet består i det vesentlige av et brennstoffreservoir-system konstruert for å tilføre brennstoff med en kon-stant hastighet til et innelukket filtercelle-element neddykket i et termostatbad. Nevnte filtercelle er utstyrt med et innløp plassert over et utløp med en effektiv flate på 1,0 cm<2>. Filteret som benyttes over nevnte utløp er et 10 micron filterpapir, (katalog nr. 74 698, Precision Scientific Company). Hvis ønsket kan rustfrie stål-filtre på 200—300 mesh (U.S. Standard Sieve) benyttes istedenfor nevnte filterpapir. Det er funnet at anvendelsen av nevnte 10 micron papir utgjør en strengere test enn nevnte 200 mesh sil. Et manometer brukes til å måle trykkfallet over filteret. way of walking and with the help of a device that is arranged and constructed especially for this purpose. The apparatus essentially consists of a fuel reservoir system designed to supply fuel at a constant rate to an enclosed filter cell element immersed in a thermostatic bath. Said filter cell is equipped with an inlet placed above an outlet with an effective surface of 1.0 cm<2>. The filter used over said outlet is a 10 micron filter paper (catalog no. 74 698, Precision Scientific Company). If desired, stainless steel filters of 200-300 mesh (U.S. Standard Sieve) can be used instead of the aforementioned filter paper. It has been found that the use of said 10 micron paper constitutes a stricter test than said 200 mesh sieve. A manometer is used to measure the pressure drop across the filter.

Brennstoffet som skal testes slippes frem til filtercelle-elementet gjennom en kobberspiral konstruert således at nevnte spiral og nevnte celle-element kan ned-dykkes fullstendig i nevnte thermostatbad. Nevnte spiral sørger for hurtig avkjøling av brennstoffet til den ønskede forutbestemte temperatur. Et thermo-element anvendes til å måle temperaturen av brennstoffet som kommer inn i filtercellen. Når temperaturen på kjølevæsken i thermostatbadet har nådd den ønskede forutbestemte temperatur, startes tilførselen av brennstoffet som skal testes. Filtratet mottas i en gradu-ert sylinder og trykkfallavlesninger noteres for hver 10 ml filtrert slik at en kurve for trykkfallet gjennom filteret i avhengig-het av filtrert volum kan fremstilles. En test er fullført ved filtrering av 1000 ml av prøven eller ved oppnåelse av et trykkfall gjennom filteret på 260 ml Hg, alt efter hva som inntreffer først. I denne testmetodikk kan filteret ansees som blokkert når trykkfallet når 260 ml Hg. The fuel to be tested is released to the filter cell element through a copper spiral constructed so that said spiral and said cell element can be completely immersed in said thermostatic bath. Said spiral ensures rapid cooling of the fuel to the desired predetermined temperature. A thermo-element is used to measure the temperature of the fuel entering the filter cell. When the temperature of the coolant in the thermostat bath has reached the desired predetermined temperature, the supply of the fuel to be tested is started. The filtrate is received in a graduated cylinder and pressure drop readings are noted for every 10 ml filtered so that a curve for the pressure drop through the filter as a function of filtered volume can be produced. A test is completed by filtering 1000 ml of the sample or by achieving a pressure drop through the filter of 260 ml Hg, whichever occurs first. In this test methodology, the filter can be considered blocked when the pressure drop reaches 260 ml Hg.

Filtrasjonstest ved —40° C ble gjen-nomført under anvendelse av jetbrennstoffet beskrevet nedenfor og hvilket var blitt mettet med vann ved 24° C, og nevnte vannmettede jetbrennstoff til hvilket der var blitt tilsatt forskjellige anti-isingtilset-ningsmidler. Resultatene av nevnte tester er oppstilt i tabell 1 nedenfor. Filtration test at -40°C was carried out using the jet fuel described below which had been saturated with water at 24°C, and said water saturated jet fuel to which various anti-icing additives had been added. The results of the aforementioned tests are listed in table 1 below.

