NO135805B - - Google Patents

Download PDF

Info

Publication number
NO135805B
NO135805B NO723418A NO341872A NO135805B NO 135805 B NO135805 B NO 135805B NO 723418 A NO723418 A NO 723418A NO 341872 A NO341872 A NO 341872A NO 135805 B NO135805 B NO 135805B
Authority
NO
Norway
Prior art keywords
fuel
carbide
oxygen
zirconium
titanium
Prior art date
Application number
NO723418A
Other languages
Norwegian (no)
Other versions
NO135805C (en
Inventor
Theodorus Cornelis Steemers
Original Assignee
Atomenergi Inst For
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atomenergi Inst For filed Critical Atomenergi Inst For
Publication of NO135805B publication Critical patent/NO135805B/no
Publication of NO135805C publication Critical patent/NO135805C/no

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/626Coated fuel particles
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Products (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

Foreliggende oppfinnelse angår kapslede eller bekledde nukleære brensellegemer som omfatter nukleært brensel i form av oksyd, samt en fremgangsmåte for fremstilling av et sådant legeme. En av de faktorer som antas å ha en odeleggende virkning på oksydbrensel, The present invention relates to encapsulated or coated nuclear fuel bodies which comprise nuclear fuel in the form of oxide, as well as a method for producing such a body. One of the factors believed to have a damaging effect on oxide fuel,

er at det oppstår gasser inne i brenselstrukturen og dens omslutning. Under forbrenningen av oksydbrensel.vil f.eks. de oksygen-atomer som ikke reagerer med fisjons-produktene bygge opp et gass-trykk som vil kunne bli meget kraftig og frembringe skadelige påkjenninger i brenselstrukturen eller dens omslutning. is that gases occur inside the fuel structure and its surroundings. During the combustion of oxide fuel, e.g. the oxygen atoms that do not react with the fission products build up a gas pressure that can become very strong and produce harmful stresses in the fuel structure or its enclosure.

Det er et formål for foreliggende oppfinnelse å overvinne denne ulempe, og da det f.eks. fra svensk patentskrift nr. 315.341 og US patentskrift nr. 3.472.734 er tidligere kjent kapslede nukleære brensellegemer som omfatter nukleært brensel i form av oksyd av minst ett av elementene i elementgruppen: uran, plutenium, og torium, kombinert med en tilleggskomponent som omfatter en karbid av zirkonium eller titan, foreslåes på denne bakgrunn og i henhold til oppfinnelsen et brensellegeme av ovenfor angitt art hvori, It is an object of the present invention to overcome this disadvantage, and when it e.g. from Swedish Patent No. 315,341 and US Patent No. 3,472,734 are previously known encapsulated nuclear fuel bodies which comprise nuclear fuel in the form of oxide of at least one of the elements in the element group: uranium, plutonium, and thorium, combined with an additional component comprising a carbide of zirconium or titanium, on this background and in accordance with the invention, a fuel element of the type indicated above is proposed in which,

nevnte kombinasjon utgjbres av en koherent sammensintring som omfatter minst en av nevnte oksyder og en av nevnte karbider i separate faser og innkapslet i fravær av oksygenholdig atmosfære. said combination is produced by a coherent sintering comprising at least one of said oxides and one of said carbides in separate phases and encapsulated in the absence of an oxygen-containing atmosphere.

Når et sådant brensellegeme plasseres i en nukleær reaktor hvori fisjons-reaksjoner opptrer og oksygen dannes, vil den andel av det dannede oksygen som ikke kombineres med fisjons-produktene, hvilket vil være fri oksygen, enten utfylle foreliggende mellomrom i karbiden, hvis struktur forblir uforandret, eller reagerer med karbonatomer for dannelse av CO. I sistnevnte tilfelle vil imidler-tid CO-trykket i brensellegemet eller dets innkapsling ikke over- - skride likevektstrykket av CO overfor det oksygenfrie oksy-karbid, fordi CO ettersom det dannes vil reagere med karbiden og ikke etter- When such a fuel body is placed in a nuclear reactor in which fission reactions occur and oxygen is formed, the proportion of the formed oxygen that does not combine with the fission products, which will be free oxygen, will either fill existing spaces in the carbide, whose structure remains unchanged , or reacts with carbon atoms to form CO. In the latter case, however, the CO pressure in the fuel body or its encapsulation will not exceed the equilibrium pressure of CO vis-à-vis the oxygen-free oxy-carbide, because CO, as it is formed, will react with the carbide and not

