NO137991B - PROCEDURES FOR THE TRANSPORT OF LIQUID GAS AND FACILITIES FOR THE CONSTRUCTION OF PROCEDURES - Google Patents

PROCEDURES FOR THE TRANSPORT OF LIQUID GAS AND FACILITIES FOR THE CONSTRUCTION OF PROCEDURES Download PDF

Info

Publication number
NO137991B
NO137991B NO2164/73A NO216473A NO137991B NO 137991 B NO137991 B NO 137991B NO 2164/73 A NO2164/73 A NO 2164/73A NO 216473 A NO216473 A NO 216473A NO 137991 B NO137991 B NO 137991B
Authority
NO
Norway
Prior art keywords
gas
partial flow
line
heat exchanger
transport
Prior art date
Application number
NO2164/73A
Other languages
Norwegian (no)
Other versions
NO137991C (en
Inventor
Michael Lorenz
Original Assignee
Sulzer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2225882A external-priority patent/DE2225882B2/en
Priority claimed from DE2228382A external-priority patent/DE2228382A1/en
Priority claimed from DE2230263A external-priority patent/DE2230263A1/en
Application filed by Sulzer Ag filed Critical Sulzer Ag
Publication of NO137991B publication Critical patent/NO137991B/en
Publication of NO137991C publication Critical patent/NO137991C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0247Different modes, i.e. 'runs', of operation; Process control start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways

Description

Oppfinnelsen vedrører en fremgangsmåte for transport av kondenserte, flytende gasser i minst én isolert beholder anordnet på The invention relates to a method for transporting condensed, liquid gases in at least one insulated container arranged on

et transportmiddel, hvilken beholder inneholder den flytende gass ved en tilsvarende lav temperatux og i det vesentlige ved normale trykk, og hvor gassen som oppstår ved fordampning, anvendes som energikilde for drift av skipet ved at gassen tilføres en for-brenningsanordning. a means of transport, which container contains the liquefied gas at a correspondingly low temperature and essentially at normal pressures, and where the gas produced by evaporation is used as an energy source for operating the ship by supplying the gas to a combustion device.

Oppfinnelsen vedrører dessuten et anlegg for utførelse av The invention also relates to a facility for carrying out

fremgangsmåten. the procedure.

Ved transport av kondensert jordgass, methan eller andre lignende lavtkokende materialer kan det til tross for god isoler- When transporting condensed natural gas, methane or other similar low-boiling materials, despite good insulation,

ing av transportbeholderen ikke hindres at det fra utsiden av beholderen stadig trenger varme inn i denne, hvorved den konden- ing the transport container does not prevent heat from constantly penetrating into it from the outside of the container, whereby it condenses

serte gass fordamper. Innen teknikkens stand bestreber man seg på å holde det økonomiske tap som oppstår ved fordampning av lasten, serte gas vaporizer. Within the state of the art, efforts are made to keep the financial loss that occurs when the cargo evaporates,

så lavt som mulig. Dette gjelder spesielt for sjøtransport av flytende gasser. Ved denne transport blir den gass som oppstår ved fordampning, oppsamlet og anvendt som energikilde for skipets drift. as low as possible. This applies in particular to sea transport of liquefied gases. During this transport, the gas produced by evaporation is collected and used as an energy source for the ship's operation.

Av de grunner som forklares i det efter.følgende, er de til For the reasons explained below, they exist

nu anvendte fremgangsmåter med hensyn til resultat ikke tilfreds-stillende. Til tross for den utvendige isolering som vanligvis lastetankene til tankskip for flytende gass er utstyrt med, ligger fordampningstapet, avhengig av skipets størrelse, i området 0,20-0,35% av den totale mengde pr„ dag. For en idag vanlig skips-størrelse som har et lastevolum på 125.000 m"<*> flytende jordgass, utgjør det gjennomsnittlige daglige lastetap ved fordampning ca. now applied methods with regard to results not satisfactory. Despite the external insulation with which the cargo tanks of liquid gas tankers are usually equipped, the evaporation loss, depending on the size of the ship, is in the range of 0.20-0.35% of the total amount per day. For a ship of today's usual size that has a cargo volume of 125,000 m"<*> liquefied natural gas, the average daily cargo loss due to evaporation amounts to approx.

3 3 3 3

300 m flytende gass, tilsvarende 178.000 Nm gass pr. dag. Ifølge en til nu i praksis eneste utnyttede fremgangsmåte blir denne gassmengde, som utgjør et uunngåelig lastetap, tilført som brennstoff 300 m liquid gas, equivalent to 178,000 Nm of gas per day. According to a method that is currently the only one used in practice, this quantity of gas, which constitutes an unavoidable load loss, is supplied as fuel

til skipets hoveddriftsanlegg. For dette er det nødvendig å to the ship's main operating facility. For this it is necessary to

suge gass ut av tankene ,kaiprimere denne og oppvarme denne i det minste til omgivelsestemperaturen. Det fordampningstap som.er angitt i talleksemplet ovenfor, tilsvarer ved forbrenning av gassene i et moderne skipskjeleanlegg en effekt på 29.700 aksel-HK. Da ifølge klassifikasjonsforskriftene gass alene ikke kan benyttes som brennstoff og den maksimale andel kun får utgjøre 85-90% av drivstoffet, må et slikt skip idag utstyres med et fremdrifts-anlegg på minst 33.000 akselhestekrefter. suck gas out of the tanks, prime it and heat it to at least the ambient temperature. The evaporation loss which is stated in the numerical example above corresponds to an effect of 29,700 shaft HP when burning the gases in a modern ship's boiler plant. Since, according to the classification regulations, gas alone cannot be used as fuel and the maximum proportion may only be 85-90% of the fuel, such a ship today must be equipped with a propulsion system of at least 33,000 axle horsepower.

Det uunngåelige fordampningstap betyr ytterligere en for-minskning av det i virkeligheten tilgjengelige transportrom, da det må tas hensyn til fordampningstapet under overfarten. Til dette kommer at under tomtransport må det stå igjen en viss mengde flytende gass i lastetankene for at tankene hele tiden skal holdes ved den forutsatte lave temperatur, hvorved det oppstår en ytterligere nedsettelse av nyttevolumet. På grunn av denne nedsettelse av transportrommet og på grunn av den høye pris for den flytende gass som transporteres, er den inntil nu.anvendte løsning, hvorved fordampningstapet anvendes for oppvarming av skipskjelen eller lignende, økonomisk fullstendig irtilfredsstillende. The inevitable evaporation loss means a further reduction of the actually available transport space, as the evaporation loss during the crossing must be taken into account. Added to this is that during empty transport a certain amount of liquid gas must remain in the cargo tanks in order for the tanks to be kept at the assumed low temperature at all times, which results in a further reduction of the useful volume. Because of this reduction in the transport space and because of the high price for the liquefied gas that is transported, the solution used until now, whereby the evaporation loss is used for heating the ship's boiler or the like, is economically completely unsatisfactory.

Anvendelse av vanlige kondensasjonsfremgangsmåter og -anlegg er inntil nu ikke blitt anvendt da slike, kjente fremgangsmåter og anordninger kun kan realiseres ved meget store investeringer, samt i drift'krever store energimengder. Application of normal condensation methods and systems has not been used until now, as such known methods and devices can only be realized with very large investments, and in operation require large amounts of energy.