Det fremgår av tallene ovenfor at en synergisk effekt oppnåes når ethylenglycol-monomethylether og glycerol anvendes i kombinasjon som et anti-ising-tilsetningsmiddel i henhold til oppfinnelsen. En sammenligning av forsøkene 4, 5 og 6 med for-søkene 2 og 3 viser at blandingene av ethylenglycol-monomethylether og glycerol er overlegne sammenlignet med enten ethylenglycol-monomethylether alene eller med glycerol alene, i det alle tilsetningsmidler testes ved samme konsentrasjon. It appears from the figures above that a synergistic effect is achieved when ethylene glycol monomethyl ether and glycerol are used in combination as an anti-icing additive according to the invention. A comparison of experiments 4, 5 and 6 with experiments 2 and 3 shows that the mixtures of ethylene glycol monomethyl ether and glycerol are superior compared to either ethylene glycol monomethyl ether alone or with glycerol alone, in that all additives are tested at the same concentration.

En sammenligning av forsøkene 7, 8 og 9 viser at selv om riktignok det maksimale trykkfall ble nådd i alle tre forsøk, så er mengden filtrert i forsøk nr. 9 meget større når kombinasjonstilsetningsmidlet i henhold til oppfinnelsen ble benyttet enn når den ene eller den annen av de individuelle tilsetningskomponenter alene ble benyttet som i forsøkene 7 og 8. Alle tilsetningsmidler ble igjen testet med samme konsentrasjon og resultatene viser igjen klart den uventede synergiske effekt som oppnåes ved benyttelse av kombinasjonstilsetnin-gen i henhold til oppfinnelsen. A comparison of trials 7, 8 and 9 shows that although the maximum pressure drop was indeed reached in all three trials, the amount filtered in trial no. 9 is much greater when the combination additive according to the invention was used than when one or the other of the individual additive components alone were used as in experiments 7 and 8. All additives were again tested with the same concentration and the results again clearly show the unexpected synergistic effect that is achieved by using the combination additive according to the invention.

Eksempel 2. Example 2.

Virkelige flyvnings-tester i et B-52 jet-fly har demonstrert den praktiske verdi av anti-isingtilsetningsmidlene ifølge oppfinnelsen. I disse tester var den grunnleggende flyvnings-testmetode å fly flyet i en høyde på 40 000 til 45 000 fot inntil temperaturen for brennstoffforrådet i brennstofftankene var falt til minst ~ 29° C eller lavere. 6 flyvningstester av en gjennomsnittlig va-righet på 10 til 12 timer ble utført. Actual flight tests in a B-52 jet have demonstrated the practical value of the anti-icing additives of the invention. In these tests, the basic flight test method was to fly the aircraft at an altitude of 40,000 to 45,000 feet until the temperature of the fuel supply in the fuel tanks had dropped to at least ~29°C or lower. 6 flight tests of an average duration of 10 to 12 hours were carried out.

I tre av de nevnte tester var motor nr. 1 ikke beskyttet av en oppvarmningsinn-retning i brennstoffsystemet og ble supplert fra hovedtank nr. 1 med JP-4 brennstoff inneholdende ca. 100 p.p.m. vann. Motor nr. 2, 3 og 4 var beskyttet av brennstoffsystem-oppvarmere og ble supplert fra hovedtank nr. 2 med JP-4 brennstoff inneholdende ca. 100 p.p.m. vann. De øvrige 4 motorer, nr. 5, 6, 7 og 8 var ikke beskyttet med oppvar-mere fra brennstoffsystemet. Motorene nr. 5 og 6 ble supplert fra hovedtank nr. 3 med JP-4 brennstoff inneholdende ca. 100 p.p.m. vann og inneholdt også, i overensstemmelse med oppfinnelsen, 0,1 volumprosent av et anti-isingstilsetningsmiddel essensielt bestående av en blanding av ca. 90 vektprosent ethylenglycol-monomethylether og ca. In three of the aforementioned tests, engine no. 1 was not protected by a heating device in the fuel system and was supplemented from main tank no. 1 with JP-4 fuel containing approx. 100 p.p.m. water. Engines No. 2, 3 and 4 were protected by fuel system heaters and were supplemented from main tank No. 2 with JP-4 fuel containing approx. 100 p.p.m. water. The other 4 engines, nos. 5, 6, 7 and 8, were not protected by heaters from the fuel system. Engines no. 5 and 6 were supplemented from main tank no. 3 with JP-4 fuel containing approx. 100 p.p.m. water and also contained, in accordance with the invention, 0.1 volume percent of an anti-icing additive essentially consisting of a mixture of approx. 90 percent by weight ethylene glycol monomethyl ether and approx.

