NO139741B - PROCEDURE FOR PREPARING A LUBRICATION OIL BY HYDROCRACKING A WAX, DISTILLING AND DEWAXING THE RESIDUAL FRACTION - Google Patents

PROCEDURE FOR PREPARING A LUBRICATION OIL BY HYDROCRACKING A WAX, DISTILLING AND DEWAXING THE RESIDUAL FRACTION Download PDF

Info

Publication number
NO139741B
NO139741B NO1373/73A NO137373A NO139741B NO 139741 B NO139741 B NO 139741B NO 1373/73 A NO1373/73 A NO 1373/73A NO 137373 A NO137373 A NO 137373A NO 139741 B NO139741 B NO 139741B
Authority
NO
Norway
Prior art keywords
wax
oil
starting material
weight
hydrocracking
Prior art date
Application number
NO1373/73A
Other languages
Norwegian (no)
Other versions
NO139741C (en
Inventor
Peter Ladeur
Gerrit Van Gooswilligen
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NLAANVRAGE7204581,A external-priority patent/NL171908C/en
Priority claimed from NL7217257A external-priority patent/NL172872C/en
Application filed by Shell Int Research filed Critical Shell Int Research
Publication of NO139741B publication Critical patent/NO139741B/en
Publication of NO139741C publication Critical patent/NO139741C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Lubricants (AREA)
  • Catalysts (AREA)

Description

Foreliggende oppfinnelse angår en fremgangsmåte ved fremstilling av en smøreolje med en dynamisk viskositet ved The present invention relates to a method for producing a lubricating oil with a dynamic viscosity of

-17,8°C på maksimalt 24 P og en kinematisk viskositet ved 98,9°C -17.8°C at a maximum of 24 P and a kinematic viscosity of 98.9°C

på minst 7,0 cSt, ved hydrocracking av voks. of at least 7.0 cSt, when hydrocracking wax.

Ifølge SAE klassifikasjon inndeles smøreoljer for for-brenningsmotorer på basis av deres viskositet i to grupper som betegnes med navnene vinterolje og normalolje. Hver av disse grupper deles videre inn i et utall klasser. Smøreoljer som klas-sifiseres som vinteroljer betegnes med bokstaven W, med et tall foran bokstaven, f.eks. SAE-5W, -10 W eller -20 W olje. Disse oljer må tilfredsstille visse krav med hensyn til deres dynamiske viskositet ved -17,8°C. Smøreoljer klassifisert som normaloljer betegnes bare med et nummer, f.eks. en SAE-20, -30, -40 eller -50 olje. Disse oljer må tilfredsstille et bestemt krav med hensyn til deres kinematiske viskositet ved 98,9°C. Smøreoljer som bare tilhører en SAE klasse (enten .....vinterolje eller normalolje) betegnes som enkle smoreoljer. Eksempler på vidt anvendte enkle smoreoljer ér SAE-20 og SAE-30 oljer. I tillegg til de enkle smoreoljer, er også smoreoljer kjent som tilfredsstiller både vlskositetkravet til en klasse tilhorende vinteroljen og • viskositetkravet til en klasse tilhorende normaloljen. Anvendt som motoroljer har disse universaloljer den fordel at de om vinteren er tilstrekkelig tynne til ikke å bevirke vanskeligheter ved kald According to the SAE classification, lubricating oils for internal combustion engines are divided on the basis of their viscosity into two groups, which are denoted by the names winter oil and normal oil. Each of these groups is further divided into a number of classes. Lubricating oils that are classified as winter oils are denoted by the letter W, with a number in front of the letter, e.g. SAE-5W, -10 W or -20 W oil. These oils must meet certain requirements regarding their dynamic viscosity at -17.8°C. Lubricating oils classified as normal oils are only designated with a number, e.g. an SAE-20, -30, -40 or -50 oil. These oils must satisfy a specific requirement regarding their kinematic viscosity at 98.9°C. Lubricating oils that only belong to one SAE class (either .....winter oil or normal oil) are referred to as simple lubricating oils. Examples of widely used simple lubricating oils are SAE-20 and SAE-30 oils. In addition to the simple lubricating oils, lubricating oils are also known which satisfy both the viscosity requirement of a class belonging to the winter oil and • the viscosity requirement of a class belonging to the normal oil. Used as engine oils, these universal oils have the advantage that in winter they are sufficiently thin not to cause difficulties in cold

.start, og er tilstrekkelig tykke ved motorens arbeidstemperatur .start, and are sufficiently thick at the engine's working temperature

til å smore skikkelig. En viktig klasse universaloljer er 10W/30 oljene, hvilke tilfredsstiller både viskositetkravet til SAE-10 W klassen (dynamisk viskositet ved -17,8° C på minst 12 P og maksimalt 2<>>+P målt ifolge ASTM standard D2602/71) og viskositetkravet for SAE-30 klassen (kinematisk viskositet ved 98,9° C på minst 9,6 cSt og maksimalt 12,9 cSt, målt ifolge ASTM standard D ¥+5/71). to smudge properly. An important class of universal oils are the 10W/30 oils, which satisfy both the viscosity requirements of the SAE-10 W class (dynamic viscosity at -17.8° C of at least 12 P and a maximum of 2<>>+P measured according to ASTM standard D2602/71) and the viscosity requirement for the SAE-30 class (kinematic viscosity at 98.9° C of a minimum of 9.6 cSt and a maximum of 12.9 cSt, measured according to ASTM standard D ¥+5/71).

Fremstilling av universaloljer av lOW/30 klassen utfores i praksis ved at et uttall additiver med kvalitetsforbedrende egenskaper innarbeides i en basisolje bestående av en smoreolje eller en blanding av smorende oljer med en hoy viskositetsindeks erholdt Production of universal oils of the lOW/30 class is carried out in practice by incorporating a number of additives with quality-improving properties into a base oil consisting of a lubricating oil or a mixture of lubricating oils with a high viscosity index obtained

på konvensjonell måte eller ved hydrocracking, hvilken basisolje conventionally or by hydrocracking, which base oil

"i seg selv ikke tilfredsstiller lOW/30 spesifikasjon. "by itself does not satisfy lOW/30 specification.

Fremstilling av hby-viskositetsindeks-smoreoljer på konvensjonell måte utfores som folger. En parafinisk petroleum råolje separeres ved destillasjon ved atmosfæretrykk i et uttall destillatfraksjoner (spesielt suksessivt i en eller flere bensin, kerosin og lett gassoljefraksjoner) og en rest (kjent som lang rest). Denne lange rest separeres deretter ved destillasjoner ved redusert trykk i et antall destillatfraksjoner (spesielt suksessivt i en eller flere tunge gassoljer, spindelolje, lett maskinolje og middels tung maskinoljefraksjoner) og en rest (kjent som kort rest). Fra de smoreoljefraksjoner som erholdes ved destillasjonen ved redusert trykk, fremstilles de tilsvarende smoreoljer ved raffinering. Raffinering av spindeloljefraksjonen, den lette maskinoljefraksjonen og den middels tunge maskinoljefraksjonen utfores ved fjerning av aromater og voks fra disse fraksjoner. Ved raffinering av den korte rest, fjernes forst og fremst asfalt fra resten. Fra den avasfalterte olje fjernes deretter aromater og voks. Den rest-smoreolje som fremstilles på denne måte betegnes som filtrert sylinderolje. Det voks som erholdes under raffinering av de forskjellige smoreoljefraksjoner betegnes som destillat eller rest-råvoks, avhengig av typen av smoreoljefraksjon fra hvilken de er avledet. Production of hby viscosity index lubricating oils in a conventional manner is carried out as follows. A paraffinic petroleum crude oil is separated by distillation at atmospheric pressure into a number of distillate fractions (especially successively into one or more petrol, kerosene and light gas oil fractions) and a residue (known as long residue). This long residue is then separated by distillations at reduced pressure into a number of distillate fractions (especially successively into one or more heavy gas oils, spindle oil, light machine oil and medium heavy machine oil fractions) and a residue (known as short residue). From the lubricating oil fractions obtained by the distillation at reduced pressure, the corresponding lubricating oils are produced by refining. Refining of the spindle oil fraction, the light machine oil fraction and the medium heavy machine oil fraction is carried out by removing aromatics and waxes from these fractions. When refining the short residue, asphalt is primarily removed from the residue. Aromatics and wax are then removed from the deasphalted oil. The residual lubricating oil produced in this way is referred to as filtered cylinder oil. The waxes obtained during refining of the different lubricating oil fractions are designated as distillate or residual crude wax, depending on the type of lubricating oil fraction from which they are derived.

Fremstilling av hoy viskositet-indeks smoreoljer ved hydrocracking utfores som folger: En tung fraksjon av en parafinisk petroleum råolje, slik som et vakuum destillat, en avasfaltert olje eller et destillat eller et rest—råvoks fores over en egnet katalysator under hydrocracking betingelser. En eller flere smoreoljefraksjoner, innbefattet en rest-smoreoljefraksjon, separeres ved destillasjon fra det hydrocrackede produkt. Fra de smoreoljefraksjoner som erholdes på denne måte fremstilles de tilsvarende smoreoljer ved fjerning av vokset fra disse fraksjoner. Production of high viscosity-index lubricating oils by hydrocracking is carried out as follows: A heavy fraction of a paraffinic petroleum crude oil, such as a vacuum distillate, a deasphalted oil or a distillate or a residual crude wax, is fed over a suitable catalyst under hydrocracking conditions. One or more lubricating oil fractions, including a residual lubricating oil fraction, are separated by distillation from the hydrocracked product. From the lubricating oil fractions obtained in this way, the corresponding lubricating oils are produced by removing the wax from these fractions.

De smoreoljer som fremstilles slik som ovenfor beskrevet kan enten som sådanne eller etter blanding, tjene som basisoljer for fremstilling av 10W/30 oljer. Som tidligere angitt fremstilles lOW/30 oljene ved at et uttall av additiver med kvalitetsforbedrende egenskaper innarbeides i basisoljene. Disse additiver kan oppdeles i to grupper. Den for ste gruppe omfatter, blant andre additiver, slike som inhiberer oxydasjon (anti-oxydantér ), korrosjon (korrosjonsinhibitorer), dannelse av skum (anti-skummidler) og avleiringer i motoren (rensemidler), såvel som additiver til å forbedre den smorende effekt ved hoyt trykk (hoytrykksadditiver). Additivene tilhorende denne gruppe har vanligvis en molekylvekt The lubricating oils which are produced as described above can either as such or after mixing, serve as base oils for the production of 10W/30 oils. As previously indicated, the lOW/30 oils are produced by incorporating a number of additives with quality-improving properties into the base oils. These additives can be divided into two groups. The first group includes, among other additives, those that inhibit oxidation (anti-oxidants), corrosion (corrosion inhibitors), formation of foam (anti-foam agents) and deposits in the engine (cleaning agents), as well as additives to improve the lubricating effect at high pressure (high pressure additives). The additives belonging to this group usually have a molecular weight

som ikke overskrider en verdi på 10.000 og er vanligvis langt under denne verdi. De smoreolje-additivpakker som markedsføres av et .utall tilvirkere er vanligvis sammensatt av additiver av denne type. Innarbeidelse av en slik smoreolje-additivpakke i en basisolje har bare liten effekt på oljens viskositetsindeks, selvom additivpakken anvendes i en relativ hoy konsentrasjon. Avhengig av sammensetningen på additivpakken som inkorporeres i oljen, forblir viskositetsindekset til oljen konstant, oker noe, eller kan til og med synke noe. Når det senere henvises til "additivpakke" menes en blanding av smoreoljeadditiver tilhorende den ovenfor angitte forste gruppe. Denne blanding har den egen- which does not exceed a value of 10,000 and is usually far below this value. The lubricating oil additive packages marketed by a number of manufacturers are usually composed of additives of this type. Incorporating such a lubricating oil additive package into a base oil has only a small effect on the oil's viscosity index, even if the additive package is used in a relatively high concentration. Depending on the composition of the additive package that is incorporated into the oil, the viscosity index of the oil remains constant, increases somewhat, or may even decrease somewhat. When later reference is made to "additive package" is meant a mixture of lubricating oil additives belonging to the above-mentioned first group. This mixture has the inherent

skap at når den innarbeides i en basisolje i en konsentrasjon av I? vekt$ er viskositetsindekset for denne formulering (85 vekt% basisolje + 15 vekt% av blandingen) ikke mer enn 10 enheter hoyere enn viskositetsindekset til basisoljen. Den andre gruppe additiver med kvalitetsforbedrende egenskaper som anvendes ved fremstilling av lOW/30 oljer innbefatter viskositetsindeksforbedrere . create that when it is incorporated into a base oil in a concentration of I? wt$ the viscosity index of this formulation (85 wt% base oil + 15 wt% of the blend) is no more than 10 units higher than the viscosity index of the base oil. The second group of additives with quality-improving properties used in the production of lOW/30 oils includes viscosity index improvers.

i in

Additivene i denne gruppe har vanligvis en molekylvekt som overskrider en verdi på 10.000 og er hyppig over denne verdi. The additives in this group usually have a molecular weight that exceeds a value of 10,000 and is frequently above this value.

