NO136154B - PROCEDURES FOR SEPARATE HIGHER MOLECULAR COMPONENTS AND CATALYTIC EFFICIENT POLLUTIONS FROM IMPREGNATION FORM} L APPLICABLE MIXTURES OF EPOXY RESIN AND AN ACID ANHYDRIDE. - Google Patents

PROCEDURES FOR SEPARATE HIGHER MOLECULAR COMPONENTS AND CATALYTIC EFFICIENT POLLUTIONS FROM IMPREGNATION FORM} L APPLICABLE MIXTURES OF EPOXY RESIN AND AN ACID ANHYDRIDE. Download PDF

Info

Publication number
NO136154B
NO136154B NO238571A NO238571A NO136154B NO 136154 B NO136154 B NO 136154B NO 238571 A NO238571 A NO 238571A NO 238571 A NO238571 A NO 238571A NO 136154 B NO136154 B NO 136154B
Authority
NO
Norway
Prior art keywords
mixture
acid anhydride
resin
epoxy resin
dissolve
Prior art date
Application number
NO238571A
Other languages
Norwegian (no)
Other versions
NO136154C (en
Inventor
Willi Martens
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19702038711 external-priority patent/DE2038711C3/en
Application filed by Siemens Ag filed Critical Siemens Ag
Publication of NO136154B publication Critical patent/NO136154B/en
Publication of NO136154C publication Critical patent/NO136154C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/04Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances mica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Epoxy Resins (AREA)
  • Organic Insulating Materials (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

Det er kjent å bygge opp isolasjoner for elektriske maski-ner av glimmerbånd som vikles med overlapp, og som deretter im-pregneres med blandinger av epoksyharpiks og syreanhydridherder <p>g utherdes. Eh særlig gunstig fremgangsmåte til impregnering av disse isolasjoner er den såkalte helimpregneringsmetode, hvor maskinstatoren resp. -rotoren med innlagt og koblet vikling som helhet oversvømmes med impregnerharpiksen i et stort impregnerings-kar. Til denne metode behøves et stort forråd av impregner-harpiks, som stadig må brukes om igjen for nye impregneringer, da den andel, av impregnerharpiksen som trenger inn i isolasjonshylsen og forblir i den, er meget liten, for det meste mindre enn 0,5%. It is known to build up insulation for electrical machines from mica tape which is wound with an overlap, and which is then impregnated with mixtures of epoxy resin and acid anhydride hardeners <p>and cured. Eh, a particularly favorable method for impregnating these insulations is the so-called full impregnation method, where the machine stator or - the rotor with inserted and connected winding as a whole is flooded with the impregnation resin in a large impregnation vessel. This method requires a large supply of impregnating resin, which must be constantly reused for new impregnations, as the proportion of the impregnating resin that penetrates the insulation sleeve and remains in it is very small, mostly less than 0.5 %.

Via maskindelene- og fra g.limmerbåndene kan der nå i impregnerharpiksen komme inn forurensninger som har katalytisk virk-ning og dermed fører til en reaksjon av impregnerharpiksen under gradvis høyning av. viskositeten. For impregneringsprosessen må imidlertid impregnerharpiksen ha meget lav viskositet for å kunne trenge godt inn. Derfor blir impregneringen også gjennomført ved forhøyet temperatur.,, f.eks. ved tilnærmelsesvis 70°C. Den gjentatte oppvarmning av impregnerharpiksen kan imidlertid likeledes på grunn av en, om enn i liten grad, begynnende addisjonsreaksjon av impregnerharpiksen i lengden: føre til en stigning i viskositeten. Derved kan der selv ved. meget rene og reaksjonstrege impregnerharpiks-komponenter i løpet av lengere brukstider, eventuelt først etter flere måneder, fåes en så høy viskositetsverdi av impregnerharpiksen at den ikke lenger tillates far" impregneringen. Denne im-pregnerharpiks, som i. og for seg ennå er: høyverdig, er da ikke lenger anvendelig for en upåklagelig: gjennomimpregnering av høy-spenningsisolasjpner og må erstattes.. Via the machine parts and from the adhesive tapes, contaminants can now enter the impregnating resin which have a catalytic effect and thus lead to a reaction of the impregnating resin with a gradual increase of the viscosity. However, for the impregnation process, the impregnating resin must have a very low viscosity in order to penetrate well. Therefore, the impregnation is also carried out at an elevated temperature.,, e.g. at approximately 70°C. However, the repeated heating of the impregnating resin can also, due to an incipient addition reaction of the impregnating resin along the length, albeit to a small extent, lead to an increase in viscosity. Thereby there can even wood. very clean and slow-reacting impregnating resin components, during longer periods of use, possibly only after several months, such a high viscosity value is obtained from the impregnating resin that it is no longer allowed to undergo impregnation. This impregnating resin, which in and of itself is still: high-quality , is then no longer applicable for an impeccable: through impregnation of high-voltage insulation and must be replaced..