10 vektprosent glycol. Motorene nr. 7 og 8 10% by weight glycol. Engines Nos. 7 and 8

ble supplert fra hovedtank nr. 4 med JP-4 brennstoff inneholdende ca. 100 p.p.m. vann og inneholdt også, i overensstemmelse med oppfinnelsen, 0,1 volum prosent anti-isingtilsetningsmiddel essensielt bestående av en blanding av ca. 90 vektprosent diethylenglycol-monomethylether og ca. 10 vektprosent glycerol. was supplemented from main tank no. 4 with JP-4 fuel containing approx. 100 p.p.m. water and also contained, in accordance with the invention, 0.1 volume percent anti-icing additive essentially consisting of a mixture of approx. 90 percent by weight of diethylene glycol monomethyl ether and approx. 10% by weight glycerol.

I de øvrige tre testflyvninger var test-betingelsene de samme som ved de nevnte første tre testflyvninger unntatt at brennstoffet i hovedtankene 1, 3 og 4 hadde overskudd av vann i en mengde på 2 ml pr. gallon tilsatt dertil. In the other three test flights, the test conditions were the same as in the aforementioned first three test flights, except that the fuel in the main tanks 1, 3 and 4 had an excess of water in an amount of 2 ml per gallon added thereto.

Gjentatte avbrytelser av brennstoff-tilførselen og utslukninger ble observert ved motor nr. 1 hele gjennom nevnte testflyvninger. De øvrige motorer funksjonerte på normal måte. Efter hver flyvning ble brennstoff systemets filtre fjernet øyeblik-kelig efter landing. Is ble funnet på nevnte filtre og det ble fastslått at brennstoffsys-tem-is var ansvarlig for svikten i motor nr. 1. Ingen is ble funnet i brennstoffsystemet ved de øvrige motorer. Repeated interruptions of the fuel supply and shutdowns were observed at engine no. 1 throughout the mentioned test flights. The other engines functioned normally. After each flight, the fuel system's filters were removed immediately after landing. Ice was found on the aforementioned filters and it was determined that fuel system ice was responsible for the failure in engine no. 1. No ice was found in the fuel system of the other engines.

Det ble også funnet at vanndrenerings-ventilene på hovedtank nr. 1 og 2 (brennstoffet inneholdt intet tilsetningsstoff) var frosset, men dreningsventilene på hovedtankene nr. 3 og 4 (brennstoffet inneholdt tilsetningsmiddel) var frie og klare. It was also found that the water drain valves on main tanks No. 1 and 2 (fuel contained no additive) were frozen, but the drain valves on main tanks No. 3 and 4 (fuel contained additive) were free and clear.

Eksempel 3 Example 3

Tester ble utført for å bestemme pump-barheten ved —60° C av (1) et JP-4 jet-brennstoff hvilket var blitt mettet med vann ved 24° C, (2) nevnte brennstoff til hvilket der var tilsatt 12 ml pr. gallon av vannoverskudd og (3) nevnte vannmettede brennstoff til hvilket der var blitt tilsatt et anti-isingstilsetningsmiddel bestående i det vesentlige av 90 vektprosent ethylenglycol-monoethyleter og 10 vektprosent glycerol. Disse tester ble utført i et apparat likt det beskrevet i eksempel 1 unntatt at en 200 mesh rustfri stålfiltersil lik den anvendt i kommersielle jetmotorer ble brukt i filtercellen. Tests were conducted to determine the pumpability at -60°C of (1) a JP-4 jet fuel which had been saturated with water at 24°C, (2) said fuel to which 12 ml per gallons of excess water and (3) said water-saturated fuel to which had been added an anti-icing additive consisting essentially of 90 weight percent ethylene glycol monoethyl ether and 10 weight percent glycerol. These tests were performed in an apparatus similar to that described in Example 1 except that a 200 mesh stainless steel filter screen similar to that used in commercial jet engines was used in the filter cell.

I et kontrollforsøk viste nevnte vannmettede JP-4 brennstoff en initial trykk-forandring ved —13,4° C, og når temperaturen ble senket ytterligere til —14,5° C var flyten gjennom systemet tilnærmet 0. In a control experiment, said water-saturated JP-4 fuel showed an initial pressure change at -13.4° C, and when the temperature was lowered further to -14.5° C, the flow through the system was approximately 0.