Bruk av viskositetsindeksforbedrere ved fremstilling av universal-smoreoljer har alvorlige ulemper. I forste rekke er de. hoy molekulære forbindelser (vanligvis polyalkylacrylater og poly-alkylmethacrylater) som anvender for dette formål utilstrekkelig resistente overfor skjærekrefter som forekommer i motoren, og er enn videre folsomme overfor oxydasjon.Som et resultat av dette spaltes polymerene i motoren, og i tillegg til forurensing av motoren mad spaltningsprodukter, finner det sted en permanent nedsettelse av viskositeten til oljen. Enn videre finner det sted et temporært tap av viskositet mens smoreoljen brukes fordi polymerene orienteres under innflytelse av skjærekreftene i motoren, hvilket leder til redusert indre friksjon. Ettersom skjærekreftene oker vil den tilsynelatende viskositet til den polymer-holdige olje nærme seg den til den polymerfrie olje. The use of viscosity index improvers in the production of universal lubricating oils has serious disadvantages. In the first place they are. high molecular compounds (usually polyalkyl acrylates and poly-alkyl methacrylates) used for this purpose are insufficiently resistant to the cutting forces occurring in the engine, and are furthermore sensitive to oxidation. As a result of this, the polymers in the engine decompose, and in addition to polluting the engine mad fission products, a permanent reduction in the viscosity of the oil takes place. Furthermore, a temporary loss of viscosity occurs while the lubricating oil is being used because the polymers are oriented under the influence of the shearing forces in the engine, leading to reduced internal friction. As the shear forces increase, the apparent viscosity of the polymer-containing oil will approach that of the polymer-free oil.

Som det fremgår fra det ovenstående er det et stort behov As can be seen from the above, there is a great need

for smoreoljer som tilfredsstiller -10W/30 spesifikasjon uten tilsetning av en polymerviskositetsindeksforbedrer. Forsok på å fremstille slike oljer på konvensjonell måte, d.v.s. ved destillasjon og raffinering har ikke lykkes. for lubricating oils meeting the -10W/30 specification without the addition of a polymer viscosity index improver. Attempts to produce such oils in a conventional manner, i.e. by distillation and refining have not been successful.

Det er nå funnet at smoreoljer som tilfredsstiller 10W/30 spesifikasjon enten som sådanne eller etter tilsetning av en additivpakke, men uten tilsetning av en polymerviskositetsindeksforbedrer, kan fremstilles med et utbytte på mer enn 15 vekt$, basert på utgangsmaterialet, ved katalytisk hydrocracking av voks, med det forbehold at de etterfølgende krav med hensyn til utgangsmaterialet, katalysator, hydrocracking-betingelser og opparbeidelse oppfylles. It has now been found that lubricating oils meeting the 10W/30 specification either as such or after the addition of an additive package, but without the addition of a polymer viscosity index improver, can be produced at a yield of more than 15% by weight, based on the starting material, by catalytic hydrocracking of waxes , with the proviso that the subsequent requirements with respect to the starting material, catalyst, hydrocracking conditions and processing are met.

Utgangsmaterialet skal bestå av voks av hvilket mer enn 40 vekt$ koker over 520° C og som erholdes ved avvoksning av en rest-minerolje-fraksjon. The starting material must consist of wax of which more than 40% by weight boils above 520° C and which is obtained by dewaxing a residual mineral oil fraction.

Hydrocrackingkatalysatoren skal inneholde nikkelsulfid The hydrocracking catalyst must contain nickel sulphide

. og i tillegg molybdensulfid og/eller wolframsulfid. . and in addition molybdenum sulphide and/or tungsten sulphide.

Bærermaterialet i katalysatoren skal bestå av aluminiumoxyd og katalysatoren skal også inneholde fluor. The carrier material in the catalyst must consist of aluminum oxide and the catalyst must also contain fluorine.

Hydrocrackingsprosessen skal utfores ved en temperatur mellom The hydrocracking process must be carried out at a temperature between

.3 60° C og h25° C og enn videre under slike betingelser at det resulterende flytende reaksjonsprodukt består av 25 til 95 vekt$ .3 60° C and h25° C and further under such conditions that the resulting liquid reaction product consists of 25 to 95 wt.

av komponenter med"kokepunkt over 400°C. of components with a boiling point above 400°C.

Opparbeidelsen skal foretas ved separering av' reaksjonsproduktet ved destillasjon i en eller flere lette fraksjoner og en restfraksjon med et begynnelseskokepunkt mellom 350 og 470°C og fremstilling av den ønskede smøreolje fra denne fraksjon ved hjelp av avvoksing. The processing shall be carried out by separating the reaction product by distillation into one or more light fractions and a residual fraction with an initial boiling point between 350 and 470°C and producing the desired lubricating oil from this fraction by means of dewaxing.

Smøreolje fremstillet på denne måte som tilfredsstiller 10W/30 spesifikasjon, enten som sådanne eller efter tilsetning av en additivpakke, men uten tilsetning av en polymer viskositetsin-deksforbedrer, kan karakteriseres som smøreolje med en dynamisk viskositet på maksimalt 24 P ved -17,8°C (målt ifølge ASTM standard D 2602/71) og en kinematisk viskositet på minst 7,0 og fortrinnsvis på minst cSt ved 98,9°C (målt ifølge ASTM standard D 445/71). Lubricating oil produced in this way which satisfies the 10W/30 specification, either as such or after the addition of an additive package, but without the addition of a polymeric viscosity index improver, can be characterized as a lubricating oil with a dynamic viscosity of a maximum of 24 P at -17.8° C (measured according to ASTM standard D 2602/71) and a kinematic viscosity of at least 7.0 and preferably of at least cSt at 98.9°C (measured according to ASTM standard D 445/71).

Oppfinnelsen angår følgelig en fremgangsmåte ved fremstilling av en smøreolje med en dynamisk viskositet på maksimalt 24 P ved -17,8°C og en kinematisk viskositet på minst 7,0 cSt ved 98,9°C fra voks i et utbytte på mer enn 25 vekt%, ved hvilken fremgangsmåte voks omdannes ved hydrocracking ved en temperatur på mellom 360 og 425°C, et trykk på fra 10 til 250 bar, en romhastighet på 0,2 til 5 kg utgangsmateriale pr. liter katalysator pr. ti-me og et hydrogen/utgangsmaterialforhold på 100 til 5000 NI hydrogen pr. kg utgangsmateriale over en 0,5 - 7 vekt% fluorholdig sulfidkatalysator inneholdende 0,025 - 0,8 gramatomer nikkel og i tillegg 0,05 - 0,5 gramatomer molybden og/eller wolfram pr. 100 g aluminiumoxyd som bærer, under dannelse av et væskeprodukt, hvilken fremgangsmåte er kjennetegnet ved at der anvendes et voks av hvilket mer enn 40 vekt% koker over 520°C, og som er erholdt ved avvoksning av en restmineraloljefraksjon (herefter betegnet som "utgangsmaterialvoks"), og hvor 25 - 95 vekt% av det angitte væskeprodukt består av komponenter med et kokepunkt over 400°C, og hvor reaksjonsproduktet derefter separeres ved destillasjon i én eller flere lette fraksjoner og en restfraksjon med et begynnelseskokepunkt mellom 350 og 470°C, fra hvilken den ønskede smøre-olje fremstilles ved avvoksning. The invention therefore relates to a process for producing a lubricating oil with a dynamic viscosity of a maximum of 24 P at -17.8°C and a kinematic viscosity of at least 7.0 cSt at 98.9°C from wax in a yield of more than 25 % by weight, in which process wax is converted by hydrocracking at a temperature of between 360 and 425°C, a pressure of from 10 to 250 bar, a space velocity of 0.2 to 5 kg of starting material per liter of catalyst per ti-me and a hydrogen/starting material ratio of 100 to 5000 NI hydrogen per kg of starting material over a 0.5 - 7% by weight fluorine sulphide catalyst containing 0.025 - 0.8 gram atoms of nickel and in addition 0.05 - 0.5 gram atoms of molybdenum and/or tungsten per 100 g of aluminum oxide as a carrier, during the formation of a liquid product, which method is characterized by using a wax of which more than 40% by weight boils above 520°C, and which is obtained by dewaxing a residual mineral oil fraction (hereinafter referred to as "starting material wax "), and where 25 - 95% by weight of the specified liquid product consists of components with a boiling point above 400°C, and where the reaction product is then separated by distillation into one or more light fractions and a residual fraction with an initial boiling point between 350 and 470°C , from which the desired lubricating oil is produced by dewaxing.

Det voks som man anvender som utgangsmateriale ved fremgangsmåten ifølge oppfinnelsen (i beskrivelse og krav er dette voks gitt betegnelsen "utgangsvoks") erholdes fortrinnsvis som bi-produkt under fremstilling av smøreolje på konvensjonell måte eller ved fremstilling av smøreolje ved hydrycracking. Som ovenfor forklart fåes ved fremstilling av smøreoljen på konvensjonell måte en restsmøreoljefraksjon av hvilken en restsmøreolje fremstilles ved raffinering. Denne raffinering omfatter fjerning av asfalt, aromater og voks. Dette voks er fortrinnsvis utgangsmaterialvoks. Før restsmøreoljefraksjonen kan avvokses, må først asfalt fjernes. Avasfaltering kan utføres ved å behandle restsmøreoljefraksjonen med et lavtkokende paraffinisk hydrocarbon, slik som ethan, propan, butan eller pentan, idet propan foretrekkes. Aromater og voks fjernes derefter fra den avasfalterte olje erholdt på denne måte. Fjerning av aromater fra den avasfalterte olje kan utføres ved å behandle den avasfalterte olje med et selektivt oppløsnings-middel for aromatiske hydrocarboner, slik som furfural, fenol, cresol eller "Chlorex", idet furfural foretrekkes. Endelig fjernes voks fra den resulterende olje, som betegnes som et voksaktig sylinderoljeraffinat. Avvoksning av oljen utføres ved at oljen avkjøles i nærvær av et oppløsningsmiddel. Avvoksningen utføres fortrinnsvis med en blanding av methylethylketon og toluen ved en temperatur på mellom -10°C og -40°C og et f.orhold mellom oppløs-ningsmiddel og olje (volumforhold) på 1 til 1 og 10 til 1. Rekke-følgen ved hvilken fjerning av aromater og voks fra den avasfalterte olje finner sted er i prinsipp vilkårlig, men for å minske oljevolum som kjøles under avvoksning bør avvoksningen fortrinnsvis utføres efter at aromatene er fjernet fra den avasfalterte olje. The wax that is used as starting material in the method according to the invention (in the description and claims this wax is given the designation "starting wax") is preferably obtained as a by-product during the production of lubricating oil in a conventional way or when producing lubricating oil by hydrocracking. As explained above, when producing the lubricating oil in a conventional manner, a residual lubricating oil fraction is obtained from which a residual lubricating oil is produced by refining. This refining includes the removal of asphalt, aromatics and waxes. This wax is preferably starting material wax. Before the residual lubricating oil fraction can be dewaxed, asphalt must first be removed. Deasphalting can be carried out by treating the residual lubricating oil fraction with a low-boiling paraffinic hydrocarbon, such as ethane, propane, butane or pentane, propane being preferred. Aromatics and waxes are then removed from the deasphalted oil obtained in this way. Removal of aromatics from the deasphalted oil can be accomplished by treating the deasphalted oil with a selective solvent for aromatic hydrocarbons, such as furfural, phenol, cresol or "Chlorex", furfural being preferred. Finally, wax is removed from the resulting oil, which is termed a waxy cylinder oil raffinate. Dewaxing of the oil is carried out by cooling the oil in the presence of a solvent. The dewaxing is preferably carried out with a mixture of methyl ethyl ketone and toluene at a temperature of between -10°C and -40°C and a ratio between solvent and oil (volume ratio) of 1 to 1 and 10 to 1. The order the way in which the removal of aromatics and wax from the deasphalted oil takes place is in principle arbitrary, but in order to reduce the volume of oil that is cooled during dewaxing, the dewaxing should preferably be carried out after the aromatics have been removed from the deasphalted oil.