Til løsning av den oppgave å redusere fordampningstap går oppfinnelsen ut på en fremgangsmåte ved transport av flytende gass i minst én isolert beholder som er anordnet på et transportmiddel og som inneholder den flytende gass ved en tilsvarende lav temperatur og ved et i det vesentlige normalt trykk, hvor gass som dannes ved fordampning, fanges opp og tilføres til en forbrennings-prosess for å virke som energikilde for drift av transportmidlet, og hvor den oppfangede gass deles i to delstrømmer, og fremgangsmåten er særpreget ved at den første delstrøm komprimeres for seg og derefter under avkjøling og kondensering overfører varme til den annen delstrøm som skal tilføres til forbrenningsprosessen, og at i den første delstrøm på ny kondensert gass tilbakeføres til den isolerte beholder efter trykkavlastning. To solve the task of reducing evaporation losses, the invention is based on a method for transporting liquefied gas in at least one insulated container which is arranged on a means of transport and which contains the liquefied gas at a correspondingly low temperature and at an essentially normal pressure, where gas formed by evaporation is captured and supplied to a combustion process to act as an energy source for operating the means of transport, and where the captured gas is divided into two sub-streams, and the method is characterized by the fact that the first sub-stream is compressed separately and then during cooling and condensation, heat transfers to the second sub-flow to be supplied to the combustion process, and that in the first sub-flow, newly condensed gas is returned to the insulated container after pressure relief.

Grunntanken ved oppfinnelsen består derfor i at den ved fordampning oppståtte gass deles i -to delstrømmer hvor den mindre, nødvendige energi for -kompresjon av den ene delstrøm tjener til oppvarming av den annen delstrøm, hvorved varmeavgivelsen holdes The basic idea of the invention is therefore that the gas produced by evaporation is divided into -two sub-flows, where the smaller, necessary energy for -compression of one sub-flow serves to heat the other sub-flow, whereby the heat release is maintained

slik at en fornyet kondensering av den tidligere komprimerte del-strøm 'erholdes. so that a renewed condensation of the previously compressed partial flow is obtained.

I motsetning til de kjente fremgangsmåter, hvor den ved fordampning oppståtte.og til kjelen tilførte gass først komprimeres og derefter oppvarmes, hvor det til begge prosesser er nødvendig med ytterligere energitilførsel, blir ifølge oppfinnelsen den delstrøm som skal anvendes i fremdriftsanlegget, først oppvarmet ved den energi som tilføres for komprimering av den delstrøm som på ny skal kondenseres, hvorefter den oppvarmede delstrøm komprimeres . In contrast to the known methods, where the gas produced by evaporation and supplied to the boiler is first compressed and then heated, where additional energy input is required for both processes, according to the invention the partial flow to be used in the propulsion system is first heated by the energy that is supplied for compression of the partial flow that is to be condensed again, after which the heated partial flow is compressed.

for den videre anvendelse. Det erholdes derved en spesielt gunstig for further use. A particularly favorable result is thereby obtained

utnyttelse av energien, hvor samtidig det effektive fordampnings- utilization of the energy, where at the same time the effective evaporation

tap forminskes betydelig. losses are significantly reduced.

Den annen delstrøm kan ytterligere anvendes for avkjøling The other partial flow can further be used for cooling

av den tilbakeførte første delstrøm til et lavere temperaturområde for den første delstrøm. of the returned first partial flow to a lower temperature range for the first partial flow.

Den totale gassmengde som oppstår ved fordampning, kan i et The total amount of gas that occurs during evaporation can in a

ved tilbakekondenseringen styrt forhold deles i de to delstrømmer. the ratio controlled by the back condensation is divided into the two sub-flows.

Oppfinnelsen angår ytterligere en i det vesentlige adiabatisk kompresjon av den delstrøm som skal kondenseres, under anvendelse av energi som avledes fra driften av transportmidlet eller fra et hjelpedriftsanlegg. The invention further relates to an essentially adiabatic compression of the partial flow to be condensed, using energy derived from the operation of the means of transport or from an auxiliary operation facility.

Ytterligere er det forutsett at den delstrøm som tilføres fremdriftsanlegget for transportmidlet,komprimeres . efter åt denne del-strøm er blitt oppvarmet av den delstrøm som skal tilbakekondenseres. Furthermore, it is assumed that the partial flow supplied to the propulsion system for the means of transport is compressed. according to this sub-stream has been heated by the sub-stream to be recondensed.

Den tilbakeførende og den for forbrenning avsatte delstrøm The recirculation and the partial flow set aside for combustion

kan for varmeutveksling føres i motstrøm. can be run in countercurrent for heat exchange.

Den påny forvæskede gass kan underkastes en efteravkjøling. The re-liquefied gas can be subjected to post-cooling.

For ytterligere å forbedre virkningsgraden blir ifølge en modifisert fremgangsmåte den totale oppsamlede gassmengde, før opp-deling i de to delstrømmer, anvendt for avkjøling av den delstrøm som skal tilbakeføres. Den delstrøm som føres til kompressoren, har altså en høyere temperatur enn ved den først beskrevne fremgangsmåte. Denne utførelsesform har den fordel at apparatur-størrelsen kan forminskes. Det kan anvendes en enklere og billigere kompressor for den delstrøm som skal tilbakeføres til beholderen, og samtidig kan anvendes en mindre varmeutveksler. In order to further improve the efficiency, according to a modified method, the total collected amount of gas, before splitting into the two sub-flows, is used for cooling the sub-flow to be returned. The partial flow that is fed to the compressor therefore has a higher temperature than in the first described method. This embodiment has the advantage that the size of the apparatus can be reduced. A simpler and cheaper compressor can be used for the partial flow to be returned to the container, and at the same time a smaller heat exchanger can be used.

Ved siden av anvendelse av en billigere anordning blir ved den modifiserte fremgangsmåte energien bedre utnyttet, slik at det oppnås en bedre økonomi. Det kan i kompxessoren for den delstrøm som skal tilbakeføres,arbeides med en inngangstemperatur som ligger ca. 40°C høyere enn ved den--første fremgangsmåte. In addition to using a cheaper device, the modified method makes better use of the energy, so that a better economy is achieved. In the compressor for the partial flow to be returned, work can be done with an input temperature of approx. 40°C higher than in the first method.

Spesielt blir det hverved avkjølt med den i det lave temperaturområde oppsamlede gass, og den for forbrenningen tilførte gass anvendes for avkjøling av den i det høyere temperaturområde gjennom kompressoren førte og til beholderen tilbakeledede del-strøm. In particular, the gas collected in the low temperature range is thereby cooled, and the gas supplied for combustion is used to cool the sub-flow which in the higher temperature range is led through the compressor and returned to the container.

Delstrømmen fra den oppsamlede gass som skal føres til forbrenningen, avledes i et temperaturområde som i det vesentlige tilsvarer kondensasjonstemperaturen. The partial flow from the collected gas to be fed to the combustion is diverted in a temperature range which essentially corresponds to the condensation temperature.

Den oppfinneriske fremgangsmåte lar seg styre forholdsvis lett og enkelt. Delstrømmenes forhold til hverandre svinger ved normal drift kun innen snevre grenser. For styring tjener i første rekke en ved avgreningspunktet for grenledningen anordnet styrt treveisventil som styres av kondensasjonstrykket. The inventive method can be controlled relatively easily and simply. The ratio of the partial currents to each other fluctuates during normal operation only within narrow limits. For control, a controlled three-way valve arranged at the branching point of the branch line, which is controlled by the condensation pressure, serves primarily.