Til grunn for den foreliggende oppfinnelse ligger nå den oppgave å gi anvisning på en fremgangsmåte til å separere høyere-molekylære bestanddeler og katalytisk virksomme forurensninger fra for impregneringsformål anvendelige blandinger av epoksyharpiks og en syreanhydridherder, hvor allerede brukte impregnerharpiks-blandinger hvis viskositet er steget for høyt, kan regenereres og således uten endring i grunnsammensetning igjen kan føres tilbake til lave viskositetsverdier. Ifølge oppfinnelsen blir der til blandingen av epoksyharpiks og syreanhydridherder føyet blandinger av hydrokarboner eller halogenerte hydrokarboner som dels oppløser, dels ikke oppløser harpiksblandingen, og de uoppløste bestanddeler blir så etter god gjennomblanding fraskilt på fysikalsk vei, hvorpå oppløsningen inndampes under vakuum. The present invention is now based on the task of providing guidance on a method for separating higher-molecular components and catalytically active contaminants from mixtures of epoxy resin and an acid anhydride hardener usable for impregnation purposes, where already used impregnation resin mixtures whose viscosity has risen too high , can be regenerated and can thus be brought back to low viscosity values without any change in basic composition. According to the invention, mixtures of hydrocarbons or halogenated hydrocarbons are added to the mixture of epoxy resin and acid anhydride hardeners, which partly dissolve, partly do not dissolve the resin mixture, and the undissolved components are then physically separated after thorough mixing, after which the solution is evaporated under vacuum.

Der er riktignok kjent fremgangsmåter ved hvilke polye- Admittedly, methods are known in which polye-

tylen i oppløst form blandes med et ikke-oppløsningsmiddel. Her-ved nedsettes polyetylenets oppløselighet, slik at det lar seg utfelle vesentlig finere enn det før var mulig. Denne arbeids-måte beskrives særlig i det italienske patent nr. 496 916. Her-ved blandes en varm oppløsning av polyetylen med et ikke-oppløs-ningsmiddel, hvorved kunststoffet utfelles finfordelt og mikro-krystallinsk. the tylene in dissolved form is mixed with a non-solvent. Hereby, the solubility of the polyethylene is reduced, so that it can be precipitated significantly finer than was previously possible. This method of working is described in particular in the Italian patent no. 496 916. In this way, a hot solution of polyethylene is mixed with a non-solvent, whereby the plastic is precipitated finely divided and micro-crystalline.

Ved fremgangsmåten ifølge oppfinnelsen utnytter man altså In the method according to the invention, one thus utilizes