Som ovenfor forklart erholdes der ved fremstilling av en smøreolje ved hydrocracking, en restsmøreoljefraksjon fra hvilken en restsmøreolje fremstilles ved fjerning av voks. Dette voks er også et foretrukket utgangsmaterialvoks, med det forbehold at restsmøreoljefraksjonen fra hvilken det er blitt erholdt ved avvoksning er en restfraksjon av et hydrocracket produkt som er blitt fremstillet enten ved hydrocracking under milde betingelser av en restfraksjon av en råmineralolje eller ved hydrocracking av voks erholdt ved avvoksning av en restfraksjon av en rå-mineralolje. Uttrykket "hydrocracking under milde betingelser" angir i denne beskrivelse hydrocracking under slike betingelser at der erholdes et hydrocracket produkt av hvilket mindre enn 50 vekt% koker under begynnelseskokepunktet til utgangsmaterialet. Hvis et utgangsmaterialevoks anvendes som er erholdt ved avvoksning av en restfraksjon av et hydrocracket produkt som er blitt fremstillet ved hydrocracking under milde betingelser av en restfraksjon av en rå mineralolje, er denne restfraksjon fortrinnsvis den samme avasfalterte restsmøreoljefraksjon som tidligere er nevnt som en kilde for utgangsmaterialevoks som erholdes ved avvoksning. Hvis der anvendes et utgangsmaterialvoks som er blitt erholdt ved av-voskning av en restfraksjon av et hydrocracket produkt som er fremstillet ved hydrocracking av voks erholdt ved avvoksning av en restfraksjon av en rå mineralolje, er denne restfraksjon fortrinnsvis den samme avasfalterte restsmøreoljefraksjon eller et ,raffinat erholdt fra dette ved fjerning av aromater som tidligere er blitt nevnt som en foretrukken kilde for utgangsmaterialevoks som erholdes ved avvoksning. As explained above, when producing a lubricating oil by hydrocracking, a residual lubricating oil fraction is obtained from which a residual lubricating oil is produced by removing wax. This wax is also a preferred starting material wax, with the proviso that the residual lubricating oil fraction from which it has been obtained by dewaxing is a residual fraction of a hydrocracked product which has been produced either by hydrocracking under mild conditions a residual fraction of a crude mineral oil or by hydrocracking of wax obtained by dewaxing a residual fraction of a crude mineral oil. The term "hydrocracking under mild conditions" in this description indicates hydrocracking under such conditions that a hydrocracked product is obtained of which less than 50% by weight boils below the initial boiling point of the starting material. If a starting material wax is used which is obtained by dewaxing a residual fraction of a hydrocracked product which has been produced by hydrocracking under mild conditions of a residual fraction of a crude mineral oil, this residual fraction is preferably the same deasphalted residual lubricating oil fraction previously mentioned as a source of starting material wax which is obtained by dewaxing. If a starting material wax is used which has been obtained by dewaxing a residual fraction of a hydrocracked product which has been produced by hydrocracking wax obtained by dewaxing a residual fraction of a crude mineral oil, this residual fraction is preferably the same deasphalted residual lubricating oil fraction or a raffinate obtained from this by the removal of aromatics which has previously been mentioned as a preferred source of starting material wax obtained by dewaxing.

Utgangsmaterialvokset inneholder fortrinnsvis mindre The starting material wax preferably contains less

enn 35 vekt% olje. Det foretrekkes ennvidere at restmineralolje-fraksjonen fra hvilken utgangsmaterialvokset erholdes ved avvoksning er en oljefraksjon som efter avvoksning ved -30°C har en viskositetsindeks på minst 55, og fortrinnsvis minst 70. than 35% oil by weight. It is further preferred that the residual mineral oil fraction from which the starting material wax is obtained by dewaxing is an oil fraction which after dewaxing at -30°C has a viscosity index of at least 55, and preferably at least 70.

De katalysatorer som anvendes ved hydrocracking av utgangsmaterialvokset er fluorholdige sulfidkatalysatorer inneholdende nikkel og i tillegg molybden og/eller wolfram på aluminiumoxyd som bærer. Foretrukne katalysatorer er de som inneholder 0,025 - 0,8 g atomer og fortrinnsvis 0,05 - 0,7 g atomer nikkel og 0,05 - 0,5 g atomer, fortrinnsvis 0,1 - 0,4 g atomer molybden og/eller wolfram pr. 100 g aluminiumoxyd. The catalysts used in the hydrocracking of the starting material wax are fluorine-containing sulphide catalysts containing nickel and in addition molybdenum and/or tungsten on aluminum oxide as a carrier. Preferred catalysts are those containing 0.025 - 0.8 g atoms and preferably 0.05 - 0.7 g atoms of nickel and 0.05 - 0.5 g atoms, preferably 0.1 - 0.4 g atoms of molybdenum and/or tungsten per 100 g aluminum oxide.

Metallene kan innarbeides i katalysatoren på en hvilken som helst kjent måte ved fremstilling av katalysatorer inneholdende flere komponenter på en bærer, f.eks. ved co-impregnering av aluminiumoxyd i ett eller flere trinn med en vandig oppløsning inneholdende salter av de vedrørte metaller. Katalysatorene anvendes i sulfidform. Katalysatorene kan sulfideres ved en hvilken som helst kjent måte for sulfidering av katalysatorer, f.eks. ved at katalysatorene bringes i kontakt med en blanding av hydrogen og hydrogensulfid eller med hydrogen og en svovelholdig hydrocar-bonolje, slik som en svovelholdig gassolje. The metals can be incorporated into the catalyst in any known way in the production of catalysts containing several components on a support, e.g. by co-impregnation of aluminum oxide in one or more steps with an aqueous solution containing salts of the metals concerned. The catalysts are used in sulphide form. The catalysts can be sulphided by any known method for sulphiding catalysts, e.g. in that the catalysts are brought into contact with a mixture of hydrogen and hydrogen sulphide or with hydrogen and a sulphurous hydrocarbon oil, such as a sulphurous gas oil.

I tillegg til metallene nikkel og molybden og/eller wolfram skal katalysatorene som anvendes ved hydrocracking av utgangsmaterialvokset også inneholde fluor. Innarbeidelse av fluor i katalysatorene kan i prinsippet utføres på to måter. Fluor kan innarbeides i katalysatoren ved impregnering av denne under eller efter fremstilling med en egnet fluorforbindelse, slik som ammoniumfluorid. Det er også mulig å innarbeide fluor i katalysatoren ved in situ fluorering av katalysatoren ved et tidlig trinn av hydrocrackingsprosessen i hvilken katalysatoren anvendes (f.eks. under eller efter starting av prosessen). In situ fluorering av katalysatorene kan utføres ved å tilsette en egnet flu-orf orbindelse, slik som o-fluor toluen eller difluorethan til gas-sen og/eller væskestrømmen som føres over katalysatoren. I flere tilfelle kan det være foretrukket å innarbeide i det minste endel av fluoret i katalysatoren ved in situ fluorering. Mengden fluor inneholdt i katalysatorene -er fortrinnsvis 0,5-7 vekt%. I tillegg til nikkel, molybden og/eller wolfram og fluor kan katalysatorene som anvendes ved hydrocracking av utgangsmaterialvokset ytterligere inneholde aktivatorer slik som bor og fosfor. In addition to the metals nickel and molybdenum and/or tungsten, the catalysts used in the hydrocracking of the starting material must also contain fluorine. Incorporation of fluorine into the catalysts can in principle be carried out in two ways. Fluorine can be incorporated into the catalyst by impregnating it during or after production with a suitable fluorine compound, such as ammonium fluoride. It is also possible to incorporate fluorine into the catalyst by in situ fluorination of the catalyst at an early stage of the hydrocracking process in which the catalyst is used (e.g. during or after starting the process). In situ fluorination of the catalysts can be carried out by adding a suitable fluorine compound, such as o-fluorotoluene or difluoroethane to the gas and/or liquid stream which is passed over the catalyst. In several cases, it may be preferred to incorporate at least part of the fluorine in the catalyst by in situ fluorination. The amount of fluorine contained in the catalysts is preferably 0.5-7% by weight. In addition to nickel, molybdenum and/or tungsten and fluorine, the catalysts used in the hydrocracking of the starting material can further contain activators such as boron and phosphorus.

Ved fremstilling av smøreolje ved hydrocracking av utgangsmaterialvokset ifølge oppfinnelsen oppnåes meget gode resul-tater ved bruk av en av de følgende katalysatorer. In the production of lubricating oil by hydrocracking the starting material wax according to the invention, very good results are achieved by using one of the following catalysts.

(a) En katalysator fremstillet ved impregnering av aluminiumoxyd med en oppløsning inneholdende én eller flere nikkelforbindelser, én eller flere molybden- og/eller wolframforbindelser, fosfationer og peroxydioner, og (a) A catalyst prepared by impregnating aluminum oxide with a solution containing one or more nickel compounds, one or more molybdenum and/or tungsten compounds, phosphate ions and peroxide ions, and

derpå tørke og kalsinere materialet. then dry and calcine the material.

(b) En katalysator fremstillet ved innarbeidelse i en aluminiumoxydhydrogel én eller flere nikkelforbindelser og én eller flere molybden og/eller wolframforbindelser i tilstrekkelig konsentrasjon til å bevirke et metallinn-hold, uttrykt som metalloxyder, på 30 - 65 vekt% av den ferdige katalysator, og derpå tørke og kalsinere materialet og hvor aluminiumoxydhydrogel i hvilket metall- (b) A catalyst produced by incorporating into an aluminum oxide hydrogel one or more nickel compounds and one or more molybdenum and/or tungsten compounds in sufficient concentration to cause a metal content, expressed as metal oxides, of 30 - 65% by weight of the finished catalyst, and then dry and calcine the material and where aluminum oxide hydrogel in which metal

forbindelsene er innarbeidet efter tørking og kalsinering gir en xerogel med en sammenpresset romvekt på 0,75 the compounds are incorporated after drying and calcination gives a xerogel with a compressed bulk density of 0.75

til 1,6 g/ml og et porevolum på 0,15 til 0,5 ml/g. to 1.6 g/ml and a pore volume of 0.15 to 0.5 ml/g.

(c) En katalysator fremstillet ved å behandle et materiale inneholdende aluminiumoxyd, vann, ett eller flere vann-oppløselige salter av nikkel og ett eller flere vannopp-løselige salter av molybden og/eller wolfram, med en hydrogensulfidholdig gass ved en temperatur under 150°C (c) A catalyst prepared by treating a material containing aluminum oxide, water, one or more water-soluble salts of nickel and one or more water-soluble salts of molybdenum and/or tungsten, with a hydrogen sulphide-containing gas at a temperature below 150° C

og derpå oppvarme materialet i en hydrogenholdig gass til en sluttemperatur over.200°C, hvor mengden av tilstedeværende vann i materialet som behandles med den hy-drogensulf idholdige gass skal tilsvare vannmengden til-stede i materialet efter tørking i en tørr gass ved 110°C, øket med 20 til 120 % av den mengde vann som det tørkede materiale kan absorbere i porene til bæreren ved 20°C. and then heat the material in a hydrogen-containing gas to a final temperature above 200°C, where the amount of water present in the material treated with the hydrogen sulphide-containing gas must correspond to the amount of water present in the material after drying in a dry gas at 110° C, increased by 20 to 120% of the amount of water that the dried material can absorb in the pores of the support at 20°C.

Katalysatorene som anvendes ved hydrocracking av utgangsmaterialvokset inneholder fortrinnsvis som katalytisk aktive metallkomponenter nikkel eller nikkel og volfram. The catalysts used in the hydrocracking of the starting material preferably contain nickel or nickel and tungsten as catalytically active metal components.