late noen reaksjonsprodukter i gassform. leaving some reaction products in gaseous form.

Oppfinnelsen omfatter også en fremgangsmåte for fremstilling av ovenfor angitte brensellegeme, og som går ut på at det dannes et koherent ferskt legeme som omfatter en eller flere av de nevnte oksyder samt en karbid av zirkonium eller titan, hvoretter nevnte ferske legeme sintres ved en temperatur som tillater vedkommende oksyd og karbid å forbli i separate faser, og det sintrede legeme tilslutt innkapsles uten at legemet utsettes for oksygenholdig atmosfære. The invention also includes a method for producing the above-mentioned fuel body, which involves the formation of a coherent fresh body comprising one or more of the aforementioned oxides as well as a carbide of zirconium or titanium, after which said fresh body is sintered at a temperature which allows the relevant oxide and carbide to remain in separate phases, and the sintered body is finally encapsulated without exposing the body to an oxygen-containing atmosphere.

Ved en praktisk utfdrelse av oppfinnelsens fremgangsmåte ble zirkoniumkarbid-pulver blandet med U02 og et bindemiddel som f.eks. stearinsyre. De blandede pulvere ble malt og utformet til sferoider ved hjelp av "langsom vekst"-metoden. Sferoidene ble så sintret under reduserende forhold for frembringelse av koherente sferoider av U02 og Zr C. Forutsatt at sintringstemperaturen holdes forholds-vis lav, f.eks. under omkring 1.500°C, vil U02 og Zr C ikke danne en fast opplbsning, men fortsatt foreligge som separate faser. In a practical implementation of the method of the invention, zirconium carbide powder was mixed with U02 and a binder such as e.g. stearic acid. The mixed powders were ground and shaped into spheroids using the "slow growth" method. The spheroids were then sintered under reducing conditions to produce coherent spheroids of UO 2 and Zr C. Provided that the sintering temperature is kept relatively low, e.g. below about 1,500°C, U02 and Zr C will not form a solid solution, but still exist as separate phases.

Etter sintringen holdes sferoidene adskilt fra oksygenholdige atmosfærer inntil de er klare for påfbring av de vanlige belegg for tilbakeholdelse av fisjonsprodukter. After sintering, the spheroids are kept separated from oxygen-containing atmospheres until they are ready for application of the usual coatings for containment of fission products.

Når disse belegg er påfbrt, vil det ikke lenger foreligge noen fare for at sferoidene kan oppta oksygen fra atmosfæren. Under for-brenning av U02, vil det frigjorte oksygen som ikke inngår i noen reaksjon oppta ledige atomplasser i zirkoniumkarbidet:, og opptil 60 % av disse indre gitterposisjoner kan være fylt med atomisk oksygen i stedet for karbon uten at det opptrer strukturelle forandringer i sferoiden. Karbon i belegget eller sferoiden kan reagere med oksygen for dannelse av CO, men i dette tilfelle vil CO reagere med Zr C for dannelse av en oksy-karbid, og man får When these coatings are applied, there will no longer be any danger that the spheroids can absorb oxygen from the atmosphere. During combustion of U02, the freed oxygen that does not take part in any reaction will occupy vacant atomic sites in the zirconium carbide:, and up to 60% of these internal lattice positions can be filled with atomic oxygen instead of carbon without structural changes occurring in the spheroid . Carbon in the coating or spheroid can react with oxygen to form CO, but in this case the CO will react with ZrC to form an oxy-carbide, and you get

således : thus:

Den kjemiske sammensetning av oksykarbidet er ikke veldefinert og alle slags mellom-forbindélser«er mulige. Forbindelsen kan således bedre beskrives ved formelen Zr 0x C^.. CO-trykket i sferoiden vil ikke overskride likevektstrykket for CO overfor det oksygenfattige oksy-karbid, fordi CO, etterhvert som det dannes, vil reagere med karbiden og ikke etterlate noen reaksjonsprodukter i gassform. The chemical composition of the oxycarbide is not well defined and all kinds of intermediate compounds are possible. The compound can thus be better described by the formula Zr 0x C^.. The CO pressure in the spheroid will not exceed the equilibrium pressure for CO against the oxygen-poor oxy-carbide, because CO, as it is formed, will react with the carbide and leave no reaction products in gaseous form .

Det kan vises at likevektstrykket for CO overfor både oksygenfattig oksy-zirkoniumkarbid og oksy-titankarbid er meget lavt. It can be shown that the equilibrium pressure for CO against both oxygen-poor oxy-zirconium carbide and oxy-titanium carbide is very low.

Den anvandte forholdsvise mengde av zirkoniumkarbid eller titankarbid avhenger av den forbrenningsgrad som brenselet skal utsettes for. Det antas at det for hver prosent nukleært spaltbart brensel {% FIMA) grovt regnet kan andvendes 25 mol-prosent karbid. The relative amount of zirconium carbide or titanium carbide used depends on the degree of combustion to which the fuel is to be subjected. It is assumed that for each percent nuclear fissionable fuel {% FIMA) roughly 25 mole percent carbide can be used.

Claims (4)

1. Kapslet, nukleært brensellegeme som omfatter nukleært brensel i form av oksyd av minst ett av elementene i elementgruppen : uran, plutenium og torium, kombinert med en tilleggskomponent som omfatter en karbid av zirkonium eller titan,karakterisert ved at nevnte kombinasjon utgjbres av en koherent sammensintring som omfatter minst en av nevnte oksyder og en av nevnte karbider i separate, . faser og innkapslet i fravær av oksygenholdig atmosfære.1. Encapsulated, nuclear fuel body comprising nuclear fuel in the form of oxide of at least one of the elements in the element group: uranium, plutonium and thorium, combined with an additional component comprising a carbide of zirconium or titanium, characterized in that said combination is produced by a coherent sintering comprising at least one of said oxides and one of said carbides in separate, . phases and encapsulated in the absence of an oxygen-containing atmosphere. 2. Brensellegeme som angitt i krav X, karakterisert ved at legemet har et relativt innhold av tilleggskomponenten i samsvar med brenselets tiltenkte forbrenningsgrad, fortrinnsvis ca. 0.25 mol-prosent pr. prosent nukleært spaltbart brensel (% FIMA).2. Fuel body as specified in requirement X, characterized in that the body has a relative content of the additional component in accordance with the fuel's intended degree of combustion, preferably approx. 0.25 mole percent per percent nuclear fissionable fuel (% FIMA). 3. Fremgangsmåte for fremstilling av et brensellegeme som angitt i krav 1-2, karakterisert ved at det dannes et koherent ferskt legeme som omfatter en eller flere av de nevnte oksyder samt en karbid av zirkonium eller titan, hvoretter nevnte ferske legeme sintres- ved en'temperatur som tillater vedkommende oksyd og karbid å forbli i separate faser, og det sintrede legeme tilslutt innkapsles uten at legemet utsettes for oksygenholdig atmosfære.3. Method for producing a fuel body as specified in claims 1-2, characterized in that a coherent fresh body is formed which comprises one or more of the mentioned oxides as well as a carbide of zirconium or titanium, after which said fresh body is sintered with a 'temperature which allows the relevant oxide and carbide to remain in separate phases, and the sintered body is finally encapsulated without the body being exposed to an oxygen-containing atmosphere. 4. Fremgangsmåte som angitt i krav 3, karakterisert ved at.en karbid av zirkonium eller titan blandes med nukleær brenseloksyd i pulverform samt et bindemiddel, for dannelse av nevnte koherente ferske legeme, hvoretter legemet sintres ved en temperatur under 1500°C.4. Procedure as specified in claim 3, characterized in that.a carbide of zirconium or titanium is mixed with nuclear fuel oxide in powder form and a binder, to form said coherent fresh body, after which the body is sintered at a temperature below 1500°C.
NO723418A 1971-10-07 1972-09-25 NO135805C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB4675871A GB1375575A (en) 1971-10-07 1971-10-07 Improvements in or relating to encapsulated or clad nuclear fuel bodies