Oppfinnelsen angår også et anlegg for transport av flytende gass, . omfattende minst én isolert beholder for flytende gass anordnet på et transportmiddel og en ledning som fører fra den isolerte beholders gassrom for bortledning av gassen og som er delt i to gre.nledninger, og anlegget er særpreget ved at den første av de to grenledninger via en kompressor fører til en varme-veksleranordning forsynt med en efterkjøler og hvori komprimert gass befinner seg i varmevekslerforhold til gass som strømmer gjennom den annen grenledning, og at varmeveksleranordningen står i forbindelse med et trykkavlastningsorgan som gass som strømmer The invention also relates to a facility for the transport of liquefied gas, . comprising at least one insulated container for liquefied gas arranged on a means of transport and a line leading from the insulated container's gas space for the removal of the gas and which is divided into two branch lines, and the facility is characterized by the fact that the first of the two branch lines via a compressor leads to a heat exchanger device provided with an aftercooler and in which compressed gas is in a heat exchange relationship with gas flowing through the other branch line, and that the heat exchanger device is in connection with a pressure relief device such as gas flowing

i den første grenledning strømmer gjennom og til den isolerte beholder efter at den er blitt avkjølt i varmeveksleranordningen. in the first branch line flows through and to the insulated container after it has been cooled in the heat exchanger device.

Ytterligere fordeler og særpreg ved oppfinnelsen fremgår av kravene såvel.som av. den etterfølgende beskrivelse og tegninger, Further advantages and distinctive features of the invention appear from the claims as well as from the subsequent description and drawings,

i hvilke utførelseseksempler viser og belyser oppfinnelsen. Disse viser: Fig. 1 forenklet, et skip med et anlegg ifølge oppfinnelsen, in which embodiment examples show and illustrate the invention. These show: Fig. 1 simplified, a ship with a facility according to the invention,

Fig. 2 et skjema over en kjent anordning, Fig. 2 a diagram of a known device,

Fig. 3 et skjema over et anlegg ifølge oppfinnelsen, Fig. 3 a diagram of a plant according to the invention,

Fig. 4 en grafisk fremstilling av den oppfinneriske frem gangsmåte, Fig. 5 et skjema over et modifisert anlegg ifølge oppfinnelsen. Fig. 4 a graphic representation of the inventive step way of walking, Fig. 5 a diagram of a modified plant according to the invention.

Fig. 1 viser et skip 10 med et anlegg ifølge oppfinnelsen. Fig. 1 shows a ship 10 with a facility according to the invention.

I skipet er anordnet et flertall isolerte beholdere 12, 14 etc. A plurality of insulated containers 12, 14 etc. are arranged in the ship.

som eksempelvis kan ha kuleform. Andre former er også mulige og vanlige. which can, for example, be spherical. Other forms are also possible and common.

Isoleringen av isolasjonsbeholderne utfores på kjent måte slik at fordampningstapet som oppstår som folge av innvirkning av varme fra luften og vannet, med okonomisk forenelige omkostninger holdes så lavt som mulig. Den gass som allikevel oppstår ved fordampning av den flytende gass, oppsamles i en rorledning 18 som via tilkoblin-gene 18a, 18b etc. -er forbundet med de isolerte beholdere 12, 14 etc, og tilfores skipets Jfremdriftsanordning 16. Ifolge oppfinnelsen er angitt en tilbakekondensasjonsanordning 20 til hvilken rorledningen 18 er innfort, og fra hvilken på den annen side en rorledning 24 forer til skipets fremdriftsanordning 16 eller lignende anordning, i hvilken gassen forbrennes for utvinning av varmeenergi. På den annen si-de forer en rorledning 22 fra anordningen 20 tilbake til beholderne 12 og 14 via tilknytningsrørledningene 22a og 22b, gjennom hvilke den påny kondenserte gass tilbakefores i beholderne. For et antall beholdere er det ikke nodvendig at samtlige beholdere er tilknyttet tilbakeforingsledningen 22. Det er tilstrekkelig, da kun en del av den ved fordampning oppståtte gass igjen overfores til væskeform, å anordne tilslutninger for en tilsvarende, maksimal tilbakeforingsvæ-skestrom. The insulation of the insulation containers is carried out in a known manner so that the evaporation loss that occurs as a result of the impact of heat from the air and the water, with economically compatible costs, is kept as low as possible. The gas that nevertheless occurs when the liquid gas evaporates is collected in a rudder line 18 which is connected via the connections 18a, 18b etc. to the insulated containers 12, 14 etc., and is supplied to the ship's propulsion device 16. According to the invention, a return condensation device 20 to which the rudder line 18 is inserted, and from which, on the other hand, a rudder line 24 leads to the ship's propulsion device 16 or similar device, in which the gas is burned to extract heat energy. On the other hand, a pipeline 22 leads from the device 20 back to the containers 12 and 14 via the connection pipelines 22a and 22b, through which the newly condensed gas is fed back into the containers. For a number of containers, it is not necessary for all containers to be connected to the return line 22. It is sufficient, since only part of the gas produced by evaporation is again transferred to liquid form, to arrange connections for a corresponding, maximum return liquid flow.

For å tydeliggjore de fremskritt som kan oppnåes ifolge oppfinnelsen,er i fig. 2 vist en anordning ifolge teknikkens stand, med hvilken inntil nu den gass som oppstår ved fordampning av den flytende gass tilfores en anordning for forbrenning. Ved denne kjente anordning blir den avgående gass fort med en rorledning lOO fra beholderen til en kompressor 102 hvis utlbp er forbundet med en var-meveksler 106 ved hjelp av rorledningen 104. Den fra varmeutveksleren kommende gass innsproytes via rorledningen 108 i en forbren-ningsanordning. Ved inngangen til kompressoren 102 har gassen en temperatur t på ca. -150°C og et trykk p =1 ata. Ved utgangen av kompressoren 102 er t = -125°C, og p = 1,7 :ata. Efter utgangen av varmeutveksleren er t = 20°C, og p = 1,7 åta. In order to make clear the progress that can be achieved according to the invention, fig. 2 shows a device according to the state of the art, with which until now the gas produced by evaporation of the liquid gas is supplied to a device for combustion. With this known device, the outgoing gas is passed along a pipe line 100 from the container to a compressor 102 whose outlet is connected to a heat exchanger 106 by means of pipe line 104. The gas coming from the heat exchanger is injected via pipe line 108 into a combustion device. At the entrance to the compressor 102, the gas has a temperature t of approx. -150°C and a pressure p =1 ata. At the output of the compressor 102, t = -125°C, and p = 1.7:ata. After the exit of the heat exchanger, t = 20°C, and p = 1.7 eight.

Varmeutveksleren 106 drives med en glycol-vannblanding som må oppvarmes tilsvarende. For dette formål tjener en varmeutveksler 112, som inneholder damp tilfort med hjelp av rorledningen HO. Av-dampen fra varmeutveksleren 112 avledes gjennom rorledningen 114. The heat exchanger 106 is operated with a glycol-water mixture which must be heated accordingly. For this purpose, a heat exchanger 112 serves, which contains steam supplied by means of the rudder line HO. The exhaust steam from the heat exchanger 112 is diverted through the rudder line 114.

Fra varmeutveksleren 112 fores den ved damp oppvarmede glycol-vannblanding gjennom rorledningen 116 til varmeutveksleren 106. For omsirkulering er i dette tilfelle konveksjon ikke tilstrekkelig, hvorfor der er angitt en pumpe 120 som driver glycol-vannkretslopet. Fra varmeutveksleren 106 fores den delvis fordampede glycol-vannblanding gjennom en rorledning 119 til en glycol-vannlagertank 118. Mellom rorledningen 116 og rorledningen 119 er anordnet en overstroms-forbindelse 117. En rorledning 121 forbinder lagertanken 118 med inngangssiden av pumpen 120. Anordningen er forsynt med ventiler for regulering, som styres ved hjelp av med TC betegnede anordninger i avhengighet av de i de enkelte anordninger herskende temperaturer. From the heat exchanger 112, the steam-heated glycol-water mixture is fed through the rudder line 116 to the heat exchanger 106. For recirculation in this case, convection is not sufficient, which is why a pump 120 is specified which drives the glycol-water circuit. From the heat exchanger 106, the partially evaporated glycol-water mixture is fed through a pipe line 119 to a glycol-water storage tank 118. Between the pipe line 116 and the pipe line 119, an overflow connection 117 is arranged. A pipe line 121 connects the storage tank 118 with the inlet side of the pump 120. The device is provided with valves for regulation, which are controlled using TC-designated devices depending on the temperatures prevailing in the individual devices.