Hydrocracking av utgangsmaterialvokset kan utføres ved en temperatur mellom 350 og 4 25°C, og i tillegg under slike betingelser at 25 - 95 vekt% av det resulterende flytende reaksjonsprodukt består av komponenter med kokepunkt over 400°C. Egnede hydrocrackingbetingelser er et trykk på 10 - 250 bar, en romhastighet på 0,2 - 5 kg utgangsmateriale pr. liter katalysator/time og et hydrogen/utgangsmaterialforhold på 100 til 5000 NI hydrogen pr. kg utgangsmateriale. Hydrocracking av utgangsmaterialvokset utfores fortrinnsvis under folgende betingelser: en temperatur på 360° C til ¥15° C, et trykk på 25 til 200 bar, en romhastighet på 0,5 til 1,5 kg utgangsmateriale pr. liter katalysator pr. time og et hydrogen/utgangsmaterialforhold på 500 til 2500 NI pr. kg utgangsmateriale. Hydrocracking of the starting material wax can be carried out at a temperature between 350 and 425°C, and in addition under such conditions that 25 - 95% by weight of the resulting liquid reaction product consists of components with a boiling point above 400°C. Suitable hydrocracking conditions are a pressure of 10 - 250 bar, a space velocity of 0.2 - 5 kg of starting material per liters of catalyst/hour and a hydrogen/starting material ratio of 100 to 5000 NI hydrogen per kg starting material. Hydrocracking of the starting material wax is preferably carried out under the following conditions: a temperature of 360° C to ¥15° C, a pressure of 25 to 200 bar, a space velocity of 0.5 to 1.5 kg of starting material per hour. liter of catalyst per hour and a hydrogen/starting material ratio of 500 to 2500 NI per kg starting material.

Utgangsmaterialvokset omdannes ved hydrocracking til et flytende produkt, av hvilket 25 til 95 vekt# består av komponenter med et kokepunkt over h00° c, og reaksjonsproduktet separeres ved destillasjon i en eller flere lette fraksjoner og en restfraksjon med begynnelseskokepunkt mellom 350° og hjO<0> C. Fortrinnsvis omdannes utgangsmaterialvokset ved hydrocracking i et flytende produkt, av hvilke ^fO til 70 vekt% består av komponenter med et kokepunkt over h00° C og en restfraksjon med et begynnelseskokepunkt mellom 390° og K50<0> C som separeres ved destillasjon fra reaksjonsproduktet. The starting material wax is converted by hydrocracking into a liquid product, of which 25 to 95 wt# consists of components with a boiling point above h00° c, and the reaction product is separated by distillation into one or more light fractions and a residual fraction with an initial boiling point between 350° and hjO<0 > C. Preferably, the starting material is converted by hydrocracking into a liquid product, of which ^f0 to 70% by weight consists of components with a boiling point above h00° C and a residual fraction with an initial boiling point between 390° and K50<0> C which is separated by distillation from the reaction product.

For å fremstille en egnet smoreolje fra restfraksjonen kreves denne avvokses. Avvoksingen utfores fortrinnsvis ved avkjoling av oljen i nærvær av et løsningsmiddel. Meget egnet for dette formål er en blanding av methylethylketon og toluen med en temperatur mellom -10° C og -^O0 C og et losningsmiddel-olje-volumforhold mellom 1 til 1 og 10 til 1. For å oke utbyttet av den onskede smoreolje, foretrekkes det å resirkulere til hydro-crackingreaktoren minst en del av det voks som separeres under avvoksingen av restfraksjonen av det hydrocrackede produkt fremstilt ved hydrocracking av utgangsmaterialvokset. In order to produce a suitable lubricating oil from the residual fraction, this must be dewaxed. The dewaxing is preferably carried out by cooling the oil in the presence of a solvent. Very suitable for this purpose is a mixture of methyl ethyl ketone and toluene with a temperature between -10° C and -^O0 C and a solvent-oil volume ratio between 1 to 1 and 10 to 1. To increase the yield of the desired lubricating oil, it is preferred to recycle to the hydrocracking reactor at least part of the wax that is separated during the dewaxing of the residual fraction of the hydrocracked product produced by hydrocracking the starting material wax.

Fremgangsmåte ifolge oppfinnelsen gjor det mulig å fremstille smoreoljer hvilke som sådanne d.v.s uten at additiver innarbeides, tilfredsstiller 10W/30 spesifikasjon. Fremgangsmåten ifolge oppfinnelsen gjor det enn videre mulig å fremstille smoreoljer hvilke som sådanne ikke tilfredsstiller 10W/30 spesifikasjon, Method according to the invention makes it possible to produce lubricating oils which as such, i.e. without additives being incorporated, satisfy the 10W/30 specification. The method according to the invention also makes it possible to produce lubricating oils which as such do not satisfy the 10W/30 specification,

men fra hvilke det på en enkel måte uten bruk av hoy-molekylær viskositetsindeksforbedrere kan fremstilles en lOW/30 olje ved innarbeidelse av en bestemt mengde av en additivpakke. but from which a lOW/30 oil can be produced in a simple way without the use of high-molecular viscosity index improvers by incorporating a specific amount of an additive package.

De kommersielle additivpakker som anvendes i praktisk fremstilling av universal smoreoljer omfatter et utall forbindelser av hvilke hver især har den egenskap at når de innarbeides i en smoreolje forbedrer de kvaliteten av denne smoreolje i et eller flere henseende. Eksempler på additiver som foreligger i disse additivpakker er anti-oxydanter, rustinhibitorer, korrosjonsinhibitorer, slitasjenedsettende midler, anti-skummidler, rensemidler, metallpassiveringsmidler og hoytrykksadditiver. The commercial additive packages that are used in the practical production of universal lubricating oils comprise a large number of compounds, each of which has the property that when they are incorporated into a lubricating oil, they improve the quality of this lubricating oil in one or more respects. Examples of additives contained in these additive packages are anti-oxidants, rust inhibitors, corrosion inhibitors, anti-wear agents, anti-foam agents, cleaning agents, metal passivating agents and high-pressure additives.

I enkelte tilfeller er flere kvalitets-forbedrende egenskaper kombinert i et enkelt additiv. Hvis smoreoljene fremstilt ifolge oppfinnelsen er beregnet for bruk som motoroljer, er det tilrådelig å innarbeide en bestemt mengde av additivpakke, selvom smoreoljen som sådan tilfredsstiller lOW/30 spesifikasjon. Ved fremstilling av lOW/30 oljer ifolge oppfinnelsen foretrekkes det å innarbeide en slik mengde av additivpakken i basisoljen (som kan eller ikke tilfredsstille 10W/30 spesifikasjon), at det oppnås en oljesammen-setning som omfatter 87,5 til 95 vekt$ i basisolje og 5 til 12,5$ additiver. In some cases, several quality-improving properties are combined in a single additive. If the lubricating oils produced according to the invention are intended for use as motor oils, it is advisable to incorporate a certain amount of additive package, even if the lubricating oil as such satisfies the lOW/30 specification. When producing lOW/30 oils according to the invention, it is preferred to incorporate such an amount of the additive package into the base oil (which may or may not satisfy the 10W/30 specification), that an oil composition comprising 87.5 to 95% by weight of the base oil is obtained and 5 to 12.5$ additives.

Oppfinnelsen skal ytterligere illustreres ved hjelp av de etterfolgende eksempler. The invention shall be further illustrated by means of the following examples.

Åtte katalysatorer (A - H) ble anvendt i hydrocrackingsforsok ved fremstilling av smoreolje fra seks rest-vokser (I-VI). Katalysatorene og utgangsmateriatoe er beskrevet i detalj i det etterfølgende. Eight catalysts (A - H) were used in hydrocracking experiments in the production of lubricating oil from six residual waxes (I-VI). The catalysts and starting materials are described in detail below.

KATALYSATOR A: Ni/Mo/F/Alo0-. katalysator med et porevolum CATALYST A: Ni/Mo/F/Alo0-. catalyst with a pore volume