Publications (2)

Publication Number Publication Date
NO135805B true NO135805B (en) 1977-02-21
NO135805C NO135805C (en) 1977-06-01

Family

ID=10442477

Family Applications (1)

Application Number Title Priority Date Filing Date
NO723418A NO135805C (en) 1971-10-07 1972-09-25

Country Status (3)

Country Link
JP (1) JPS4845795A (en)
GB (1) GB1375575A (en)
NO (1) NO135805C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2330685A (en) * 1997-10-25 1999-04-28 British Nuclear Fuels Plc Production of plutonium containing products
CN108417279B (en) * 2018-02-01 2020-05-01 中国工程物理研究院材料研究所 ZrC and UO2Composite fuel pellet and preparation method and application thereof

Also Published As

Publication number Publication date
JPS4845795A (en) 1973-06-29
NO135805C (en) 1977-06-01
GB1375575A (en) 1974-11-27

Similar Documents

Publication Publication Date Title
Demkowicz et al. Coated particle fuel: Historical perspectives and current progress
Akie et al. A new fuel material for once-through weapons plutonium burning
US3826754A (en) Chemical immobilization of fission products reactive with nuclear reactor components
US3878041A (en) Oxynitride fuel kernel for gas-cooled reactor fuel particles
US4774051A (en) Sintered nuclear fuel compact and method for its production
Homan et al. Stoichiometric effects on performance of high-temperature gas-cooled reactor fuels from the UCO system
KR101733832B1 (en) Nuclear fuel, nuclear fuel element, nuclear fuel assembly and a method manufacturing nuclear fuel
Reynolds et al. Irradiation behavior of experimental fuel particles containing chemically vapor deposited zirconium carbide coatings
Nelson et al. Other power reactor fuels
JPS60125588A (en) Nuclear reactor member
Thein et al. Thermal Stabilization of 233UO2, 233UO3, and 233U3O8
US5272740A (en) Agent for trapping the radioactivity of fission products which are generated in a nuclear fuel element
US2996444A (en) Fuel element construction
US5642390A (en) Uranium-containing nuclear-fuel sintered pellet
US3715273A (en) Nuclear fuel element containing sintered uranium dioxide fuel with a fine particulate dispersion of an oxide additive therein,and method of making same
NO135805B (en)
US3243349A (en) Carbon coated, metal carbide particles for nuclear reactor use
US4077838A (en) Pyrolytic carbon-coated nuclear fuel
Jostsons et al. Synroc for immobilising excess weapons plutonium
Somers et al. Fabrication Routes for Yttria‐Stabilized Zirconia Suitable for the Production of Minor Actinide Transmutation Targets
US4006096A (en) Method of making fissionable-fuel and fertile breeder materials for nuclear reactors
US5545797A (en) Method of immobilizing weapons plutonium to provide a durable, disposable waste product
US5464571A (en) Once-through nuclear reactor fuel compounds
Steemers Improvements in or relating to encapsulated or clad nuclear fuel bodies
US3219541A (en) Method of preventing carburization of fuel element cladding metals by uranium carbide fuels