For kompressoren 102 er angitt en trykkreguleringsanordning 103. Ytterligere er det for overvåking av tanken 118 angitt en væs-kes tandsanviser "LI", som når en hoyeste henholdsvis laveste stil-ling nåes,likeledes avgir et for styring av anordningen nodvendig signal. A pressure regulation device 103 is specified for the compressor 102. Furthermore, for monitoring the tank 118, a liquid tooth indicator "LI" is specified, which, when a highest or lowest position is reached, also emits a signal necessary for controlling the device.

Den ovenfor gitte belysning av den kjente anordning viser at denne på den ene side krever betydelige tekniske omkostninger, og på den annen side at den ved fordampning oppståtte gass i praksis kun bearbeides for forbrenning, hvorfor det er nødvendig med til setning av betydelige energimengder. The above explanation of the known device shows that, on the one hand, this requires significant technical costs, and on the other hand, that the gas produced by evaporation is in practice only processed for combustion, which is why it is necessary to add significant amounts of energy.

Anordningen 20 ifolge oppfinnelsen er vist ytterligere i fig. 3. Ifolge denne fores ledningen 18 til en treveisventil 26, i hvilken den totale ankommende gassmengde deles i -to dels trommer. Denne deling skjer ifolge et bestemt, styrt forhold. En delstrom blir fra ventilen 26 ved hjelp av en ledning 28 innfort på inngangssiden av kompressoren 30. Utlopet fra kompressoren er ved hjelp av rorledningen 32 knyttet til en kondensator 34 som sammen med en samle- og efterkjoler 36 sammerr danner en byggeenhet. I anordningene 34 og 36 kondenseres til væske den i kompressoren 30 komprimerte og oppvarmede gass efter varmeavgivelse til den gass som skal forbrennes. Den i oppsamleren oppsamlede flytende gass kan efter underkjoling overfores via en rorledning 22 og en reduksjonsventil 62 til beholderne 12 og 14. En andre, stoxre delstrom flyter fra ventilen 26 gjennom en rorledning 40 som Jier forenklet er vist som gassforende kjolespiral for samleren og efterkjoleren 36, i hvilken den påny til væske omformede gass underkjoles. Gjennom en rorledning 44 som er forbundet med rorledningen 40 med en med en ventil forsynt delstrdmsrorledning 46, The device 20 according to the invention is further shown in fig. 3. According to this, the line 18 is fed to a three-way valve 26, in which the total arriving amount of gas is divided into two parts drums. This sharing takes place according to a specific, controlled relationship. A partial flow is fed from the valve 26 by means of a line 28 to the inlet side of the compressor 30. The outlet from the compressor is connected by means of the rudder line 32 to a condenser 34 which, together with a collector and condenser 36, forms a building unit. In the devices 34 and 36, the gas compressed and heated in the compressor 30 is condensed to liquid after heat release to the gas to be burned. The liquefied gas collected in the collector can, after subcooling, be transferred via a pipe line 22 and a reduction valve 62 to the containers 12 and 14. A second, larger partial flow flows from the valve 26 through a pipe line 40 which, in a simplified manner, is shown as a gas-carrying spiral for the collector and aftercooler 36 , in which the re-transformed into liquid gas is underdressed. Through a rudder line 44 which is connected to the rudder line 40 with a partial flow rudder line 46 provided with a valve,

blir gassen ytterligere fort til kondensatorens 34 kjolespiral 48. Derfra fores den betydelig oppvarmede gass gjennom en rorledning 50 til inngangssiden av kompressoren 52, og blir i denne passende Komprimert for forbrenningen. På utgangssiden av kompressoren 52 er tilknyttet rorledningen 24. Kompressorene 30 og 52 tjener også til ut-sugning av gass fra beholderne 12 og 14. the gas is further accelerated to the coil 48 of the condenser 34. From there, the considerably heated gas is fed through a pipe line 50 to the inlet side of the compressor 52, where it is suitably compressed for combustion. The rudder line 24 is connected to the output side of the compressor 52. The compressors 30 and 52 also serve to extract gas from the containers 12 and 14.

Anlegget ifolge oppfinnelsen er utstyrt med tilsvarende anordninger for styring og regulering av prosessforlopet i de enkelte trinn. I fig. 3 er den trykkavhengige reguleringsanordning betegnet med "PC", og den nivåavhengige reguleringsanordning er betegnet med "LC". En trykkreguleringsanordning 54 ligger mellom rorledningen 18 og kompressoren 52 og sorger for at trykket i beholderne 12 og 14 holdes konstant. For kompressoren 30 er der angitt en trykkavhengig turtallsregulator 56. Ytterligere blir ventilen 26 for deling av den gjennom rorledningen .18 kommende gass til delstrommer styrt ved hjelp av kondensasjonstrykket (kompresjonstrykket) i rorledningen 32 ved hjelp av anordningen 58. The plant according to the invention is equipped with corresponding devices for controlling and regulating the course of the process in the individual steps. In fig. 3, the pressure-dependent regulation device is denoted by "PC", and the level-dependent regulation device is denoted by "LC". A pressure regulation device 54 is located between the rudder line 18 and the compressor 52 and ensures that the pressure in the containers 12 and 14 is kept constant. A pressure-dependent speed regulator 56 is specified for the compressor 30. Furthermore, the valve 26 for dividing the gas coming through the rudder line .18 into partial volumes is controlled by means of the condensation pressure (compression pressure) in the rudder line 32 by means of the device 58.

For oppsamleren 36 er det viktig at væskestanden alltid har en minstehoyde og ikke overskrider en hoyeste stand. For regulering av disse tilstander er det angitt en væskestandsregulator 60 som sty-rer reduksj.onsventilen 62 i tilbakeforingsrorledningen 22. For the collector 36, it is important that the liquid level always has a minimum height and does not exceed a maximum level. For regulation of these conditions, a liquid level regulator 60 is specified which controls the reduction valve 62 in the return pipe line 22.

Til ytterligere å belyse oppfinnelsen tjener det i fig. 4 viste diagram. ■ På abscissen er enthalpien i avsatt, og på ordinaten log p. Ved betraktning av diagrammet skal folgende ligninger vurde-res : To further illustrate the invention, fig. 4 shown diagram. ■ The enthalpy i is plotted on the abscissa, and log p on the ordinate. When considering the diagram, the following equations must be evaluated:

Omkostningene for den energi som må tilfores for å konden-sere denne delmengde,er minimal da den anvendte kompressorenergi in-nenfor rammen av virkningsgraden benyttes for oppvarmning av den gass som fores til forbrenningen. The costs for the energy that must be supplied to condense this sub-quantity are minimal as the used compressor energy within the framework of the efficiency is used for heating the gas that is supplied for combustion.

Under henvisning til fig. 3 og 4 og de ovenfor angitte formler gis de efterfolgende talleksempler. Punktbetegnelsen henvi-ser til de tilsvarende betegnelsespunkter i fig. 4 og 3. With reference to fig. 3 and 4 and the formulas stated above are given the following numerical examples. The point designation refers to the corresponding designation points in fig. 4 and 3.