det forhold at det er mulig å felle ut andeler av oppløsninger hvis man tilføyer komponentene ikke oppløsende stoffer. Ved til-føyelsen av hydrokarboner som løser harpiksblandingen, oppstår der altså i denne blanding en oppløsning hvorfra de høyere-molekylære andeler kan felles ut ved ytterligere tilføyelse av hydrokarboner som ikke løser harpiksblandingen. Disse andeler er imidlertid nettopp dem som ved sin addisjonsreaksjon hadde forårsaket viskosi-tetstigningen i harpiksblandingen. Dessuten binder de katalytisk virksomme forurensninger seg likeledes til disse høyere-molekylære andeler som inneholder frie karboksyl- og hydroksydgrupper, og blir feilt ut med disse andeler. Etter den grundige blanding av impregnerharpiksblandingen med de dels oppløsende, dels ikke opp-løsende stoffer avsetter de ikke oppløste bestanddeler som inneholder forurensningene, seg fra oppløsningen og kan lett fraskilles på fysikalsk vei. Ved gjennførelse av fremgangsmåten ifølge oppfinnelsen blir så den resterende oppløsning inndampet under vakuum, the fact that it is possible to precipitate proportions of solutions if non-dissolving substances are added to the components. By the addition of hydrocarbons which dissolve the resin mixture, a solution is thus formed in this mixture from which the higher molecular proportions can be precipitated by further addition of hydrocarbons which do not dissolve the resin mixture. However, these proportions are precisely those which, by their addition reaction, had caused the increase in viscosity in the resin mixture. In addition, the catalytically active contaminants also bind to these higher-molecular proportions that contain free carboxyl and hydroxide groups, and are removed with these proportions. After the thorough mixing of the impregnating resin mixture with the partially dissolving, partially non-dissolving substances, the undissolved components containing the contaminants settle out of the solution and can be easily separated physically. When carrying out the method according to the invention again, the remaining solution is then evaporated under vacuum,

hvorved oppløsningsmiddelet blir fjernet, og man får igjen en epoksyharpiks-syreanhydridherderblanding med lav viskositet og reaktivitet. Impregnerharpiksen er altså regenerert uten endring i grunnsammensetningen og påny anvendelig for impregnering av høyspenningsisolasjoner. whereby the solvent is removed, and an epoxy resin-acid anhydride hardener mixture with low viscosity and reactivity is obtained. The impregnating resin has thus been regenerated without any change in the basic composition and can again be used for impregnating high-voltage insulation.

Hvis man for gjennomførelsen av fremgangsmåten ifølge oppfinnelsen anvender en blanding av oppløsende og ikke oppløsende hydrokarboner, så avsetter forurensningene seg etter grundig blanding som tyngre skikt nedentil. Fraskillelsen av dette skikt fra den resterende oppløsning blir da meget enkel. Anvender man halogenerte hydrokarboner dels som oppløsende og dels som ikke opp-løsende midler, så avsetter blandingen av de sjenerende bestanddeler seg derimot på overflaten av oppløsningen. Halogenerte hydrokarboner har imidlertid fordelen av ikke å være brennbare. Som oppløsende halogenert hydrokarbon egner seg f.eks. perklorid-etylen, og som ikke oppløsende halogenert hydrokarbon kan der velges fluor-klorkarbonforbindelser med samme kokepunktområde som den respektive oppløsende andel. If a mixture of dissolving and non-dissolving hydrocarbons is used for carrying out the method according to the invention, then the contaminants settle down after thorough mixing as a heavier layer below. The separation of this layer from the remaining solution then becomes very simple. If halogenated hydrocarbons are used partly as solvents and partly as non-dissolving agents, the mixture of the troublesome components, on the other hand, is deposited on the surface of the solution. However, halogenated hydrocarbons have the advantage of not being flammable. As a solvent halogenated hydrocarbon is suitable, e.g. perchloride-ethylene, and as a non-dissolving halogenated hydrocarbon, fluoro-chlorocarbon compounds with the same boiling point range as the respective solvent proportion can be selected there.

For gjennomførelsen av fremgangsmåten er det hensikts-messig å anvende hydrokarboner i kokepunktområdet mellom 80° og 120°C ved normaltrykk. En egnet blanding er toluen som oppløsende og en bensinfraksjon med kokepunktintervall 95 til 115°C som ikke oppløsende komponent. Men der kan også anvendes benzen-lettbensin eller benzen-cykloheksan-blandinger. Mengde og blandingsforhold for hydrokarbonene retter seg etter den foreliggende viskositets-tilstand av impregnerharpiksblandingen. For relativt lawiskose impregnerharpikser bør andelen av ikke oppløsende stoffer velges høyere. Den gunstigste blanding lar seg lett fastslå ved en prøve. For carrying out the method, it is appropriate to use hydrocarbons in the boiling point range between 80° and 120°C at normal pressure. A suitable mixture is toluene as a solvent and a petrol fraction with a boiling point range of 95 to 115°C as a non-dissolving component. But benzene-light petrol or benzene-cyclohexane mixtures can also be used there. The amount and mixing ratio of the hydrocarbons depends on the present viscosity state of the impregnating resin mixture. For relatively low-viscosity impregnating resins, the proportion of non-dissolving substances should be chosen higher. The most favorable mixture can easily be determined by a test.