på 0,¥+ ml/g og en spesifikk overflateareal på 117,1 m 2/g inneholdende 6 vektdeler nikkel, 30 vektdeler molybden og 7,5 vektdeler fluor pr. 100 vektdeler aluminiumoxyd. Denne katalysator var blitt fremstilt ved co.-impregnering av aluminiumoxyd med en vandig losning av ammonium molybdat, nikkelnitrat og ammoniumfluorid. Etter at fuktningsgraden var blitt satt til 100$, ble materialet forst behandlet i 16 timer med H^S ved 15 bar og 75<*>C ;hvoretter det ble oppvarmet i to timer til ^00° C i en strom av H2S-holdig H2(9 volum- H2S, 10 bar, 25000 NI.l"<1>time~<1>) og tilslutt holdt i ca. 2 timer i denne gasstrom (uttrykket "fuktningsgrad" ;som her anvendt henviser til mengden tilstedeværende vann i materialet i tillegg til den mengde vann som foreligger deretter etter torking av materialet i en torr gass ved 110° C. Fuktningsgraden er uttrykt som prosent av den mengde vann som det torre materiale kan absorbere i porene til bæreren ved 20° C). ;KATALYSATOR B: Ni/Mo/F/Al^ katalysator med et porevolum ;på 0,23 ml/g og et spesifikt overflateareal på 63,0 m<2>/g inneholdende 6 vektdeler nikkel, 30 vektdeler molybden og 7,5 vektdeler fluor pr. 100 vektdeler aluminiumoxyd. Denne katalysator var blitt fremstilt på samme måte som katalysator A med det unntak at det i foreliggende tilfelle ble brukt .en annen type aluminiumoxyd. ;KATALYSATOR C: Ni/W/F/A120^ inneholdende 5 vektdeler nikkel, ;38 vektdeler wolfram pr. 100 vektdeler av aluminiumoxyd og 2, k- vekt% fluor. Denne katalysator var blitt fremstilt på samme måte som katalysatorene A og B, med det unntak at det i foreliggende tilfelle ble anvendt en fluor-fri impregneringsvæske som inneholdt ammoniumwolframat og nikkelnitrat og at fluor ble innarbeidet i katalysatoren ved fluorinering in situ. ;KATALYSATOR D: Ni/Mo/P/F/AlgO^ katalysator inneholdende h, 2 vektdeler nikkel, 17,7 vektdeler molybden og 3,1 vektdeler fosfor pr. 100 vektdeler aluminiumoxyd og 1,6 vekt% fluor. Denne katalysator var blitt fremstilt ved co-impregnering av aluminiumoxyd med en vandig losning inneholdende nikkelnitrat, fosforsyre, ammonium-molybdat og hydrogenperoxyd, og derpå torking og kalsinering av materialet.. Fluor ble innarbeidet i katalysatoren ved fluorinering in situ. ;KATALYSATOR E: Ni/W/F/Al20^ katalysator inneholdende 31 vektdeler nikkel, 58 vektdeler wolfram 7,5 vektdeler fluor pr. 100 vektdeler aluminiumoxyd. ;KATALYSATOR F: Ni/W/F/Al^ katalysator inneholdende 31 vektdeler nikkel og 58 vektdeler wolfram pr. 100 vektdeler aluminiumoxyd og 6 vektdeler fluor. ;KATALYSATOR G: Ni/W/F/Al^ katalysator inneholder 37 vektdeler nikkel og 70 vektdeler wolfram pr. 100 vektdeler aluminiumoxyd og ;>+,3 vekt# fluor. ;Katalysatorene E, F og G ble fremstilt ved å blande en aluminiumoxyJ hydrogel med én vandig losning inneholdende nikkelnitrat, ammoniumwolframat og ammoniumfluorid, idet losningens pH ble brakt til 5.6 ;ved hjelp av 25$ ammoniakk. Blandingen ble oppvarmet til 80° C, ;gelen ble filtrert, ekstrudert, torket og kalsinert. Etter torking og kalsinering ble aluminiumoxydhydrogelen anvendt ved fremstilling av disse katalysatorer som ga en xerogel med en sammenpresset rom-tetthet mellom 0,75" og 1,6 g/ml og et porevolum mellom 0,15 og 0,5 ml/g. ;KATALYSATOR H: Ni/W/F/Al^ katalysator inneholdende 10 vektdeler nikkel og 60 vektdeler wolfram pr. 100 vektdeler aluminiumoxyd og H,5 vekt$ fluor. Denne katalysator ble fremstilt ved -impregnering av aluminiumoxyd med en vandig losning inneholdende nikkelnitrat og ammoniumwolframat og derpå torking og kalsinering. Fluor ble innarbeidet i katalysatoren ved fluorinering in situ. ;In situ fluorering av katalysatorene C, D og H ble utfort ;ved tilsetning av o-fluortoluen til utgangsmaterialet' under begynnelses-trinnet i. hydrocrackingsprosessen. ;UTGANGSMATERIALE I (råvoks fra klar sylinderolje) ;Voks erholdt ved avvoksing av en rest smoreoljefraksjon (1) ;som på forhånd var avasfaltert med propan og ekstrahert med furfural. Begynnelseskokepunktet til vokset: 520° C. Oljeinnhold i vokset: 19.7 vekt$. Viskositetsindeks til oljen erholdt etter at vokset var avoljet: 97. Svovelinnhold, i vokset: 0,3!+ vekt%. ;UTGANGSMATERIALE II (DA0 råvoks) ;Voks erholdt ved avvoksing av en rest smoreoljefraksjon (1) ;som på forhånd var blitt avasfaltert med propan. Begynnelseskokepunkt til vokset: 520° C. Oljeinnhold i vokset: 9,8 vekt$. Viskositetsindeks til oljen erholdt etter avoljing av vokset: 78. Svovelinnhold i vokset: 0,85 vekt$. ;UTGANGSMATERIALE III (råvoks fra klar sylinderolje) ;Voks erholdt ved avvoksing av en rest smoreoljefraksjon (1) ;som på forhånd var blitt- avasfaltert med propan og ekstrahert med furfural. Begynnelseskokepunkt til vokset: 520° C. Oljeinnhold ;i vokset: 21,1 vekt#. Viskositetsindeks til oljen erholdt etter at vokset var blitt avoljet: 98. Svovelinnhold i vokset: 0,66 vekt%. ;UTGANGSMATERIALE IV (voks fra hydrocracket råvoks fra klar sylinderolje) ;Voks erholdt ved avvoksing av en restfraksjon av et hydrocracket produkt som var blitt fremstilt ved hydrocracking av voks erholdt ved avvoksing av en rest-smoreolje fraksjon (1) som på forhånd var blitt avasfaltert med propan og ekstrahert med furfural. Begynnelseskokepunkt til utgangsmaterialvokset: 390° c. Av dette voks kokte 92,5 vekt$ over 520° C. Oljeinnhold til utgangsmaterialvokset: 6 vekt$. Viskositetsindeks til oljen erholdt etter at utgangsmaterialvokset ;var blitt avoljet: 1^9. Svovelinnhold i utgangsmaterialvokset: 20 ppmv. ;UTGANGSMATERIALE V (voks fra hydrocracket råvoks fra klar sylinderolje). ;Voks erholdt ved avvoksing av en restfraksjon av et hydrocracket produkt som var blitt fremstilt ved hydrocracking av voks erholdt ved avvoksing av en rest-smoreoljefraksjon (1) som på forhånd var blitt avasfaltert med propan og ekstrahert med furfural. Begynnelseskokepunkt til utgangsmateriale: 520° C. Oljeinnhold i utgangsmaterialvokset: 7 vektfo. Viskositetsindeks til oljen erholdt etter at utgangsmaterialvokset var blitt avoljet: 150. Svovelinnhold i utgangsmaterialvokset: 20 ppmv. ;UTGANGSMATERIALE VI ( voks fra mildt hydrocracket DA0) ;Voks erholdt ved avvoksing av en restfraksjon av et hydro- ;cracket produkt som var blitt fremstilt ved mild hydrocracking (25 vekt% av det hydrocrackede produkt -kokte under begynnelseskokepunktet til utgangsmaterialet) av en rest-smoreoljefraksjon (1) ;som på forhånd var blitt avasfaltert med propan. Begynnelseskokepunkt til utgangsmaterialvokset: 520 C. 01jeinnholdet i utgangsmaterialvokset: 21 vekt$. Viskositetsindeks til oljen erholdt etter at utgangsmaterialvokset var blitt avoljet: 95» Svovelinnhold i utgangsmaterialvokset: 500 ppmv. ;De seks rest smoreoljefraksjoner (1) fra hvilke utgangsmaterial-voksene I-VI var blitt fremstilt var erholdt som rest ved destillasjon under redusert trykk av destillasjonsrester ved atmosfæretrykk av parafiniske råoljer. Avvoksingen ble utfort ved avkjoling av oljene til en temperatur på -3O<0> c i nærvær av en 1:1 blanding av ;en methylethylketon og toluen. ;Viskositetsindeksene angitt i denne beskrivelse ble.bestemt ifolge ASTM standard D 2270. ;Hydrocrackingsforsokene 1-26 ble utfort under fblgende betingelser: trykk: 150 bar, unntatt i forsok 7, dette forsbk ble utfort ved et trykk på 50 bar. ;temperatur: 375-¥lO° C. ;romhastighet: 1 1,1 "'"time-"'" ;hydrogen/utgangsmaterialforhold: 2000 NI.I<-1>;katalysatorskikt: 100 ml ;Katalysatorene ble anvendt i sulfid form. Sulfideringen av katalysatorene D-H ble utfort ved at disse ble brakt i kontakt med hydrogen og en svovel-holdig gassolje. Under hydrocracking av utgangsmaterialene IV-VI, ble butylme'rcaptan tilsatt til disse utgangsmaterialer i en mengde tilstrekkelig til å oke det totale svovelinnhold i disse utgangsmaterialer til 2500 ppmv. Rest-fraksjoner med et begynnelseskokepunkt mellom 365° og ¥+0° C ble separert fra de hydrocrackede produkter ved destillasjon. Fra rest fraksjonene ble de tilsvarende smoreoljer fremstilt ved avvoksing av fraksjonene. Avvoksingen ble utfort ved avkjoling av oljen til en temperatur på -30° C i nærvær av en 1:1 blanding av methylethylketon og toluen. ;Forsokene 1-26 vist i tabell A er alle hydrocrackingforsdk ifolge oppfinnelsen. Hver av disse forsbk gir mer enn 15 vekt$, basert på utgangsmaterialet, av en smoreolje med en dynamisk viskositet på maksimalt 2h P ved -17,8° C og en kinematisk viskositet på minst 7,0 cSt ved 98,9° C. Smoreoljene fremstilt- ifolge forsokene 1-11 tilfredsstiller som sådanne 10W/30 spesifikasjon (dynamisk viskositet ved -17,8° C på minst 12 P og maksimalt 2h P og kinematisk viskositet ved 98,9° C på minst 9,6 cSt og maksimalt 12,9 cSt) slik, d.v.s. uten innarbeidelse av additiver. ;En additivpakke ble innarbeidet i smoreoljene fremstilt ;ifolge forsokene 12-23 som ikke tilfredsstilte 10W/30 spesifikasjon og i smoreoljene fremstilt ifolge forsokene 8-11 som ikke tilfredsstilte lOW/30 spesifikasjon. To additivpakker ble anvendt, ;betegnet henholdsvis additivpakke A og B. Disse additivpakker var forskjellige med hensyn til kjemisk sammensetning på additivene de inneholdt, men hadde begge hovedsaklig den samme effekt, med hensyn til anti-oxydasjon, rustinhibering, slitasjenedsettende evne, korrosjonsinhibering, skuminhibering, metallpassivering, forbedring av den smorende effekt ved hbyt trykk og inhibering av avsetninger i motoren. Inhibering av additivpakke A i smoreoljene ga en smoreoljesammensetning inneholdende 92,5 vekt$ av basisoljen og 7,5 vekt% ;av additivpakken. Innarbeidelse av additivpakke B i smoreoljen ga en smoreoljesammensetning inneholdende 89,9 vekt$ av basisoljen og 10,1 vekt% av additivpakken. Egenskapene til de fremstilte oljesammensetninger er vist i tabell B. ;;Resultatene oppfort i tabell B viser at smoreoljer fremstilt iflg. oppfinnelsen hvilke som sådanne ikke tilfredsstiller 10W/30 spesifikasjon (sammenlign forsokene 12-23) kan formuleres til lOW/30 oljer på en enkel måte uten tilsetning av de vanlige hoy-molekylære viskositetsforbedrere, ved innarbeidelse av additivpakken A eller B. Innarbeidelse av disse additivpakker i en smoreolje fremstilt ifolge oppfinnelsen hvilken som sådan tilfredsstiller lOW/30 spesifikasjon ( sammenlign forsokene 8-11) ga en lOW/30 olje med bedre kvalitet. ;Ved fremgangsmåten ifolge oppfinnelsen er det vesentlig å anvende en fluor-holdig sulfidkatalysator som inneholder nikkel og/eller kobolt og i tillegg molybden og/eller wolfram på aluminiumoxyd som bærer. To hydrocrackingsforsok ble utfort for sammen-lignings skyld. I det forste forsok ble det anvendt en fluor- ;fri katalysator basert på aluminiumoxyd, og i det annet forsok en fluor-holdig katalysator basert på siliciumoxyd/aluminiumoxyd. De to forsok er beskrevet i detalj i det folgende. ;SAMMENLIGNENDE FORSOK 1 ;En Ni/Mo/P/A^O^ katalysator inneholdende <*>+,2 vektdeler nikkel, 17,7 vektdeler molybden og 3,1 vektdeler fosfor pr. 100 vektdeler aluminiumoxyd (katalysator D uten fluor) ble anvendt ved hydrocracking av utgangsmateriale I under de samme betingelser som ble anvendt i forsok 3, med det unntak at i foreliggende tilfelle var hydrocracking temperaturen 1+ 1+5° C. Smoreoljen ble opparbeidet på samme måte som beskrevet i forsok 3« Tabell C viser resultatene av sammenlignende forsok 1 og forsok 3. of 0.¥+ ml/g and a specific surface area of 117.1 m 2/g containing 6 parts by weight nickel, 30 parts by weight molybdenum and 7.5 parts by weight fluorine per 100 parts by weight aluminum oxide. This catalyst had been prepared by co-impregnation of aluminum oxide with an aqueous solution of ammonium molybdate, nickel nitrate and ammonium fluoride. After the degree of wetting had been set to 100$, the material was first treated for 16 hours with H^S at 15 bar and 75<*>C; after which it was heated for two hours to ^00° C in a stream of H2S-containing H2(9 volume H2S, 10 bar, 25000 NI.l"<1>hour~<1>) and finally kept for about 2 hours in this gas space (the term "humidity degree"; as used here refers to the amount of water present in the material in addition to the amount of water that is then present after drying the material in a dry gas at 110° C. The degree of wetting is expressed as a percentage of the amount of water that the dry material can absorb in the pores of the carrier at 20° C). ;CATALYST B: Ni/Mo/F/Al^ catalyst with a pore volume of 0.23 ml/g and a specific surface area of 63.0 m<2>/g containing 6 parts by weight nickel, 30 parts by weight molybdenum and 7.5 parts by weight fluorine per 100 parts by weight of aluminum oxide This catalyst had been prepared in the same way as catalyst A with the exception that in the present case a different type was used aluminum oxide. ;CATALYST C: Ni/W/F/A120^ containing 5 parts by weight nickel, ;38 parts by weight tungsten per 100 parts by weight of aluminum oxide and 2.k-% by weight of fluorine. This catalyst had been prepared in the same way as catalysts A and B, with the exception that in the present case a fluorine-free impregnation liquid containing ammonium tungstate and nickel nitrate was used and that fluorine was incorporated into the catalyst by fluorination in situ. CATALYST D: Ni/Mo/P/F/AlgO^ catalyst containing h, 2 parts by weight nickel, 17.7 parts by weight molybdenum and 3.1 parts by weight phosphorus per 100 parts by weight aluminum oxide and 1.6% by weight fluorine. This catalyst had been produced by co-impregnation of aluminum oxide with an aqueous solution containing nickel nitrate, phosphoric acid, ammonium molybdate and hydrogen peroxide, and then drying and calcining the material. Fluorine was incorporated into the catalyst by fluorination in situ. CATALYST E: Ni/W/F/Al20^ catalyst containing 31 parts by weight nickel, 58 parts by weight tungsten 7.5 parts by weight fluorine per 100 parts by weight aluminum oxide. CATALYST F: Ni/W/F/Al^ catalyst containing 31 parts by weight of nickel and 58 parts by weight of tungsten per 100 parts by weight aluminum oxide and 6 parts by weight fluorine. CATALYST G: Ni/W/F/Al^ catalyst contains 37 parts by weight of nickel and 70 parts by weight of tungsten per 100 parts by weight aluminum oxide and ;>+.3 weight# fluorine. Catalysts E, F and G were prepared by mixing an aluminumoxy hydrogel with an aqueous solution containing nickel nitrate, ammonium tungstate and ammonium fluoride, the pH of the solution being brought to 5.6 using 25% ammonia. The mixture was heated to 80° C., the gel was filtered, extruded, dried and calcined. After drying and calcining, the aluminum oxide hydrogel was used in the preparation of these catalysts which gave a xerogel with a compressed space density between 0.75" and 1.6 g/ml and a pore volume between 0.15 and 0.5 ml/g.; CATALYST H: Ni/W/F/Al^ catalyst containing 10 parts by weight of nickel and 60 parts by weight of tungsten per 100 parts by weight of aluminum oxide and H.5 by weight of fluorine This catalyst was prepared by -impregnation of aluminum oxide with an aqueous solution containing nickel nitrate and ammonium tungstate and then drying and calcining. Fluorine was incorporated into the catalyst by in situ fluorination. ;In situ fluorination of catalysts C, D and H was carried out ;by adding o-fluorotoluene to the starting material' during the initial step of the hydrocracking process. ;STARTING MATERIAL I (crude wax from clear cylinder oil) ;Wax obtained by dewaxing a residual lubricating oil fraction (1) ;which had previously been deasphalted with propane and extracted with furfural. Initial boiling point of the wax: 520° C. Ol je content in the wax: 19.7 wt$. Viscosity index of the oil obtained after the wax was deoiled: 97. Sulfur content, in the wax: 0.3!+ wt%. ;STARTING MATERIAL II (DA0 raw wax) ;Wax obtained by dewaxing a residual lubricating oil fraction (1) ;which had previously been deasphalted with propane. Initial boiling point of the wax: 520° C. Oil content of the wax: 9.8 wt. Viscosity index of the oil obtained after deoiling the wax: 78. Sulfur content in the wax: 0.85 wt. ;STARTING MATERIAL III (crude wax from clear cylinder oil) ;Wax obtained by dewaxing a residual lubricating oil fraction (1) ;which had previously been deasphalted with propane and extracted with furfural. Initial boiling point of the wax: 520° C. Oil content in the wax: 21.1 wt#. Viscosity index of the oil obtained after the wax had been deoiled: 98. Sulfur content in the wax: 0.66% by weight. ;STARTING MATERIAL IV (wax from hydrocracked crude wax from clear cylinder oil) ;Wax obtained by dewaxing a residual fraction of a hydrocracked product which had been produced by hydrocracking wax obtained by dewaxing a residual lubricating oil fraction (1) which had previously been deasphalted with propane and extracted with furfural. Initial boiling point of the starting material wax: 390° C. Of this wax, 92.5 wt% boiled above 520° C. Oil content of the starting material wax: 6 wt$. Viscosity index of the oil obtained after the starting material wax had been deoiled: 1^9. Sulfur content in the starting material wax: 20 ppmv. ;STARTING MATERIAL V (wax from hydrocracked crude wax from clear cylinder oil). ;Wax obtained by dewaxing a residual fraction of a hydrocracked product which had been produced by hydrocracking wax obtained by dewaxing a residual lubricating oil fraction (1) which had previously been deasphalted with propane and extracted with furfural. Initial boiling point of starting material: 520° C. Oil content in the starting material wax: 7 wt. Viscosity index of the oil obtained after the starting material wax had been deoiled: 150. Sulfur content in the starting material wax: 20 ppmv. ;STARTING MATERIAL VI (wax from mild hydrocracked DA0) ;Wax obtained by dewaxing a residual fraction of a hydro-cracked product which had been produced by mild hydrocracking (25% by weight of the hydrocracked product -boiled below the initial boiling point of the starting material) of a residual - lubricating oil fraction (1); which had previously been deasphalted with propane. Initial boiling point of the starting material wax: 520 C. 01je content in the starting material wax: 21 wt. Viscosity index of the oil obtained after the starting material wax had been deoiled: 95" Sulfur content in the starting material wax: 500 ppmv. The six residual lubricating oil fractions (1) from which the starting material waxes I-VI had been prepared were obtained as a residue by distillation under reduced pressure of distillation residues at atmospheric pressure of paraffinic crude oils. The dewaxing was carried out by cooling the oils to a temperature of -30°C in the presence of a 1:1 mixture of methyl ethyl ketone and toluene. The viscosity indices stated in this description were determined according to ASTM standard D 2270. The hydrocracking experiments 1-26 were carried out under the following conditions: pressure: 150 bar, except in experiment 7, this experiment was carried out at a pressure of 50 bar. ;temperature: 375-¥10° C. ;space velocity: 1 1.1 "'"hour-"'" ;hydrogen/starting material ratio: 2000 NI.I<-1>;catalyst layer: 100 ml ;The catalysts were used in sulphide form . The sulphidation of the catalysts D-H was carried out by bringing them into contact with hydrogen and a sulfur-containing gas oil. During hydrocracking of starting materials IV-VI, butyl mercaptan was added to these starting materials in an amount sufficient to increase the total sulfur content of these starting materials to 2500 ppmv. Residual fractions with an initial boiling point between 365° and ¥+0° C were separated from the hydrocracked products by distillation. From the residual fractions, the corresponding lubricating oils were produced by dewaxing the fractions. The dewaxing was carried out by cooling the oil to a temperature of -30° C in the presence of a 1:1 mixture of methyl ethyl ketone and toluene. Experiments 1-26 shown in table A are all hydrocracking experiments according to the invention. Each of these tests yields more than 15% by weight, based on the starting material, of a lubricating oil with a dynamic viscosity of a maximum of 2h P at -17.8° C and a kinematic viscosity of at least 7.0 cSt at 98.9° C. The lubricating oils produced according to trials 1-11 as such satisfy the 10W/30 specification (dynamic viscosity at -17.8° C of at least 12 P and a maximum of 2h P and kinematic viscosity at 98.9° C of at least 9.6 cSt and a maximum 12.9 cSt) like this, i.e. without the incorporation of additives. An additive package was incorporated into the lubricating oils produced according to trials 12-23 which did not meet the 10W/30 specification and into the lubricating oils produced according to trials 8-11 which did not meet the lOW/30 specification. Two additive packages were used, respectively designated additive package A and B. These additive packages differed with regard to the chemical composition of the additives they contained, but both had essentially the same effect, with regard to anti-oxidation, rust inhibition, wear-reducing ability, corrosion inhibition, foam inhibition , metal passivation, improvement of the lubricating effect at high pressure and inhibition of deposits in the engine. Inhibition of additive package A in the lubricating oils produced a lubricating oil composition containing 92.5% by weight of the base oil and 7.5% by weight of the additive package. Incorporation of additive package B in the lubricating oil gave a lubricating oil composition containing 89.9% by weight of the base oil and 10.1% by weight of the additive package. The properties of the produced oil compositions are shown in table B. The results above in table B show that lubricating oils produced according to the invention which as such do not satisfy the 10W/30 specification (compare tests 12-23) can be formulated into lOW/30 oils on a simple way without the addition of the usual high-molecular viscosity improvers, by incorporating the additive package A or B. Incorporation of these additive packages into a lubricating oil produced according to the invention which as such satisfies the lOW/30 specification (compare trials 8-11) gave a lOW/30 better quality oil. In the method according to the invention, it is essential to use a fluorine-containing sulphide catalyst which contains nickel and/or cobalt and in addition molybdenum and/or tungsten on aluminum oxide as a carrier. Two hydrocracking experiments were carried out for the sake of comparison. In the first trial, a fluorine-free catalyst based on aluminum oxide was used, and in the second trial, a fluorine-containing catalyst based on silicon oxide/aluminium oxide. The two trials are described in detail in the following. COMPARATIVE EXPERIMENT 1 A Ni/Mo/P/A^O^ catalyst containing <*>+.2 parts by weight nickel, 17.7 parts by weight molybdenum and 3.1 parts by weight phosphorus per 100 parts by weight of aluminum oxide (catalyst D without fluorine) was used in the hydrocracking of starting material I under the same conditions as used in experiment 3, with the exception that in the present case the hydrocracking temperature was 1+ 1+5° C. The lubricating oil was worked up at the same manner as described in trial 3" Table C shows the results of comparative trial 1 and trial 3.