Gassandel i kondensat x = 0,155 Gas proportion in condensate x = 0.155

1 - x = 0,845 1 - x = 0.845

A i± = i2 - i4 = 232,4 - 19,8 = 212,6 kcal/kg A i± = i2 - i4 = 232.4 - 19.8 = 212.6 kcal/kg

A I2 = i - ±± = 218,8 -127,7 = 91,1 " " A I2 = i - ±± = 218.8 -127.7 = 91.1 " "

Talleksemplet fastslår at med den samme belastning på en anordning som er av den samse størrelsesorden som i foreliggende tilfelle, kan ca. 1/3 av den ved fordampning oppståtte gass fores tilbake i væskeform. Diagrammet ifolge fig. 4 viser ytterligere at for den delstrom som skal kondenseres kan trykket og temperaturen forhoyes. Ved konstant trykk kan derved temperaturen senkes, hvorved,på et av p og T avhengig trykk, kondensasjon inntreffer. Efter ytterligere av- og underkjbling avlastes trykket, forbundet med ytterligere tem-pera tur nedset tel se . The numerical example establishes that with the same load on a device that is of the same order of magnitude as in the present case, approx. 1/3 of the gas produced by evaporation is fed back in liquid form. The diagram according to fig. 4 further shows that for the partial stream to be condensed the pressure and temperature can be increased. At constant pressure, the temperature can thereby be lowered, whereby, at a pressure dependent on p and T, condensation occurs. After further disconnection and under-coupling, the pressure is relieved, associated with a further temperature drop.

En modifisert anordning 20, ifolge oppfinnelsen, er nærme-re vist i fig. 5. Rorledningen 18 fores gjennom treveisventilen 26 med en fortsettelsesrorledning 28 til varmeutveksleranordningen 65. Varmeutveksleranordningen 65 består av tre deler, nemlig en efterkjoler 66, en kondensator 67 og en forkjoler 68. Fortrinnsvis er alle deler av varmeutveksleranordningen utfort i én enhet. Rorledningen 28 fortsetter i efterkjoleren 66 som kjoleledningen 69, og er tilslut-tet kjoleledningen 70 i kondensatoren. Over treveisventilen 71 er kjdlerorledningen 72 i forkjoleren 86 forbundet med kjoleledningen 70. I treveisventilen 71 blir stromraen av den fra beholderen oppsamlede, fordampede gass oppdelt i to delstrommer. Den ene delstrom fores fra ventilen 71 .gjennom kjolerorledningen 72 i forkjoleren og gjennom rorledningen 73 til en kompressor 74, hvor den i mellomtiden oppvarmede gass av dels trommen .komprimeres for forbrenning. A modified device 20, according to the invention, is shown in more detail in fig. 5. The pipeline 18 is fed through the three-way valve 26 with a continuation pipeline 28 to the heat exchanger device 65. The heat exchanger device 65 consists of three parts, namely an aftercooler 66, a condenser 67 and a precooler 68. Preferably, all parts of the heat exchanger device are carried out in one unit. The rudder line 28 continues in the aftercooler 66 as the skirt line 69, and is connected to the skirt line 70 in the condenser. Above the three-way valve 71, the boiler pipe line 72 in the pre-cooler 86 is connected to the boiler line 70. In the three-way valve 71, the flow of the evaporated gas collected from the container is divided into two sub-flows. One partial flow is fed from the valve 71 through the skirt pipe line 72 in the precooler and through the pipe line 73 to a compressor 74, where the gas heated in the meantime by the part drum is compressed for combustion.

En mindre delstrøm i forhold til den for forbrenning avsatte delstrøm, føres fra ventilen 71 gjennom rørledningen 40 til en kompressor 75, i hvilken gassen som i mellomtiden er oppvarmet til en temperatur over-den opprinnelige temperatur i beholderne 12 og 14, komprimeres, og derved i det vesentlige oppvarmes adiabatisk. Den komprimerte gass som nu har en temperatur som er betydelig over temperaturen i beholderne, føres derefter gjennom rørledningen 76 til varmeutveksleranordningen 65. I denne anordning avgir gassen som kommer fra kompressoren 75 varme i motstrøm til den gass som føres til forbrenning henholdsvis til den ikke avdelte strøm av de oppsamlede gasser. Efter forkjøling i forkjøleren 68 kondenseres gassen i kondensatoren 67 og avkjøles ytterligere i anordningen 66. Efter gjennomgang gjennom en reduksjonsventil 77 føres den flytende, avkjølte gass gjennom rørledningen 22 for tilbakeføring til beholderne 12 henholdsvis 14. A smaller partial flow in relation to the partial flow reserved for combustion is led from the valve 71 through the pipeline 40 to a compressor 75, in which the gas, which has meanwhile been heated to a temperature above the original temperature in the containers 12 and 14, is compressed, and thereby essentially heated adiabatically. The compressed gas, which now has a temperature that is significantly above the temperature in the containers, is then led through the pipeline 76 to the heat exchanger device 65. In this device, the gas coming from the compressor 75 emits heat in countercurrent to the gas that is led to combustion or to the unseparated flow of the collected gases. After precooling in the precooler 68, the gas is condensed in the condenser 67 and further cooled in the device 66. After passing through a reduction valve 77, the liquid, cooled gas is led through the pipeline 22 for return to the containers 12 and 14 respectively.

For oppstartning av anordningen blir ved hjelp av ventilen 26 en delstrøm avledet og ført gjennom ledningen 78 inn i ledningen For starting up the device, a partial flow is diverted by means of the valve 26 and led through the line 78 into the line

40 og gjennom denne videre til kompressoren 75. Ledningen 78 går 40 and through this further to the compressor 75. The line 78 runs

gjennom en oppvarmings- eller varmeutveksleranordning 79, som eksempelvis kan drives med sjøvann og erstatte foroppvarmningen i anordningene 66 og 67 under oppstartingstrinnet. Efter oppstartning through a heating or heat exchanger device 79, which can for example be operated with sea water and replace the pre-heating in the devices 66 and 67 during the start-up step. After startup

skiftes det om slik at ventilen 26 ikke lenger deler den oppsamlede gass, men slik at delingen finner sted i ventilen 71. is changed so that valve 26 no longer divides the collected gas, but so that the division takes place in valve 71.

Anordningen er forsynt med flere regulatorer som i tegnin-gen er angitt med "P" henholdsvis "LC". "LC" er en i efterkjøleren anordnet nivåregulator som sørger for at det er tilstede en bestemt væskestand i efterkjøleren 66. Regulatoren "LC" er ytterligere forbundet med ventilanordningen 77, som i tillegg til trykkavlastning også har en mengdestyrende funksjon. Ytterligere er en reguleringsanordning angitt for kompressorene 74 og 75. Regulatoren ved kompressoren 7 4 kan eksempelvis være forbundet med ventilen 26 og angi forholdet mellom den fra beholderen ankommende gass og den til forbrenning avgående gass. Kompressoren 75 henholdsvis trykket ved dens utløp kan bringes i et forhold til fordelingsforholdet i ventilen 71. The device is equipped with several regulators which are indicated in the drawing with "P" and "LC". "LC" is a level regulator arranged in the aftercooler which ensures that a specific liquid level is present in the aftercooler 66. The regulator "LC" is further connected to the valve device 77, which in addition to pressure relief also has a quantity control function. Furthermore, a regulating device is indicated for the compressors 74 and 75. The regulator at the compressor 7 4 can, for example, be connected to the valve 26 and indicate the ratio between the gas arriving from the container and the gas leaving for combustion. The compressor 75 or the pressure at its outlet can be brought into relation with the distribution ratio in the valve 71.