I et annet kontrollforsøk var vann i overskudd tilsatt nevnte vannmettede JP-4 jetbrennstoff i en mengde på 12 ml pr. Gallon. I dette forsøk ble den initiale trykk-forandring observert ved —3,3° C, og når temperaturen ble senket videre til —5° C var flyten gjennom systemet tilnærmet 0. In another control experiment, excess water was added to said water-saturated JP-4 jet fuel in an amount of 12 ml per Gallon. In this experiment, the initial pressure change was observed at -3.3°C, and when the temperature was lowered further to -5°C the flow through the system was approximately 0.

I et testforsøk ved hvilket der ble benyttet nevnte vannmettede JP-4 jetbrennstoff til hvilket der var blitt tilsatt 0,025 volumprosent av en anti-isingblanding i overensstemmelse med oppfinnelsen ho-vedsakelig bestående av 90 vektprosent ethylenglycolmonomethylether og 10 vektprosent glycerol, var pumbarheten av brennstoffet 100 pst. ved —60° C. In a test trial in which water-saturated JP-4 jet fuel was used, to which 0.025 volume percent of an anti-icing mixture in accordance with the invention, consisting mainly of 90 percent by weight ethylene glycol monomethylether and 10 percent by weight glycerol, had been added, the pumpability of the fuel was 100 percent .at -60° C.

Dette eksempel viser at anti-isingtilsetningsmidlene i henhold til oppfinnelsen vil tjene til å beskytte brennstoffsystemet hos en jetmotor eller andre kontinuerlig arbeidende kraftmaskiner av forbrennings-typen, selv under drift ved temperaturer så lave som —60° C. This example shows that the anti-icing additives according to the invention will serve to protect the fuel system of a jet engine or other continuously operating power machines of the combustion type, even during operation at temperatures as low as -60° C.

Eksempel 4. Example 4.

En serie aluminiumlegeringskuponger som målte 2,54 x 5,08 cm, lakkert med forskjellige blandinger av Buna N (butadien-acrylonitril-copolymer) og en fenolisk harpiks oppløst i et oppløsningsmiddel ble eva-luert i en serie forskjellige tester for å bestemme effekten på lakklagene av forskjellige konsentrasjoner av en blanding inneholdende 90 vektprosent ethylenglycol-monomethylether og 10 vektpst. glycerol i JP-4 jetbrennstoff. Dublikate kuponger A og B ble preparert fra hvert lakkmateri-ale og testet som følger: Brennstoff blandingene ble plassert i glasskrukker i en mengde således at når en kupong ble plassert i krukken var den halvt neddykket. Krukkene inneholdende kupongene ble holdt ved 60° C i en ovn i 14 dager, idet oppløsningene ble skiftet hver dag for å si-mulere påfylling av tankene i et fly. Tre typer evalueringer ble benyttet i disse tester. Den første evaluering, en tommel-gnidningstest ble utført daglig. Denne test var bare kvalitativ men i stand til å vise utvikling av klebrighet eller mykning av lakklaget. I denne test var alle lakklag til-fredsstillende. Den annen evaluering var en blyant-hårdhet-test utført på hver kupong ved slutten av 14-dagers perioden. I denne test ble den lakkerte overflate av kupongen merket med en blyant (A. W. Faber, Castell Nr. 9000) og det hårdeste bly som kunne trekkes over lakklaget uten ripning noteres som blyanthårdhet. I denne serie er hårdheten betegnet på en skala fra 1 til 20, i oppadstigende orden, basert på A. W. Faber Castell 9000 blyant-hårdhetskala som følger: A series of aluminum alloy coupons measuring 2.54 x 5.08 cm coated with various mixtures of Buna N (butadiene-acrylonitrile copolymer) and a phenolic resin dissolved in a solvent were evaluated in a series of different tests to determine the effect on the lacquer layers of different concentrations of a mixture containing 90% by weight ethylene glycol monomethyl ether and 10% by weight. glycerol in JP-4 jet fuel. Duplicate coupons A and B were prepared from each lacquer material and tested as follows: The fuel mixtures were placed in glass jars in such a quantity that when a coupon was placed in the jar it was half submerged. The jars containing the coupons were kept at 60°C in an oven for 14 days, the solutions being changed every day to simulate refueling the tanks in an aircraft. Three types of evaluations were used in these tests. The first evaluation, a thumb-rub test, was performed daily. This test was only qualitative but capable of showing the development of stickiness or softening of the varnish layer. In this test, all paint layers were satisfactory. The second evaluation was a pencil hardness test performed on each coupon at the end of the 14-day period. In this test, the lacquered surface of the coupon was marked with a pencil (A.W. Faber, Castell No. 9000) and the hardest lead that could be drawn over the lacquer layer without scratching was noted as pencil hardness. In this series, the hardness is designated on a scale of 1 to 20, in ascending order, based on the A. W. Faber Castell 9000 pencil hardness scale as follows:

