NO135763B - - Google Patents

Download PDF

Info

Publication number
NO135763B
NO135763B NO2181/72A NO218172A NO135763B NO 135763 B NO135763 B NO 135763B NO 2181/72 A NO2181/72 A NO 2181/72A NO 218172 A NO218172 A NO 218172A NO 135763 B NO135763 B NO 135763B
Authority
NO
Norway
Prior art keywords
electrolyte
sulfur
iron
active mass
copper
Prior art date
Application number
NO2181/72A
Other languages
Norwegian (no)
Other versions
NO135763C (en
Inventor
R D Giles
Original Assignee
Inco Europ Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inco Europ Ltd filed Critical Inco Europ Ltd
Publication of NO135763B publication Critical patent/NO135763B/no
Publication of NO135763C publication Critical patent/NO135763C/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Fremgangsmåte til fremstilling av en negativ jernholdig aktiv masse for batterier på en metallfolie.Process for producing a negative ferrous active mass for batteries on a metal foil.

Description

I nikkel-jern-akkumulatorbatterier består den aktive In nickel-iron accumulator batteries, the active consists

masse vanligvis av en blanding av alfa-jern og magnetitt (Fe304). Denne aktive masse fremstilles normalt ved at rent, mass usually of a mixture of alpha iron and magnetite (Fe304). This active mass is normally produced by pure,

findelt jern behandles med varmt vann og deretter oppvarmes i nærvær av luft på dampoppvarmede bord, hvorved det dannes en pulverformet blanding av alfa-Fe og Fe3°4> Denne blanding finmales og stampes i rør eller lommer som virker som strøm- finely divided iron is treated with hot water and then heated in the presence of air on steam-heated tables, thereby forming a powdery mixture of alpha-Fe and Fe3°4> This mixture is finely ground and stamped into tubes or pockets which act as current-

ledere. leaders.

Når det gjelder kapasiteten som resulterer fra den reversible reduksjon og oksydasjon av jernoksyd under ladnings- Regarding the capacity resulting from the reversible reduction and oxidation of iron oxide during charge-

og utladningssykluser, blir normalt høyst 20 - 23% av jernet i massen utnyttet. Ved den foreliggende oppfinnelse tar man sikte på å fremstille en aktiv masse hvor en større andel av jernet, opp til 40%,kan utnyttes. and discharge cycles, normally no more than 20 - 23% of the iron in the mass is utilized. With the present invention, the aim is to produce an active mass where a larger proportion of the iron, up to 40%, can be utilized.

I det foreliggende anvendes uttrykket "aktiv masse" In the present, the term "active mass" is used

som betegnelse på et materiale som uten ytterligere varme- as a designation for a material which, without further heat-

behandling kan anvendes som elektrodemateria le i batterier. treatment can be used as electrode material in batteries.

I ethvert batteri er det ønskelig å gjøre forholdet In any battery it is desirable to make the ratio

mellom vekten av den aktive masse og metallet som bærer massen, between the weight of the active mass and the metal that carries the mass,

så høyt som mulig og også minske den totale vekt. Av denne grunn anvendes folie som bærende materiale i visse nikkel-kadmiumbatterier. Imidlertid kan den ovenfor beskrevne aktive masse ikke bringes til å hefte til metallfolie. as high as possible and also reduce the total weight. For this reason, foil is used as a carrier material in certain nickel-cadmium batteries. However, the above-described active mass cannot be made to adhere to metal foil.

Ved fremgangsmåten i følge oppfinnelsen oppnås en With the method according to the invention, a

aktiv masse som hefter godt til metallfolie. Folien kan be- active mass that adheres well to metal foil. The foil can be

stå av nikkel, jern, kobber eller en nikke 1-jern-legering. be made of nickel, iron, copper or a nickel 1-iron alloy.