Ifølge oppfinnelsen avgir den totale massestrøm som kommmer fra beholderne 12 henholdsvis 14, en del av sin kjøleenergi til kondensasjon og efterkjøling av delstrømmen som-fra den samlede strøm ifølge det foreliggende utførelseseksempel deles efter utgangen fra kondensatoren. Det vesentlige er at innen en betydelig del av det negative temperaturområde anvendes den totale massestrøm for avkjøling av den delstrøm som føres tilbake. According to the invention, the total mass flow coming from the containers 12 and 14, respectively, emits part of its cooling energy for condensation and post-cooling of the partial flow which, according to the present embodiment, is divided from the total flow according to the output from the condenser. The essential thing is that within a significant part of the negative temperature range, the total mass flow is used for cooling the partial flow that is returned.

Claims (19)

Fremgangsmåte ved transport av flytende gass i minst én isolert beholder som er anordnet på et transportmiddel og som inneholder den flytende gass ved en tilsvarende lav temperatur og ved et i det vesentlige normalt trykk, hvor gass som dannes ved fordampning, fanges opp og tilføres til en forbrennings- prosess for å virke som energikilde for drift av transportmidlet, og hvor-den oppfangede gass deles i to delstrømmer,karakterisert ved at den første delstrøm komprimeres for seg og derefter under avkjøling og kondensering overfører varme til den annen delstrøm som skal tilføres til forbrenningsprosessen, og at i den første delstrøm på ny kondensert gassMethod for the transport of liquefied gas in at least one insulated container which is arranged on a means of transport and which contains the liquefied gas at a correspondingly low temperature and at an essentially normal pressure, where gas formed by evaporation is captured and supplied to a combustion process to act as an energy source for operating the means of transport, and where the captured gas is divided into two sub-streams, characterized by the fact that the first sub-stream is compressed by itself and then, during cooling and condensation, transfers heat to the second sub-stream which is to be supplied to the combustion process , and that in the first partial flow of new condensed gas tilbakeføres til den isolerte beholder efter trykkavlastning. returned to the insulated container after pressure relief. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at den første delstrøm avkjøles av den annen delstrøm også innen underkjølingsområdet (Fig. 3). 2. Method according to claim 1, characterized in that the first partial flow is cooled by the second partial flow also within the subcooling area (Fig. 3). 3. Fremgangsmåte ifølge krav 1, karakterisert ved at den samlede oppfangede gass anvendes for avkjøling av den første delstrøm som skal tilbakeføres, før den samlede oppfangede gass deles i to delstrømmer (Fig. 5 ). 3. Method according to claim 1, characterized in that the total captured gas is used for cooling the first partial flow to be returned, before the total captured gas is divided into two partial flows (Fig. 5). 4. Fremgangsmåte ifølge krav 1-3, karakterisert ved at den samlede gass som dannes ved fordampning, deles i de to delstrømmer i et regulert forhold som er avhengig av hastigheten for den fornyede kondensering. 4. Method according to claims 1-3, characterized in that the total gas formed by evaporation is divided into the two sub-streams in a regulated ratio which is dependent on the speed of the renewed condensation. 5. Fremgangsmåte ifølge krav 3, karakterisert ved at delstrømmen som skal kondenseres, utsettes for en i det vesentlige adiabatisk komprimering under anvendelse av energi erholdt fra driften av transportmidlet. 5. Method according to claim 3, characterized in that the partial flow to be condensed is subjected to an essentially adiabatic compression using energy obtained from the operation of the means of transport. 6. Fremgangsmåte ifølge krav 1, karakterisert ved at delstrømmen som skal tilføres for forbrenning for drift av transportmidlet, komprimeres efter at den er blitt oppvarmet av den delstrøm som på ny skal kondenseres. 6. Method according to claim 1, characterized in that the partial flow which is to be supplied for combustion for operation of the means of transport is compressed after it has been heated by the partial flow which is to be condensed again. 7. Fremgangsmåte ifølge krav 1, karakterisert v e d at delstrømmen som skal tilbakeføres og delstrømmen som skal forbrennes, for oppnåelse av varmeutveksling mellom de to del-strømmer føres i motstrøm i forhold til hverandre. 7. Method according to claim 1, characterized in that the partial flow to be returned and the partial flow to be incinerated, in order to achieve heat exchange between the two partial flows, are carried in countercurrent in relation to each other. 8. Fremgangsmåte ifølge krav 1, karakterisert ved at deri på ny kondenserte gass utsettes for en. efterav-kjøling. 8. Method according to claim 1, characterized in that newly condensed gas is exposed to a. post-cooling. 9. Fremgangsmåte ifølge krav 3, karakterisert ved at den første delstrøm underavkjøles med den samlede mengde oppfanget gass og at den annen delstrøm som skal tilføres for forbrenningen, anvendes for avkjøling av den komprimerte første del-strøm som skal tilbakeføres til den isolerte beholder, innen det høyere temperaturområde efter temperaturområdet for underkjøling (Fig. 5). 9. Method according to claim 3, characterized in that the first partial flow is subcooled with the total amount of captured gas and that the second partial flow which is to be supplied for combustion is used for cooling the compressed first partial flow which is to be returned to the insulated container, within the higher temperature range after the temperature range for subcooling (Fig. 5). 10. Fremgangsmåte ifølge krav 3 eller 9, karakterisert ved at den annen delstrøm som skal tilføres for forbrenningen, avgrenes fra den samlede oppfangede gass innen et temperaturområde som i det vesentlige tilsvarer kondensasjonstemperaturen for den første delstrøm (Fig. 5). 10. Method according to claim 3 or 9, characterized in that the second partial flow to be supplied for combustion is branched off from the overall captured gas within a temperature range which essentially corresponds to the condensation temperature of the first partial flow (Fig. 5). 11. Fremgangsmåte ifølge krav 3 eller 9, karakterisert ved at den samlede mengde oppsamlet gass deles i de to delstrømmer efter at den har passert gjennom et underkjølings-område og et kondensasjonsområde (Fig. 5). 11. Method according to claim 3 or 9, characterized in that the total amount of collected gas is divided into the two partial streams after it has passed through a subcooling area and a condensation area (Fig. 5). 12. Anlegg for transport av flytende gass ved fremgangsmåten ifølge krav 1, omfattende minst én isolert beholder (12,14) for flytende gass anordnet på et transportmiddel og en ledning (18) som fører fra den isolerte beholders gassrom for.bortledning av gassen og som er delt i to grenledninger (28,40 (Fig.3), 41, 72 (Fig.5)), karakterisert ved at den første (28;41) av de to grenledninger via en kompressor (30;75) fører til en varmeveksler-anordning (34;65) forsynt med en efterkjøler (36;66) og hvori komprimert gass befinner seg i varmevekslerforhold til gass som strømmer gjennom den annen grenledning (40;72), og at varmeveksleranordningen står i forbindelse med et trykkavlastningsorgan (62;77) som gass som strømmer i den første grenledning (28;41) strømmer gjennom og til den isolerte beholder (12,14) efter at den er blitt avkjølt i varmeveksleranordningen (34;65). 12. Plant for transporting liquefied gas by the method according to claim 1, comprising at least one insulated container (12, 14) for liquefied gas arranged on a means of transport and a line (18) leading from the insulated container's gas space for the removal of the gas and which is divided into two branch lines (28,40 (Fig.3), 41, 72 (Fig.5)), characterized in that the first (28;41) of the two branch lines via a compressor (30;75) leads to a heat exchanger device (34;65) provided with an aftercooler (36;66) and in which compressed gas is in a heat exchange relationship with gas flowing through the second branch line (40;72), and that the heat exchanger device is connected to a pressure relief device ( 62;77) as gas flowing in the first branch line (28;41) flows through and to the insulated container (12,14) after it has been cooled in the heat exchanger device (34;65). 13. Anlegg ifølge krav 12,karakterisert ved at den første grenledning (28) er avledet fra ledningen (18) foran innløpet for den annen grenledning (40) i efterkjøleren (36) (Fig.3). 13. Installation according to claim 12, characterized in that the first branch line (28) is derived from the line (18) in front of the inlet for the second branch line (40) in the aftercooler (36) (Fig.3). 14. Anlegg ifølge krav 12, karakterisert ved14. Plant according to claim 12, characterized by at den første grenledning (41) er avledet fra ledningen (18) efter dennes utløp fra efterkjøieren (66). (Fig. 5). that the first branch line (41) is derived from the line (18) after its outlet from the tailpipe (66). (Fig. 5). 15. Anlegg ifølge krav 12 eller 13, karakterisert ved at en ledning ( 50) fører fra varmeveksleranordningen (34) til' et foxbrenningsrom og passerer gjennom en kompressor (52) (Fig. 3). 15. Installation according to claim 12 or 13, characterized in that a line (50) leads from the heat exchanger device (34) to a fox combustion chamber and passes through a compressor (52) (Fig. 3). 16. Anlegg ifølge kxav 12-14., karakterisert ved at en styrbar treveisventil (26;71) er anordnet i avgreningspunktet (Fig. 3, 5). 16. Plant according to kxav 12-14., characterized in that a controllable three-way valve (26; 71) is arranged at the branch point (Fig. 3, 5). 17. Anlegg ifølge krav 12 eller 14, karakterisert ved at varmeveksleranordningen (65) i strømningsretningen består av en forkjøler t68), en kondensator (67) og en efter-kjøler (66) som i det vesentlige er bygget sammen til en enhet (Fig. 5). 17. Plant according to claim 12 or 14, characterized in that the heat exchanger device (65) in the direction of flow consists of a precooler t68), a condenser (67) and an aftercooler (66) which are essentially built together into a unit (Fig .5). 18. Anlegg ifølge krav 17, karakterisert ved at den første grenledning (41) har en avgrening (70) innen området for varmeveksleranordningens (65) kondensator (67) (Fig.5). 18. Plant according to claim 17, characterized in that the first branch line (41) has a branch (70) within the area of the condenser (67) of the heat exchanger device (65) (Fig.5). 19. Anlegg ifølge krav 14-17, karakterisert ved at det omfatter en tredje ledning (78) for o<p>pstarting og som er avgrenet fra ledningen (18) foran varmeveksleranordningen (65) og via en oppvarmingsanordning (79) munner i den første grenledning (41) foran innløpet til kompressoren (75) (Fig. 5).19. Plant according to claims 14-17, characterized in that it comprises a third line (78) for starting and which is branched from the line (18) in front of the heat exchanger device (65) and via a heating device (79) opens into it first branch line (41) in front of the inlet to the compressor (75) (Fig. 5).
NO2164/73A 1972-05-27 1973-05-25 PROCEDURE FOR THE TRANSPORT OF LIQUID GAS AND SYSTEMS FOR CARRYING OUT THE PROCEDURE NO137991C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2225882A DE2225882B2 (en) 1972-05-27 1972-05-27 Procedure for the sea transport of liquefied petroleum gas and ship for carrying out the procedure
DE2228382A DE2228382A1 (en) 1972-06-10 1972-06-10 PROCEDURE FOR MARINE TRANSPORTATION OF LIQUID GAS AND SHIP TO CARRY OUT THE PROCEDURE
DE2230263A DE2230263A1 (en) 1972-06-21 1972-06-21 PROCEDURE FOR MARINE TRANSPORTATION OF LIQUID GAS AND SHIP TO CARRY OUT THE PROCEDURE