For eksempel kan en impregnerharpiksblanding av ren bisfenol-A-bisglycideter og metyl-heksahydro-ftalsyreanhydrid ved gjennomførelse av fremgangsmåten ifølge oppfinnelsen med fordel regenereres med en blanding av 200 volumdeler toluen og 240 voium-deler bensin (kokepunktområde 95 - 115°C) til 100 vektdeler impregnerharpiksblanding. Man får på denne måte omtrent 80 - 90% av den anvendte impregnerharpiksblanding gjenvunnet som fullverdig harpiks. Også oppløsningsmiddelblandingen som fås tilbake ved for-dampningen under vakuum, kan brukes om igjen for ytterligere sepa-rasjoner. Omtrent 10 til 20% av impregnerharpiksblandingen fås etter separasjonen som ca. 70%'s oppløsning. Den kan nyttiggjøres som lakkharpiks, klebestoff eller laminatharpiks. For example, an impregnating resin mixture of pure bisphenol-A bisglycid ether and methyl-hexahydrophthalic anhydride can advantageously be regenerated with a mixture of 200 parts by volume toluene and 240 parts by volume petrol (boiling point range 95 - 115°C) to 100 parts by weight impregnating resin mixture. In this way, approximately 80 - 90% of the used impregnating resin mixture is recovered as full-fledged resin. The solvent mixture which is recovered by the evaporation under vacuum can also be used again for further separations. About 10 to 20% of the impregnating resin mixture is obtained after the separation as approx. 70% resolution. It can be used as lacquer resin, adhesive or laminate resin.

For gjennomførelse av fremgangsmåten ifølge oppfinnelsen For carrying out the method according to the invention

kan man som ytterligere eksempel anvende en blanding av benzen og bensin. Bensinen inneholder mindre enn 2% aromater og har et kokepunktområde fra 65 - 95°C. Ved anvendelse av denne blanding går man ut fra 100 volumdeler benzen og 450 volumdelér bensin pr. 100 vektdeler av impregnerharpiksblandingen av metyl-heksahydro-ftalsyreanhydrid og bisfenol A-bis-glycidyleter og blander andelene grundig. Omtrent 20% av den benyttede mengde av impreg- as a further example, a mixture of benzene and petrol can be used. The petrol contains less than 2% aromatics and has a boiling point range of 65 - 95°C. When using this mixture, the starting point is 100 parts by volume of benzene and 450 parts by volume of petrol per 100 parts by weight of the impregnating resin mixture of methyl hexahydrophthalic anhydride and bisphenol A bis-glycidyl ether and thoroughly mixes the parts. Approximately 20% of the amount of impregnation used

nerharpiks skiller seg da fra som uoppløselig skikt, så resten, nerresin then separates as an insoluble layer, so the rest,

dvs. ca. 80% av impregnerharpiksblandingen, vinnes tilbake som fullverdig harpiks. i.e. approx. 80% of the impregnating resin mixture is recovered as full-fledged resin.

Som enda et eksempel kan nevnes at der til 100 vektdeler As yet another example, it can be mentioned that there to 100 parts by weight

av impregnerharpiksblandingen av ren bisfenol A-bis-glycidyleter og metyl-heksahydro-ftalsyreanhydrid føyes 600 volumandeler av en blanding av 100 volumdeler benzen og 500 volumdeler cykloheksan (kokepunkt 79 til 82°C). Etter grundig blanding fåes tilnærmel- of the impregnating resin mixture of pure bisphenol A bis-glycidyl ether and methyl hexahydrophthalic anhydride, 600 parts by volume of a mixture of 100 parts by volume benzene and 500 parts by volume cyclohexane (boiling point 79 to 82°C) are added. After thorough mixing, approx.

sesvis 90% av den anvendte mengde impregnert harpiksblanding til- at least 90% of the amount of impregnated resin mixture used to

bake som fullverdig harpiks, mens omtrent 10% skilles fra som uoppløselig skikt. bake as full-fledged resin, while approximately 10% is separated as an insoluble layer.