Resultatene vist i tabell C viser at den fluor-fri katalysator er uegnet for foreliggende formål. Ved en hydrocrackingtemperatur The results shown in Table C show that the fluorine-free catalyst is unsuitable for the present purpose. At a hydrocracking temp

på 39Lf-°C gir en fluor-holdig katalysator et. smoreoljeutbytte på at 39Lf-°C a fluorine-containing catalyst gives et. lubrication oil yield on

27 vekt#, ved en hydrocrackingtemperatur på ¥+5°C, ga den fluor- 27 wt#, at a hydrocracking temperature of ¥+5°C, it gave fluorine-

fri katalysator et smoreoljeutbytte på bare 12 vekt$ (bemerk at både hydrocrackingtemperatur på ¥+5°C og et smoreol jeutbytte på 12 vekt$ ligger utenfor oppfinnelsens ramme). free catalyst a fuel oil yield of only 12 wt$ (note that both a hydrocracking temperature of ¥+5°C and a fuel oil yield of 12 wt$ are outside the scope of the invention).

SAMMENLIGNENDE FORSOK 2 COMPARATIVE EXPERIMENT 2

En Ni/W/F/Si02-Al20 katalysator inneholdende 9 vekt# nikkel, 17 vektfo wolfram og 2,5 vekt$ fluor på en bærer som bestod av 26 vekt$ aluminiumoxyd, idet det gjenværende var siliciumoxyd, ble anvendt ved hydrocracking av et voks erholdt ved avvoksing av en rest smdreolje-fraksjon som var avasfaltert med propan (hvis viskositetsindekset A Ni/W/F/SiO2-Al20 catalyst containing 9 wt# of nickel, 17 wt% of tungsten and 2.5 wt% of fluorine on a support consisting of 26 wt% of aluminum oxide, the remainder being silicon oxide, was used in the hydrocracking of a wax obtained by dewaxing a residual lubricating oil fraction that was deasphalted with propane (if the viscosity index

til den avasfalterte olje etter avvoksing ved -19°C: 77). Rest smoreoljefraksjonen fra hvilken vokset (DAO råvoks) var fremstilt to the deasphalted oil after dewaxing at -19°C: 77). The remaining lubricating oil fraction from which the wax (DAO raw wax) was produced

var erholdt ved destillasjon under redusert trykk av en destillasjons-rest ved atmosfæretrykk av en nordafrikansk råolje. Avvoksing ble utfort ved avkjoling av oljen til en temperatur på -27°C i nærvær was obtained by distillation under reduced pressure of a distillation residue at atmospheric pressure of a North African crude oil. Dewaxing was carried out by cooling the oil to a temperature of -27°C in the presence

av en 1:1 blanding av methylethylketon og toluen. Hydrocracking av vokset fant sted under anvendelse av katalysatoren i sulfidform ved en temperatur på 350°C, et trykk på 50 bar, en romhastighet på kg.l 1.time 1 og et hydrogen/utgangsmaterialeforhold på 150 Nl/kg olje. En restfraksjon med et begynnelseskokepunkt på <L>f00°C ble fraskilt fra det hydrocrackede produkt ved destillasjon og avvokset ved avkjoling av oljen til en temperatur på -27°C i nærvær av en 1:1 blanding av methylethylketon og toluen. Således ble det erholdt en avvokset rest smoreoljefraksjon et utbytte på 20 vekt$, basert på utgangsmaterialet, med en viskositetsindeks på 100, kinematisk viskositet ved 98,9°C på 16,9 cSt og en dynamisk viskositet ved of a 1:1 mixture of methyl ethyl ketone and toluene. Hydrocracking of the wax took place using the catalyst in sulphide form at a temperature of 350°C, a pressure of 50 bar, a space velocity of kg.l 1.hour 1 and a hydrogen/starting material ratio of 150 Nl/kg oil. A residual fraction with an initial boiling point of <L>f00°C was separated from the hydrocracked product by distillation and dewaxed by cooling the oil to a temperature of -27°C in the presence of a 1:1 mixture of methyl ethyl ketone and toluene. Thus, a dewaxed residual lubricating oil fraction was obtained in a yield of 20% by weight, based on the starting material, with a viscosity index of 100, a kinematic viscosity at 98.9°C of 16.9 cSt and a dynamic viscosity at

-17,8°C i overkant av 200 P. -17.8°C in excess of 200 P.