Publications (2)

Publication Number Publication Date
NO137991B true NO137991B (en) 1978-02-27
NO137991C NO137991C (en) 1978-06-14

Family

ID=27184445

Family Applications (1)

Application Number Title Priority Date Filing Date
NO2164/73A NO137991C (en) 1972-05-27 1973-05-25 PROCEDURE FOR THE TRANSPORT OF LIQUID GAS AND SYSTEMS FOR CARRYING OUT THE PROCEDURE

Country Status (13)

Country Link
US (1) US3864918A (en)
JP (1) JPS4961707A (en)
CA (1) CA991532A (en)
CH (1) CH570296A5 (en)
ES (1) ES415237A1 (en)
FR (1) FR2189678B1 (en)
GB (1) GB1431203A (en)
IT (1) IT987915B (en)
NL (1) NL155361B (en)
NO (1) NO137991C (en)
PL (1) PL86303B1 (en)
SE (1) SE390057B (en)
SU (1) SU571203A3 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292062A (en) * 1980-03-20 1981-09-29 Dinulescu Horia A Cryogenic fuel tank
NO800935L (en) * 1980-03-31 1981-10-01 Moss Rosenberg Verft As LNG SHIP PROGRAMMING MACHINE.
FR2570478A1 (en) * 1984-09-19 1986-03-21 Nord Mediterranee Chantiers Processes and devices for condensing and recycling the gases which evaporate from the hold of a ship for transporting liquefied gas and ships comprising these devices
US5771946A (en) * 1992-12-07 1998-06-30 Chicago Bridge & Iron Technical Services Company Method and apparatus for fueling vehicles with liquefied cryogenic fuel
US5687776A (en) * 1992-12-07 1997-11-18 Chicago Bridge & Iron Technical Services Company Method and apparatus for fueling vehicles with liquefied cryogenic fuel
US5590535A (en) * 1995-11-13 1997-01-07 Chicago Bridge & Iron Technical Services Company Process and apparatus for conditioning cryogenic fuel to establish a selected equilibrium pressure
NO304483B1 (en) * 1996-04-25 1998-12-28 Norske Stats Oljeselskap Process for Capturing Low Molecular Volatile Compounds from Hydrocarbon Containing Liquids
NO961666L (en) * 1996-04-25 1997-10-27 Norske Stats Oljeselskap Process and system for the capture and storage of light hydrocarbon vapor from crude oil
TW444109B (en) * 1997-06-20 2001-07-01 Exxon Production Research Co LNG fuel storage and delivery systems for natural gas powered vehicles
TW359736B (en) * 1997-06-20 1999-06-01 Exxon Production Research Co Systems for vehicular, land-based distribution of liquefied natural gas
TW396254B (en) 1997-06-20 2000-07-01 Exxon Production Research Co Pipeline distribution network systems for transportation of liquefied natural gas
DZ2528A1 (en) * 1997-06-20 2003-02-01 Exxon Production Research Co Container for the storage of pressurized liquefied natural gas and a process for the transport of pressurized liquefied natural gas and natural gas treatment system to produce liquefied natural gas under pressure.
TW436597B (en) * 1997-12-19 2001-05-28 Exxon Production Research Co Process components, containers, and pipes suitable for containign and transporting cryogenic temperature fluids
US6460721B2 (en) 1999-03-23 2002-10-08 Exxonmobil Upstream Research Company Systems and methods for producing and storing pressurized liquefied natural gas
CA2299755C (en) * 1999-04-19 2009-01-20 Trans Ocean Gas Inc. Natural gas composition transport system and method
US6584781B2 (en) 2000-09-05 2003-07-01 Enersea Transport, Llc Methods and apparatus for compressed gas
US6994104B2 (en) * 2000-09-05 2006-02-07 Enersea Transport, Llc Modular system for storing gas cylinders
GB0120661D0 (en) * 2001-08-24 2001-10-17 Cryostar France Sa Natural gas supply apparatus
US6852175B2 (en) * 2001-11-27 2005-02-08 Exxonmobil Upstream Research Company High strength marine structures
AU2002365596B2 (en) 2001-11-27 2007-08-02 Exxonmobil Upstream Research Company CNG fuel storage and delivery systems for natural gas powered vehicles
US7293600B2 (en) * 2002-02-27 2007-11-13 Excelerate Energy Limited Parnership Apparatus for the regasification of LNG onboard a carrier
KR20030073975A (en) * 2002-03-14 2003-09-19 대우조선해양 주식회사 Boil off gas management method and system assembly of Liquefied Natural Gas Carrier
US7147124B2 (en) * 2002-03-27 2006-12-12 Exxon Mobil Upstream Research Company Containers and methods for containing pressurized fluids using reinforced fibers and methods for making such containers
FR2852590B1 (en) * 2003-03-20 2005-06-17 Snecma Moteurs POWER SUPPLYING A GAS TERMINAL FROM A SHIP TRANSPORTING LIQUEFIED GAS
US8499569B2 (en) * 2004-09-13 2013-08-06 Argent Marine Management, Inc. System and process for transporting LNG by non-self-propelled marine LNG carrier
WO2006052392A2 (en) * 2004-11-05 2006-05-18 Exxonmobil Upstream Research Company Lng transportation vessel and method for transporting hydrocarbons
WO2006128470A2 (en) * 2005-06-02 2006-12-07 Lauritzen Kozan A/S Equipment for a tanker vessel carrying a liquefield gas
FI121745B (en) * 2005-12-28 2011-03-31 Waertsilae Finland Oy Arrangement and method for producing cooling energy for the refrigerant circulation system in a watercraft
US20070214805A1 (en) * 2006-03-15 2007-09-20 Macmillan Adrian Armstrong Onboard Regasification of LNG Using Ambient Air