Fremgangsmåten ifølge oppfinnelsen kan dessuten med fordel The method according to the invention can also be advantageous

benyttes til foredling av harpikser som på grunn av for stor reak- used for the processing of resins which, due to excessive reac-

tivitet bare er dårlig anvendelige for impregneringsteknikken. tivity are only poorly applicable for the impregnation technique.

Til dette formål utføres først en forhåndsreaksjon med en delmengde For this purpose, a preliminary reaction is first carried out with a partial amount

av den senere anvendte herder. Herunder oppfanges især de harpiks-bestanddeler som inneholder hydroksylgrupper, og som så ved gjennomførelsen av fremgangsmåten ifølge oppfinnelsen felles ut som sure estere sammen med forurensninger med akselererende virk- of the subsequently used hardener. Here, in particular, the resin constituents containing hydroxyl groups are collected, and which, when carrying out the method according to the invention, precipitate out as acidic esters together with impurities with an accelerating effect

ning som f.eks. alkaliforbindelser. På denne måte blir det til og med mulig å befri harpiksen for sjenerende bestanddeler som ikke lar seg fjerne ved en kortveisdestillasjon. ning as e.g. alkali compounds. In this way, it even becomes possible to rid the resin of troublesome constituents that cannot be removed by a short-path distillation.

Claims (5)

1. Fremgangsmåte til å separere høyere-molekylære bestanddeler -og katalytisk virksomme forurensninger fra for impregneringsfor-1. Procedure for separating higher-molecular components - and catalytically active contaminants from impregnation agents - mål anvendelige blandinger av epoksyharpiks og en syreanhydridherder, fortrinnsvis til regenerering av brukte impregnerharpiks-blandinger, karakterisert ved at der til blandingen av epoksyharpiks og syreanhydridherder føyes blandinger av hydrokarboner eller halogenerte hydrokarboner som dels oppløser, dels ikke oppløser harpiksblandingen, og at de ikke oppløste bestanddeler så etter god gjennomblanding fraskilles på fysikalsk vei, hvorpå oppløsningen inndampes under vakuum. suitable mixtures of epoxy resin and an acid anhydride hardener, preferably for the regeneration of used impregnating resin mixtures, characterized in that mixtures of hydrocarbons or halogenated hydrocarbons are added to the mixture of epoxy resin and acid anhydride hardener which partly dissolve, partly do not dissolve the resin mixture, and that the undissolved components then, after thorough mixing, separate physically, after which the solution is evaporated under vacuum. 2. Fremgangsmåte som angitt i krav 1, kå rak teri s e r t ved at kokepunktene for de hydrokarboner som føyes til blandingen av epoksyharpiks og syreanhydridherder, ved normaltrykk ligger mellom 80 og 120°C. 2. Method as set forth in claim 1, characterized in that the boiling points for the hydrocarbons added to the mixture of epoxy resin and acid anhydride hardener, at normal pressure, lie between 80 and 120°C. 3. Fremgangsmåte som angitt i krav 1 eller 2, karakterisert ved at der som hydrokarbon til å løse impregnerharpiksblandingen anvendes toluen eller benzen. 3. Method as stated in claim 1 or 2, characterized in that toluene or benzene is used as hydrocarbon to dissolve the impregnating resin mixture. 4. Fremgangsmåte som angitt i krav 1 eller 2, karakterisert ved at der som hydrokarbon som ikke løser impregnerharpiksblandingen, anvendes en bensinfraksjon med kokepunktintervall 95 - 115°C. 4. Method as stated in claim 1 or 2, characterized in that a petrol fraction with a boiling point interval of 95 - 115°C is used as hydrocarbon which does not dissolve the impregnating resin mixture. 5. Fremgangsmåte som angitt i krav 1, karakterisert ved at der som hydrokarbon som ikke løser harpiksblandingen, anvendes cykloheksan.5. Method as stated in claim 1, characterized in that cyclohexane is used as hydrocarbon which does not dissolve the resin mixture.
NO238571A 1970-07-29 1971-06-23 PROCEDURES FOR SEPARATE HIGHER MOLECULAR COMPONENTS AND CATALYTIC EFFICIENT POLLUTIONS FROM IMPREGNATION FORM} L APPLICABLE MIXTURES OF EPOXY RESIN AND AN ACID ANHYDRIDE. NO136154C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19702038711 DE2038711C3 (en) 1970-07-29 Process for separating high molecular weight components and catalytically active impurities from epoxy-acid anhydride hardener mixtures that can be used for impregnation purposes