Jetbrennstoffet JP-4 anvendt i eksemplene 1, 3, 4 og 6 hadde følgende fysikalske egenskaper: The jet fuel JP-4 used in examples 1, 3, 4 and 6 had the following physical properties:

Nevnte brennstoff stemte fullstendig over-ens med alle spesifikasjoner for et JP-4 Said fuel completely matched all specifications for a JP-4

jetbrennstoff, inklusive frysepunktspesi-fikasjonsmaksimum på —76 F°. Som fag-folk vet er denne frysepunktspesifikasjon jet fuel, including the freezing point specification maximum of -76 F°. As those skilled in the art know, this is a freezing point specification

brukt for å sikre at tilstopning av brenselsystemet ikke vil finne sted på grunn used to ensure that clogging of the fuel system will not occur due to

av frysning av brennstoffet selv ved de of freezing of the fuel even at those

lave temperaturer som finnes i de store low temperatures found in the large

høyder hvor jetfly opererer. altitudes where jet aircraft operate.

En hvilken som helst hensiktsmessig Any appropriate one

type hydrocarbonbrennstoff kan anvendes type of hydrocarbon fuel can be used

i utførelsen av denne oppfinnelse. Nevnte in the practice of this invention. Mentioned

brennstoffer som kan anvendes således inkluderer de kovensjonelle jetmotor-brennstoffer hvilke omfatter en blanding av fuels which can thus be used include the conventional jet engine fuels which comprise a mixture of

hydrocarboner som koker i området fra hydrocarbons that boil in the area from

omkring 38 til omkring 371° C, så som gass-olje, kerosen og bensiner, inklusive flyben-sin. Brennstoffer av parafin og naftentypen about 38 to about 371° C, such as gas-oil, kerosene and gasolines, including aviation gasoline. Fuels of the kerosene and naphtha type

som har relativt lavt aroma-innhold, dvs. which has a relatively low aroma content, i.e.

ikke mere enn omkring 20 flytende volumprosent aromater, så vel som brennstoffer no more than about 20 liquid volume percent aromatics, as well as fuels

av den aromatiske type som har høyt aro-matinnhold som strekker seg fra omkring 20 of the aromatic type which has a high aromatic content ranging from about 20

opp til omkring 88 prosent eller høyere flytende volumprosent aromater, kan anvendes i flymotorer av den kontinuerlige for-brenningsturbotype i henhold til utøvelsen up to about 88 percent or higher liquid volume percent aromatics, may be used in aircraft engines of the continuous combustion turbo type according to the application

av oppfinnelsen. Hydrocarbonbrennstoff er of the invention. Hydrocarbon fuel is

som har vide kokeområder, sådanne som which have wide cooking areas, such as

JP-3, JP-4 eller brennstoffer av kerosen-typen, såsom JP-5 kan anvendes, og koke-typen, så som JP-5 kan anvendes, og koke-området av disse brennstoffer ligger gene-relt i området omkring 95° C til 315° C. JP-3, JP-4 or kerosene-type fuels, such as JP-5 can be used, and the boiling type, such as JP-5 can be used, and the boiling range of these fuels is generally in the region of around 95° C to 315°C.

Mens således oppfinnelsen heri er beskrevet med særlig sikte på jetmotorbrennstoffer, spesielt JP-4 jetmotor brennstoff, er oppfinnelsen ikke limitert til Thus, while the invention is described herein with particular reference to jet engine fuels, especially JP-4 jet engine fuel, the invention is not limited to

dette. Oppfinnelsen kan anvendes med alle this. The invention can be used with everyone

kvaliteter av jetmotorbrennstoffer. Anti-isingtilsetningsmidlet i henhold til oppfinnelsen kan også anvendes med fordel qualities of jet engine fuels. The anti-icing additive according to the invention can also be used with advantage

i bensiner for motorer med frem- og til-bakegående stempler og i dieselbrennstof-fer for kompresjonstennings-motorer. in petrols for engines with reciprocating pistons and in diesel fuels for compression ignition engines.