US8069677B2 (en) * 2006-03-15 2011-12-06 Woodside Energy Ltd. Regasification of LNG using ambient air and supplemental heat
US20070214804A1 (en) * 2006-03-15 2007-09-20 Robert John Hannan Onboard Regasification of LNG
WO2008031146A1 (en) * 2006-09-11 2008-03-20 Woodside Energy Limited Boil off gas management during ship-to-ship transfer of lng
KR100835090B1 (en) * 2007-05-08 2008-06-03 대우조선해양 주식회사 System and method for supplying fuel gas of lng carrier
US20080276627A1 (en) * 2007-05-08 2008-11-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Fuel gas supply system and method of a ship
NO330187B1 (en) * 2008-05-08 2011-03-07 Hamworthy Gas Systems As Gas supply system for gas engines
PE20121290A1 (en) * 2009-04-17 2012-10-23 Excelerate Energy Ltd Partnership TRANSFER OF LNG FROM SHIP TO SHIP TO FOOT OF THE DOCK
US20110030391A1 (en) * 2009-08-06 2011-02-10 Woodside Energy Limited Mechanical Defrosting During Continuous Regasification of a Cryogenic Fluid Using Ambient Air
GB201001525D0 (en) * 2010-01-29 2010-03-17 Hamworthy Combustion Eng Ltd Improvements in or relating to heating
US9919774B2 (en) 2010-05-20 2018-03-20 Excelerate Energy Limited Partnership Systems and methods for treatment of LNG cargo tanks
CN103189273B (en) * 2010-08-25 2017-02-08 瓦特西拉石油和天然气系统有限公司 A method and arrangement for providing LNG fuel for ships
EP2715259A4 (en) 2011-05-30 2015-10-21 Wärtsilä Oil & Gas Systems As Utilization of lng used for fuel to liquefy lpg boil off
KR101342736B1 (en) * 2012-05-14 2013-12-19 현대중공업 주식회사 A Treatment System and Method of Liquefied Gas
AU2012216352B2 (en) 2012-08-22 2015-02-12 Woodside Energy Technologies Pty Ltd Modular LNG production facility
KR101267110B1 (en) 2013-03-06 2013-05-27 현대중공업 주식회사 A fuel gas supply system of liquefied natural gas
WO2016001115A1 (en) * 2014-06-30 2016-01-07 Shell Internationale Research Maatschappij B.V. System and method for off-shore storing and transporting a conditioned hydrocarbon liquid
CN108151354A (en) * 2017-11-22 2018-06-12 浙江海洋大学 Liquified natural gas powered ship refrigerating plant and refrigerating method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1808439A (en) * 1927-09-19 1931-06-02 Constantine A Serriades Aircraft power generating system
BE530808A (en) * 1954-05-10
US2938359A (en) * 1955-07-21 1960-05-31 Phillips Petroleum Co Method and apparatus for storage and transportation of acetylene
US3229472A (en) * 1964-05-15 1966-01-18 Union Carbide Corp Method and apparatus for pumping and vaporizing liquefied gas
US3733838A (en) * 1971-12-01 1973-05-22 Chicago Bridge & Iron Co System for reliquefying boil-off vapor from liquefied gas
US3766734A (en) * 1972-03-01 1973-10-23 Gen Electric Dual fuel control system for a gas turbine

Also Published As

Publication number Publication date
JPS4961707A (en) 1974-06-14
FR2189678A1 (en) 1974-01-25
FR2189678B1 (en) 1977-02-11
US3864918A (en) 1975-02-11
SE390057B (en) 1976-11-29
NL7307278A (en) 1973-11-29
SU571203A3 (en) 1977-08-30
NL155361B (en) 1977-12-15
CA991532A (en) 1976-06-22
PL86303B1 (en) 1976-05-31
IT987915B (en) 1975-03-20
ES415237A1 (en) 1976-06-01
NO137991C (en) 1978-06-14
CH570296A5 (en) 1975-12-15
GB1431203A (en) 1976-04-07

Similar Documents

Publication Publication Date Title
NO137991B (en) PROCEDURES FOR THE TRANSPORT OF LIQUID GAS AND FACILITIES FOR THE CONSTRUCTION OF PROCEDURES
CN101495828B (en) Method and apparatus for the reliquefaction of a vapour
JP5538234B2 (en) Natural gas supply method and apparatus
US3857245A (en) Reliquefaction of boil off gas
USRE29914E (en) Method and apparatus for the cooling and low temperature liquefaction of gaseous mixtures
KR100803409B1 (en) Reliquefaction of compressed vapour
US2975607A (en) Revaporization of liquefied gases
CN109154471B (en) System and method for processing evaporated gas from cryogenic liquid and supplying pressurized gas and vessel driven by gas motor
CN104964158B (en) Method and system for storage and transport of liquefied petroleum gases
NO334699B1 (en) Apparatus and method for controlling the cargo tank pressure on LNG vessels
CN101454608B (en) Method for vaporizing and heating a cryogenic fluid
NO120941B (en)
NO136659B (en)
KR20150100799A (en) Method and apparatus for reliquefying natural gas
JP2007511717A (en) Apparatus and method for boil-off gas temperature control
KR101814439B1 (en) System for supplying fuel gas
KR102514327B1 (en) Systems and methods for treating gases resulting from evaporation of cryogenic liquids
JP2019522758A (en) Equipment for feeding flammable gas to gas consuming members and for liquefying this flammable gas
JP2014522476A (en) Use of LNG as fuel to liquefy LPG boil-off gas
CN104024774B (en) Method and apparatus by low temperature compositions of hydrocarbons removing nitrogen
US3446029A (en) Method for heating low temperature fluids
NO124578B (en)
US20080295527A1 (en) Lng tank ship with nitrogen generator and method of operating the same
NO135841B (en)
JP2024511643A (en) Method for cooling heat exchangers of gas supply systems for gas consumers of ships