Resultatene av dette forsok viser at en siliciumoxyd-aluminiumoxyd basert katalysator er uegnet for foreliggende formål. Viskositeten til denne resulterende smoreolje viser ingen likhet med en lOW/30 olje og det er umulig å fremstille en lOW/30 olje fra smoreoljen ved innarbeidelse av en additivpakke. The results of this experiment show that a silicon oxide-aluminium oxide based catalyst is unsuitable for the present purpose. The viscosity of this resulting lubricating oil shows no resemblance to a lOW/30 oil and it is impossible to produce a lOW/30 oil from the lubricating oil by incorporating an additive package.

Claims (2)

1. Fremgangsmåte ved fremstilling av en smøreolje med en dynamisk viskositet på maksimalt 24 P ved -17,8°C og en kinematisk viskositet på minst 7,0 cSt ved 98,9°C fra voks i et utbytte på mer enn 25 vekt%, ved hvilken fremgangsmåte voks omdannes ved hydrocracking ved en temperatur på mellom 360 og 425°C, et trykk på fra 10 til 250 bar, en romhastighet på 0,2 til 5 kg utgangsmateriale pr. liter katalysator pr. time og et hydrogen/utgangs-materialforhold på 100 til 5000 NI hydrogen pr. kg. utgangsmateriale, over en 0,5 - 7 vekt% fluorholdig sulfidkatalysator inneholdende 0,025 - 0,8 gramatomer nikkel og i tillegg 0,05 - 0,5 gramatomer molybden og/eller wolfram pr. 100 g aluminiumoxyd som bærer, under dannelse av et væskeprodukt, karakterisert ved at der anvendes et voks av hvilket mer enn 40 vekt% koker over 520°C, og som er erholdt ved avvoksning av en restmineraloljefraksjon (herefter betegnet som "utgangsmaterialvoks"), og hvor 25 - 95 vekt% av det angitte væskeprodukt består av komponenter med et kokepunkt over 400°C, og hvor reaksjonsproduktet derefter separeres ved destillasjon i én eller flere lette fraksjoner og en restfraksjon med et begynnelseskokepunkt mellom 350 og 470°C, fra hvilken den ønskede smøreolje fremstilles ved avvoksning.1. Process for the production of a lubricating oil with a dynamic viscosity of a maximum of 24 P at -17.8°C and a kinematic viscosity of at least 7.0 cSt at 98.9°C from wax in a yield of more than 25% by weight , in which process wax is converted by hydrocracking at a temperature of between 360 and 425°C, a pressure of from 10 to 250 bar, a space velocity of 0.2 to 5 kg of starting material per liter of catalyst per hour and a hydrogen/starting material ratio of 100 to 5000 NI hydrogen per kg. starting material, over a 0.5 - 7% by weight fluorine-containing sulphide catalyst containing 0.025 - 0.8 gram atoms of nickel and in addition 0.05 - 0.5 gram atoms of molybdenum and/or tungsten per 100 g of aluminum oxide as a carrier, during the formation of a liquid product, characterized in that a wax is used of which more than 40% by weight boils above 520°C, and which is obtained by dewaxing a residual mineral oil fraction (hereinafter referred to as "starting material wax"), and where 25 - 95% by weight of the specified liquid product consists of components with a boiling point above 400°C, and where the reaction product is then separated by distillation into one or more light fractions and a residual fraction with an initial boiling point between 350 and 470°C, from which the desired lubricating oil is produced by dewaxing. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at utgangsmaterialvokset omdannes ved hydrocracking til et væskeprodukt av hvilket 40 - 70 vekt% består av komponenter med et kokepunkt over 400°C, og hvor reaksjonsproduktet separeres ved destillasjon i én eller flere lette fraksjoner og en restfraksjon med et begynnelseskokepunkt mellom 390 og 4 50°C.2. Process according to claim 1, characterized in that the starting material wax is converted by hydrocracking into a liquid product of which 40 - 70% by weight consists of components with a boiling point above 400°C, and where the reaction product is separated by distillation into one or more light fractions and a residual fraction with an initial boiling point between 390 and 450°C.
NO1373/73A 1972-04-06 1973-04-04 PROCEDURE FOR PREPARING A LUBRICATION OIL BY HYDROCRACKING A WAX, DISTILLING AND DEWAXING THE RESIDUAL FRACTION NO139741C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NLAANVRAGE7204581,A NL171908C (en) 1972-04-06 1972-04-06 PROCESS FOR PREPARING A LUBRICATING OIL BY HYDRO-CONVERTING PARAFFINS.
NL7217257A NL172872C (en) 1972-12-19 1972-12-19 PROCESS FOR PREPARING A LUBRICATING OIL BY HYDROCRAFT OF PARAFFINS.

Publications (2)

Publication Number Publication Date
NO139741B true NO139741B (en) 1979-01-22
NO139741C NO139741C (en) 1979-05-02

Family

ID=26644758

Family Applications (1)

Application Number Title Priority Date Filing Date
NO1373/73A NO139741C (en) 1972-04-06 1973-04-04 PROCEDURE FOR PREPARING A LUBRICATION OIL BY HYDROCRACKING A WAX, DISTILLING AND DEWAXING THE RESIDUAL FRACTION

Country Status (12)

Country Link
US (1) US3830723A (en)
JP (1) JPS5717037B2 (en)
BE (1) BE797764A (en)
CA (1) CA1003778A (en)
DE (1) DE2316882C2 (en)
DK (1) DK140805B (en)
FI (1) FI55045C (en)
FR (1) FR2179113B1 (en)
GB (1) GB1429494A (en)
IT (1) IT983661B (en)
NO (1) NO139741C (en)
SE (1) SE396614B (en)