Publications (2)

Publication Number Publication Date
NO136154B true NO136154B (en) 1977-04-18
NO136154C NO136154C (en) 1977-07-27

Family

ID=5778843

Family Applications (1)

Application Number Title Priority Date Filing Date
NO238571A NO136154C (en) 1970-07-29 1971-06-23 PROCEDURES FOR SEPARATE HIGHER MOLECULAR COMPONENTS AND CATALYTIC EFFICIENT POLLUTIONS FROM IMPREGNATION FORM} L APPLICABLE MIXTURES OF EPOXY RESIN AND AN ACID ANHYDRIDE.

Country Status (5)

Country Link
AT (1) AT306381B (en)
BR (1) BR7104787D0 (en)
CH (1) CH559569A5 (en)
NO (1) NO136154C (en)
SE (1) SE370708B (en)

Also Published As

Publication number Publication date
NO136154C (en) 1977-07-27
DE2038711A1 (en) 1972-02-03
DE2038711B2 (en) 1975-06-26
SE370708B (en) 1974-10-28
CH559569A5 (en) 1975-03-14
BR7104787D0 (en) 1973-04-05
AT306381B (en) 1973-04-10

Similar Documents

Publication Publication Date Title
DE711819T1 (en) Process and device for obtaining organic sulfur compounds from heating oil
DE102015204885A1 (en) Isolation system, uses to it, as well as electric machine
GB971855A (en) Method for treating a permeable mass
NO136154B (en) PROCEDURES FOR SEPARATE HIGHER MOLECULAR COMPONENTS AND CATALYTIC EFFICIENT POLLUTIONS FROM IMPREGNATION FORM} L APPLICABLE MIXTURES OF EPOXY RESIN AND AN ACID ANHYDRIDE.
SU1011054A3 (en) Curing agent for resol phenol formaldehyde resins
GB723989A (en) Improvements relating to compositions containing organo-polysiloxane resins
US2221540A (en) Method of producing a resin
US2033978A (en) Concentration of lower aliphatic acids
US2872409A (en) Method of separating n-paraffins from hydrocarbons
US2288853A (en) Hydrocarbon oil treatment
US2391368A (en) Resin composition
US1985453A (en) Dehydration of synthetic resins
US3120487A (en) Solvent extraction with alkyl substituted 2-oxazolidones
Negishi et al. The Separation of Iso-and Normal Butyl Alcohols from Hydrocarbons by Azeotropic Distillation
US2269347A (en) Shellac-cashew nut shell liquid material reaction product
DE1210964B (en) Process for the production of heat-curable coatings, in particular wire enamels, based on polyspirane resins
US2170956A (en) Method for refining rosin
US2110311A (en) Extraction process
US2949422A (en) Solvent extraction process for high octane gasoline
SU658149A1 (en) Polymer composition for obtaining aqueous dispersion
SU1063818A1 (en) Adhesive composition
DE1745363C3 (en) Process for the production of epoxy polyadducts
US2671753A (en) Recovery of oxidation inhibitors
US2428358A (en) Artificial resin and method of coating paper therewith
CA1082391A (en) Unsaturated epoxides as coupling agents for carbon fibers and unsaturated matrix resins