Hydrocarbonbrennstoff-blandingene i henhold til oppfinnelsen inneholdende et anti-ising-tilsetningsmiddel i henhold til oppfinnelsen kan også inneholde alminde-lig benyttede andre tilsetningsmidler såsom anti-korrosjonsmidler, oksydasjons-inhibitorer og lignende. The hydrocarbon fuel mixtures according to the invention containing an anti-icing additive according to the invention may also contain commonly used other additives such as anti-corrosion agents, oxidation inhibitors and the like.

Uttrykkene «jetmotor» og «jetmotor-brennstoff» som er benyttet heri og i på-standene refererer til og inkluderer når intet annet er spesifisert, turbo-prop, turbo-jet, ram jet og puls-jet motorer, og brennstoffer fremstillet for å bli benyttet i nevnte motorer. The terms "jet engine" and "jet engine fuel" as used herein and in the claims refer to and include, when not otherwise specified, turbo-prop, turbo-jet, ram jet and pulse-jet engines, and fuels manufactured to be used in said engines.

Claims (4)

1. Flytende hydrocarbon-brennstoff, egnet for bruk i forbrenningsmotorer, innbefattet motorer for jet-fly, karakterisert ved at det inneholder (1) en glycolether med formelen R(OCH2CH2)xOH i hvilken: R er et hydrogenatom eller en methyl-, ethyl-, propyl-, butyl-, fenyl- eller tolylgruppe, når R er hydrogen, er x et helt tall fra 2 til 4, og når R ikke er hydrogen, er x et helt tall fra 1 til 4, og (2) en mettet acyclisk polyhydroxyalkohol inneholdende fra 3 til 5 carbonatomer, fra 2 til 5 OH-grupper hver bundet til et forskjellig carbonatom, og hvor forholdet mellom OH-grupper og carbonatomer er i området 0,66:1 til 1:1, og nevnte glycolether og nevnte polyhydroxyalkohol er tilstede hen-holdsvis i en hovedmengde og en mindre mengde av en totalmengde som er innenfor området 0,01 til 1 volumprosent av nevnte brennstoff.1. Liquid hydrocarbon fuel, suitable for use in internal combustion engines, including jet aircraft engines, characterized in that it contains (1) a glycol ether of the formula R(OCH2CH2)xOH in which: R is a hydrogen atom or a methyl-, ethyl -, propyl, butyl, phenyl or tolyl group, when R is hydrogen, x is an integer from 2 to 4, and when R is not hydrogen, x is an integer from 1 to 4, and (2) a saturated acyclic polyhydroxy alcohol containing from 3 to 5 carbon atoms, from 2 to 5 OH groups each bonded to a different carbon atom, and where the ratio between OH groups and carbon atoms is in the range 0.66:1 to 1:1, and said glycol ether and said polyhydroxyalcohol is present respectively in a main amount and a smaller amount of a total amount which is within the range of 0.01 to 1 volume percent of said fuel. 2. Flytende hydrocarbon-brennstoff som angitt i påstand 1, karakterisert ved at nevnte totalmengde omfatter fra 0,5 til 49, særlig fra 1 til 40 vektprosent av nevnte polyhydroxyalkohol og fra 99,5 til 51, særlig fra 99 til 60 vektprosent av nevnte glycolether, basert på nevnte totalmengde.2. Liquid hydrocarbon fuel as stated in claim 1, characterized in that said total amount comprises from 0.5 to 49, in particular from 1 to 40 weight percent of said polyhydroxyalcohol and from 99.5 to 51, in particular from 99 to 60 weight percent of said glycol ether, based on said total quantity. 3. Flytende hydrocarbon-brennstoff som angitt i påstand 1 eller 2, karakterisert ved at nevnte polyhydroxyalkohol er glycerol og/eller nevnte glycolether er ethylenglycolmonomethylether.3. Liquid hydrocarbon fuel as stated in claim 1 or 2, characterized in that said polyhydroxy alcohol is glycerol and/or said glycol ether is ethylene glycol monomethyl ether. 4. Flytende hydrocarbon-brennstoff som angitt i påstand 3, karakterisert ved at brennstoffet inneholder fra 0,000038 til 0,43 volumprosent glycerol og fra 0,0057 til 1,0 volumprosent ethylenglycol-monomethylether.4. Liquid hydrocarbon fuel as stated in claim 3, characterized in that the fuel contains from 0.000038 to 0.43 volume percent glycerol and from 0.0057 to 1.0 volume percent ethylene glycol monomethyl ether.
NO217673A 1972-05-26 1973-05-25 PAPER TREATMENT PROCEDURE NO140637C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7218896A FR2186035A5 (en) 1972-05-26 1972-05-26