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2209827B1 (en) * 1972-12-08 1976-01-30 Inst Francais Du Petrole Fr
US3960705A (en) * 1974-03-21 1976-06-01 Mobil Oil Corporation Conversion of foots oil to lube base stocks
US4919788A (en) * 1984-12-21 1990-04-24 Mobil Oil Corporation Lubricant production process
AU603344B2 (en) * 1985-11-01 1990-11-15 Mobil Oil Corporation Two stage lubricant dewaxing process
US4975177A (en) * 1985-11-01 1990-12-04 Mobil Oil Corporation High viscosity index lubricants
US5059299A (en) * 1987-12-18 1991-10-22 Exxon Research And Engineering Company Method for isomerizing wax to lube base oils
US4959337A (en) * 1987-12-18 1990-09-25 Exxon Research And Engineering Company Wax isomerization catalyst and method for its production
US4943672A (en) * 1987-12-18 1990-07-24 Exxon Research And Engineering Company Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403)
US4937399A (en) * 1987-12-18 1990-06-26 Exxon Research And Engineering Company Method for isomerizing wax to lube base oils using a sized isomerization catalyst
US4900707A (en) * 1987-12-18 1990-02-13 Exxon Research And Engineering Company Method for producing a wax isomerization catalyst
US4929795A (en) * 1987-12-18 1990-05-29 Exxon Research And Engineering Company Method for isomerizing wax to lube base oils using an isomerization catalyst
FR2626005A1 (en) * 1988-01-14 1989-07-21 Shell Int Research PROCESS FOR PREPARING A BASIC LUBRICATING OIL
US4992159A (en) * 1988-12-16 1991-02-12 Exxon Research And Engineering Company Upgrading waxy distillates and raffinates by the process of hydrotreating and hydroisomerization
US4923588A (en) * 1988-12-16 1990-05-08 Exxon Research And Engineering Company Wax isomerization using small particle low fluoride content catalysts
US4906601A (en) * 1988-12-16 1990-03-06 Exxon Research And Engineering Company Small particle low fluoride content catalyst
US5358628A (en) * 1990-07-05 1994-10-25 Mobil Oil Corporation Production of high viscosity index lubricants
US5182248A (en) * 1991-05-10 1993-01-26 Exxon Research And Engineering Company High porosity, high surface area isomerization catalyst
US5427703A (en) * 1992-07-17 1995-06-27 Shell Oil Company Process for the preparation of polar lubricating base oils
US5643440A (en) * 1993-02-12 1997-07-01 Mobil Oil Corporation Production of high viscosity index lubricants
US6217747B1 (en) 1993-07-22 2001-04-17 Mobil Oil Corporation Process for selective wax hydrocracking
EP0712922B1 (en) 1994-11-16 2000-02-23 Shell Internationale Researchmaatschappij B.V. Process for improving lubricating base oil quality
AU688610B2 (en) * 1994-11-16 1998-03-12 Shell Internationale Research Maatschappij B.V. Process for improving lubricating base oil quality
US6296757B1 (en) 1995-10-17 2001-10-02 Exxon Research And Engineering Company Synthetic diesel fuel and process for its production
US5689031A (en) 1995-10-17 1997-11-18 Exxon Research & Engineering Company Synthetic diesel fuel and process for its production
US5766274A (en) 1997-02-07 1998-06-16 Exxon Research And Engineering Company Synthetic jet fuel and process for its production
US6475960B1 (en) 1998-09-04 2002-11-05 Exxonmobil Research And Engineering Co. Premium synthetic lubricants
US6165949A (en) * 1998-09-04 2000-12-26 Exxon Research And Engineering Company Premium wear resistant lubricant
JP4020782B2 (en) * 2000-11-03 2007-12-12 ブラス,サンフオード・ピー Methods for reducing emissions during asphalt manufacturing
US6824671B2 (en) 2001-05-17 2004-11-30 Exxonmobil Chemical Patents Inc. Low noack volatility poly α-olefins
TWI277649B (en) * 2001-06-07 2007-04-01 Shell Int Research Process to prepare a base oil from slack-wax
US7531594B2 (en) 2002-08-12 2009-05-12 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
US8003725B2 (en) 2002-08-12 2011-08-23 Exxonmobil Chemical Patents Inc. Plasticized hetero-phase polyolefin blends
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
AU2003272213A1 (en) 2002-08-12 2004-02-25 Exxonmobil Chemical Patents Inc. Plasticized polyolefin compositions
US7271209B2 (en) 2002-08-12 2007-09-18 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
BR0317133A (en) 2002-12-09 2005-10-25 Shell Int Research Process for preparing a lubricant
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
US8389615B2 (en) 2004-12-17 2013-03-05 Exxonmobil Chemical Patents Inc. Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin
GB0511320D0 (en) 2005-06-03 2005-07-13 Exxonmobil Chem Patents Inc Elastomeric structures
US7851418B2 (en) 2005-06-03 2010-12-14 Exxonmobil Research And Engineering Company Ashless detergents and formulated lubricating oil containing same
EP1904576B1 (en) 2005-07-15 2012-04-25 ExxonMobil Chemical Patents Inc. Elastomeric compositions
US20070093398A1 (en) 2005-10-21 2007-04-26 Habeeb Jacob J Two-stroke lubricating oils
US8299005B2 (en) 2006-05-09 2012-10-30 Exxonmobil Research And Engineering Company Lubricating oil composition
US7863229B2 (en) 2006-06-23 2011-01-04 Exxonmobil Research And Engineering Company Lubricating compositions
US7745544B2 (en) 2006-11-30 2010-06-29 Exxonmobil Chemical Patents Inc. Catalytic epoxidation and hydroxylation of olefin/diene copolymers
US7615589B2 (en) 2007-02-02 2009-11-10 Exxonmobil Chemical Patents Inc. Properties of peroxide-cured elastomer compositions
EP2390279A1 (en) 2009-12-17 2011-11-30 ExxonMobil Chemical Patents Inc. Polypropylene composition with plasticiser for sterilisable films
US20140042056A1 (en) * 2012-08-10 2014-02-13 Exxonmobil Research And Engineering Company Co-production of heavy and light base oils
US20140194333A1 (en) 2013-01-04 2014-07-10 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US20150099675A1 (en) 2013-10-03 2015-04-09 Exxonmobil Research And Engineering Company Compositions with improved varnish control properties
US20150175923A1 (en) 2013-12-23 2015-06-25 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
SG11201603480VA (en) 2013-12-23 2016-05-30 Exxonmobil Res & Eng Co Method for improving engine fuel efficiency
US9885004B2 (en) 2013-12-23 2018-02-06 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US10190072B2 (en) 2013-12-23 2019-01-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US9506008B2 (en) 2013-12-23 2016-11-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US20150175924A1 (en) 2013-12-23 2015-06-25 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US9896634B2 (en) 2014-05-08 2018-02-20 Exxonmobil Research And Engineering Company Method for preventing or reducing engine knock and pre-ignition
US10519394B2 (en) 2014-05-09 2019-12-31 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness
US20150322368A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
US20150322367A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
US20150322369A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
US9506009B2 (en) 2014-05-29 2016-11-29 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US9944877B2 (en) 2014-09-17 2018-04-17 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2016073149A1 (en) 2014-11-03 2016-05-12 Exxonmobil Research And Engineering Company Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof
WO2016106214A1 (en) 2014-12-24 2016-06-30 Exxonmobil Research And Engineering Company Methods for determining condition and quality of petroleum products
SG11201702851YA (en) 2014-12-24 2017-07-28 Exxonmobil Res & Eng Co Methods for authentication and identification of petroleum products
US10781397B2 (en) 2014-12-30 2020-09-22 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
SG11201704101UA (en) 2014-12-30 2017-07-28 Exxonmobil Res & Eng Co Lubricating oil compositions with engine wear protection
EP3240877A1 (en) 2014-12-30 2017-11-08 ExxonMobil Research and Engineering Company Lubricating oil compositions containing encapsulated microscale particles
EP3240879A1 (en) 2014-12-30 2017-11-08 ExxonMobil Research and Engineering Company Lubricating oil compositions with engine wear protection
US9926509B2 (en) 2015-01-19 2018-03-27 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection and solubility
US10119093B2 (en) 2015-05-28 2018-11-06 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
WO2017007670A1 (en) 2015-07-07 2017-01-12 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
US10947464B2 (en) 2015-12-28 2021-03-16 Exxonmobil Research And Engineering Company Integrated resid deasphalting and gasification
US10590360B2 (en) 2015-12-28 2020-03-17 Exxonmobil Research And Engineering Company Bright stock production from deasphalted oil
US9951290B2 (en) 2016-03-31 2018-04-24 Exxonmobil Research And Engineering Company Lubricant compositions
US20180037841A1 (en) 2016-08-03 2018-02-08 Exxonmobil Research And Engineering Company Lubricating engine oil for improved wear protection and fuel efficiency
SG10201914108RA (en) 2016-08-05 2020-02-27 Rutgers The State University Of New Jersey Thermocleavable friction modifiers and methods thereof
US20180100120A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Method for preventing or minimizing electrostatic discharge and dielectric breakdown in electric vehicle powertrains
US20180100115A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company High conductivity lubricating oils for electric and hybrid vehicles
US20180100118A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Method for controlling electrical conductivity of lubricating oils in electric vehicle powertrains
WO2018118477A1 (en) 2016-12-19 2018-06-28 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition compression spark ignition engines
US10647936B2 (en) 2016-12-30 2020-05-12 Exxonmobil Research And Engineering Company Method for improving lubricant antifoaming performance and filterability
JP2020503412A (en) 2016-12-30 2020-01-30 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Low viscosity lubricating oil composition for turbomachinery
WO2018144167A1 (en) 2017-02-01 2018-08-09 Exxonmobil Research And Engineering Company Lubricating engine oil and method for improving engine fuel efficiency
WO2018144301A1 (en) 2017-02-06 2018-08-09 Exxonmobil Chemical Patents Inc. Low transition temperature mixtures and lubricating oils containing the same
US10793801B2 (en) 2017-02-06 2020-10-06 Exxonmobil Chemical Patents Inc. Low transition temperature mixtures and lubricating oils containing the same
SG11201906384UA (en) 2017-02-21 2019-09-27 Exxonmobil Res & Eng Co Lubricating oil compositions and methods of use thereof
US10738258B2 (en) 2017-03-24 2020-08-11 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency and energy efficiency
US20190016984A1 (en) 2017-07-13 2019-01-17 Exxonmobil Research And Engineering Company Continuous process for the manufacture of grease
US20190031975A1 (en) 2017-07-21 2019-01-31 Exxonmobil Research And Engineering Company Method for improving deposit control and cleanliness performance in an engine lubricated with a lubricating oil
KR102504661B1 (en) * 2017-08-18 2023-02-27 차이나 페트로리움 앤드 케미컬 코포레이션 Catalyst for producing light aromatics with heavy aromatics, method for preparing the catalyst, and use thereof
US20190062668A1 (en) 2017-08-25 2019-02-28 Exxonmobil Research And Engineering Company Ashless engine lubricants for high temperature applications
WO2019040576A1 (en) 2017-08-25 2019-02-28 Exxonmobil Research And Engineering Company Ashless engine lubricants for high temperature applications
US20190085256A1 (en) 2017-09-18 2019-03-21 Exxonmobil Research And Engineering Company Hydraulic oil compositions with improved hydrolytic and thermo-oxidative stability
US20190093040A1 (en) 2017-09-22 2019-03-28 Exxonmobil Research And Engineering Company Lubricating oil compositions with viscosity and deposit control
US20190127655A1 (en) 2017-10-30 2019-05-02 Exxonmobil Research And Engineering Company Lubricating oil compositions having improved cleanliness and wear performance
US20190136147A1 (en) 2017-11-03 2019-05-09 Exxonmobil Research And Engineering Company Lubricant compositions with improved performance and methods of preparing and using the same
WO2019094019A1 (en) 2017-11-09 2019-05-16 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness
WO2019103808A1 (en) 2017-11-22 2019-05-31 Exxonmobil Research And Engineering Company Lubricating oil compositions with oxidative stability in diesel engines
US20190169524A1 (en) 2017-12-04 2019-06-06 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
WO2019118115A1 (en) 2017-12-15 2019-06-20 Exxonmobil Research And Engineering Company Lubricating oil compositions containing microencapsulated additives
US20190203138A1 (en) 2017-12-28 2019-07-04 Exxonmobil Research And Engineering Company Phase change materials for enhanced heat transfer fluid performance
WO2019133255A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Grease compositions with improved performance comprising thixotropic polyamide, and methods of preparing and using the same
US20190203142A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Lubricating oil compositions with wear and sludge control
US20190203144A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Lubrication of oxygenated diamond-like carbon surfaces
US20190345407A1 (en) 2018-05-11 2019-11-14 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2019240965A1 (en) 2018-06-11 2019-12-19 Exxonmobil Research And Engineering Company Non-zinc-based antiwear compositions, hydraulic oil compositions, and methods of using the same
US20190382680A1 (en) 2018-06-18 2019-12-19 Exxonmobil Research And Engineering Company Formulation approach to extend the high temperature performance of lithium complex greases
US20200024538A1 (en) 2018-07-23 2020-01-23 Exxonmobil Research And Engineering Company Lubricating oil compositions with oxidative stability in diesel engines using biodiesel fuel
WO2020023437A1 (en) 2018-07-24 2020-01-30 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine corrosion protection
US20200102519A1 (en) 2018-09-27 2020-04-02 Exxonmobil Research And Engineering Company Low viscosity lubricating oils with improved oxidative stability and traction performance
US20200140775A1 (en) 2018-11-05 2020-05-07 Exxonmobil Research And Engineering Company Lubricating oil compositions having improved cleanliness and wear performance
WO2020112338A1 (en) 2018-11-28 2020-06-04 Exxonmobil Research And Engineering Company Lubricating oil compositions with improved deposit resistance and methods thereof
US20200181525A1 (en) 2018-12-10 2020-06-11 Exxonmobil Research And Engineering Company Method for improving oxidation and deposit resistance of lubricating oils
US20200199477A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Method for improving high temperature antifoaming performance of a lubricating oil
WO2020131439A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having polyurea thickeners made with isocyanate terminated prepolymers
WO2020131515A2 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricant compositions with improved wear control
US20200199480A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricating oil compositions with antioxidant formation and dissipation control
WO2020131441A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having improved performance
WO2020131440A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having calcium sulfonate and polyurea thickeners
US20200199483A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricating oil compositions with viscosity control
WO2020176171A1 (en) 2019-02-28 2020-09-03 Exxonmobil Research And Engineering Company Low viscosity gear oil compositions for electric and hybrid vehicles
CA3131107A1 (en) 2019-03-20 2020-09-24 Michael Hoey Lubricant composition
WO2020257374A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257371A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257373A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257375A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
US10712105B1 (en) 2019-06-19 2020-07-14 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257379A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257377A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257376A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257378A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257370A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020264534A2 (en) 2019-06-27 2020-12-30 Exxonmobil Research And Engineering Company Method for reducing solubilized copper levels in wind turbine gear oils
US11976251B2 (en) 2019-12-18 2024-05-07 ExxonMobil Technology and Engineering Company Method for controlling lubrication of a rotary shaft seal
US20230166635A1 (en) 2020-03-27 2023-06-01 ExxonMobil Technology and Engineering Company Monitoring health of heat transfer fluids for electric systems
US11760952B2 (en) 2021-01-12 2023-09-19 Ingevity South Carolina, Llc Lubricant thickener systems from modified tall oil fatty acids, lubricating compositions, and associated methods
CN113234480B (en) * 2021-05-25 2022-06-17 山东交通学院 Method for converting waste engine oil residues into asphalt

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3046218A (en) * 1959-08-10 1962-07-24 Gulf Research Development Co Process for preparing an improved lubricating oil
BE639054A (en) * 1963-10-09
US3365390A (en) * 1966-08-23 1968-01-23 Chevron Res Lubricating oil production

Also Published As

Publication number Publication date
JPS5717037B2 (en) 1982-04-08
GB1429494A (en) 1976-03-24
DE2316882C2 (en) 1984-10-11
BE797764A (en) 1973-10-04
CA1003778A (en) 1977-01-18
US3830723A (en) 1974-08-20
FI55045B (en) 1979-01-31
DK140805C (en) 1980-05-05
JPS4917403A (en) 1974-02-15
DE2316882A1 (en) 1973-10-11
SE396614B (en) 1977-09-26
FI55045C (en) 1979-05-10
IT983661B (en) 1974-11-11
FR2179113B1 (en) 1976-05-07
FR2179113A1 (en) 1973-11-16
DK140805B (en) 1979-11-19
NO139741C (en) 1979-05-02

Similar Documents

Publication Publication Date Title
NO139741B (en) PROCEDURE FOR PREPARING A LUBRICATION OIL BY HYDROCRACKING A WAX, DISTILLING AND DEWAXING THE RESIDUAL FRACTION
RU2671862C2 (en) Process for preparing heavy base oil
CN108699469B (en) Mineral base oil and lubricating oil composition
EA000850B1 (en) Base stock lube oil manufacturing process
CN85107475A (en) Lubricant base preparation method and the base oil of producing by this method
EP0590673A1 (en) Process for producing low viscosity lubricating base oil having high viscosity index
US3929616A (en) Manufacture of lubricating oils
CN101768470B (en) Method for preparing bright stock
US3912618A (en) Oil treatment process
CA1185962A (en) Lubricating base oil compositions
US5021142A (en) Turbine oil production
US5098551A (en) Process for the manufacture of lubricating base oils
RU2675852C1 (en) Method of obtaining high-index components of base oils of group iii/iii+
US2904505A (en) Mild hydrogenation process for lubricating oils
US3663422A (en) Process for the production of very high vi lubricating oils by hydrotreating
CA1093490A (en) Process for the production of lubricating oils from sulfur-containing petroleum stocks
GB2059433A (en) Mineral oils
US5271825A (en) Turbine oil production
US3652448A (en) Production of improved lubricating oils
US3481863A (en) Refining high sulfur lubricating oil charge stocks
EP0134637B1 (en) Viscosity index improvement in dewaxed lube basestock by partial desulfurization in hydrotreat bed
CN115895771A (en) Process for making high quality lube base stock using refined oil fractions of spent lubricants
TW202235597A (en) Process having improved base oil yield
CN108165308A (en) Preparation method of aviation hydraulic oil base oil
EP0183364A1 (en) Process for producing stabilizing hydroprocessed lubricating oil stocks by the addition of hydrogen sulfide