Publications (2)

Publication Number Publication Date
NO140637B true NO140637B (en) 1979-07-02
NO140637C NO140637C (en) 1979-10-10

Family

ID=9099162

Family Applications (1)

Application Number Title Priority Date Filing Date
NO217673A NO140637C (en) 1972-05-26 1973-05-25 PAPER TREATMENT PROCEDURE

Country Status (13)

Country Link
JP (1) JPS4941620A (en)
AR (1) AR194559A1 (en)
BE (1) BE800090A (en)
BR (1) BR7303799D0 (en)
CA (1) CA980515A (en)
CH (1) CH565895A5 (en)
ES (1) ES415233A1 (en)
FI (1) FI55879C (en)
FR (1) FR2186035A5 (en)
GB (1) GB1406336A (en)
IT (1) IT987946B (en)
NL (1) NL7306999A (en)
NO (1) NO140637C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826415U (en) * 1971-08-04 1973-03-30
EP0347154B1 (en) * 1988-06-14 1996-01-03 The Procter & Gamble Company Soft tissue paper

Also Published As

Publication number Publication date
BR7303799D0 (en) 1974-01-17
JPS4941620A (en) 1974-04-19
CA980515A (en) 1975-12-30
AR194559A1 (en) 1973-07-23
FI55879B (en) 1979-06-29
BE800090A (en) 1973-11-26
CH565895A5 (en) 1975-08-29
IT987946B (en) 1975-03-20
GB1406336A (en) 1975-09-17
DE2326828A1 (en) 1973-11-29
FI55879C (en) 1979-10-10
DE2326828B2 (en) 1976-09-23
FR2186035A5 (en) 1974-01-04
NL7306999A (en) 1973-11-28
NO140637C (en) 1979-10-10
ES415233A1 (en) 1976-02-01

Similar Documents

Publication Publication Date Title
US3032971A (en) Mixtures of acyclic polyhydroxy alcohols and glycol ethers as anti-icing additives for hydrocarbon fuels
Dunn Alternative jet fuels from vegetable oils
CN104593098B (en) High-octane lead-free aviation gasoline
JP6892834B2 (en) Fuel oil composition for internal combustion engine and its manufacturing method
NO140637B (en) PAPER TREATMENT PROCEDURE
Curl et al. Chemical and physical properties of refined petroleum products
Bishop et al. Aviation Turbine Fuels
EP1230326A1 (en) Jet fuels with improved flow properties
CN112251297B (en) Engine carbon deposit cleaning composition, method for preparing engine carbon deposit cleaning composition and method for cleaning engine carbon deposit
Liakhovich et al. Receiving an antifreezing agent for transporting coke by rail
JP2007326977A (en) A-type heavy oil
JP2020105292A (en) Fuel oil composition for internal combustion engine
US2952121A (en) Prevention of filter plugging utilizing an improved jet engine fuel
CN105349191B (en) A kind of anti-freezing agent compositionss and preparation method thereof and purposes
US3416902A (en) Fuel icing prevention
Keller et al. Methanol fuel modification for highway vehicle use
JP2021031624A (en) Fuel oil composition for internal combustion engine
JP6961526B2 (en) Fuel oil composition for internal combustion engine and its manufacturing method
JP7354055B2 (en) Fuel oil composition for internal combustion engines
JP7402098B2 (en) Aircraft fuel oil composition
JP6917345B2 (en) Fuel oil composition for internal combustion engine and its manufacturing method
Egu Determination of the degree of contaminants of different refined products from Kaduna refinery
Bratsky et al. Uloga aditiva u poboljšanju svojstava dizelskih goriva
Fiorentino et al. An assessment of the use of antimisting fuel in turbofan engines
Harrison The Chemical and Physical Properties of JP-4 for 1980-1981