Oppfinnelsen angår således en fremgangsmåte til fremstilling av en negativ jernholdig aktiv masse for batterier på en elektrisk ledende metallfolie, hvor den aktive masse består av jern og jernoksyd eller jernhydroksyd og eventuelt svovel eller kobber og avsettes elektrolytisk fra en elektrolytt inneholdende toverdige jern-ioner, aramonium-ioner og et pufringsmiddel, og fremgangsmåten er karakterisert ved at elektrolysen utføres i en elektrolytt inneholdende 0,1-0,65 mol/l ferroammoniumsulfat eller ferroammoniumsulfamat, idet elektrolyttens pH holdes mellom 2,5 og 5,5, fortrinnsvis mellom 3 og 4,4, i avhengighet av en katodestrømstetthet mellom 20 og 140 mA/cm 2 , fortrinnsvis 20-100 mA/cm 2, hvoretter den aktive masse eventuelt underkastes en formeringsbehandling i en egnet elektrolytt. Ferroammoniumsaltet, som fortrinnsvis er ferroammoniumsulfat, behøver ikke nødvendigvis å tilsettes elektrolytten som sådant, idet saltet kan dannes in situ, f.eks. av en blanding av ferrosulfat og ammoniumsulfat, eller de tilsvarende sulfamater. The invention thus relates to a method for producing a negative ferrous active mass for batteries on an electrically conductive metal foil, where the active mass consists of iron and iron oxide or iron hydroxide and possibly sulfur or copper and is electrolytically deposited from an electrolyte containing divalent iron ions, aramonium -ions and a buffering agent, and the method is characterized by the electrolysis being carried out in an electrolyte containing 0.1-0.65 mol/l ferroammonium sulfate or ferroammonium sulfamate, the pH of the electrolyte being kept between 2.5 and 5.5, preferably between 3 and 4 ,4, depending on a cathode current density between 20 and 140 mA/cm 2 , preferably 20-100 mA/cm 2 , after which the active mass is optionally subjected to a propagation treatment in a suitable electrolyte. The ferroammonium salt, which is preferably ferroammonium sulphate, does not necessarily need to be added to the electrolyte as such, as the salt can be formed in situ, e.g. of a mixture of ferrous sulfate and ammonium sulfate, or the corresponding sulfamates.

Foretrukne utførelsesformer av fremgangsmåten i Preferred embodiments of the method i

følge oppfinnelsen er presisert i patentkravene. according to the invention is specified in the patent claims.

Den kjemiske sammensetning av den avsetning som erholdes fra elektrolytten, avhenger av de betingelser som anvendes under elektrolysen, særlig elektrolyttens pH og den katodiske strømtetthet. Det er viktig å samordne betingelsene slik at en del av massen består av oksyd, hydratisert oksyd eller hydroksyd. Nærvær av vesentlige mengder findelt jern, f.eks. 30-40 vekt-%, i massen er ikke en alvorlig ulempe, men massen bør fortrinnsvis være hovedsakelig oksydisk. The chemical composition of the deposit obtained from the electrolyte depends on the conditions used during the electrolysis, in particular the pH of the electrolyte and the cathodic current density. It is important to coordinate the conditions so that part of the mass consists of oxide, hydrated oxide or hydroxide. Presence of significant amounts of finely divided iron, e.g. 30-40% by weight, in the mass is not a serious disadvantage, but the mass should preferably be mainly oxidic.

Viktigere er reguleringen av pH. pH-verdien må være tilstrekkelig høy til å sikre at avsetningen delvis er oksydisk, men ikke så høy at det utfelles større mengder ferrohydroksyd fra oppløsningen. Ved lav pH blir bare jern og ikke noe oksyd eller hydroksyd avsatt på bæreren (katode). Med økende pH blir i stigende grad ferrohydroksyd avsatt på katoden inn-til i det vesentlige alt jern utfelles fra oppløsningen som ferrohydroksyd ved en pH på ca. 5,5. More important is the regulation of pH. The pH value must be sufficiently high to ensure that the deposit is partly oxidative, but not so high that larger amounts of ferric hydroxide are precipitated from the solution. At low pH, only iron and no oxide or hydroxide is deposited on the carrier (cathode). With increasing pH, ferrous hydroxide is increasingly deposited on the cathode until essentially all iron is precipitated from the solution as ferrous hydroxide at a pH of approx. 5.5.

Skjønt en høy strømtetthet i seg selv er ønsket, fører den til utvikling av hydrogen ved katoden, og dette minsker vedheftingen av den aktive masse til folien. Den maksi-malt tillatte strømtetthet er 140 mA/cm 2, og fortrinnsvis er strømtettheten mellom 20 og 100 .mA/cm 2. Elektrolyttens pH Although a high current density in itself is desired, it leads to the development of hydrogen at the cathode, and this reduces the adhesion of the active mass to the foil. The maximum permitted current density is 140 mA/cm 2 , and preferably the current density is between 20 and 100 .mA/cm 2. The pH of the electrolyte

må være minst 2,5 og fortrinnsvis mellom 3 og 4,4 eller fra 3 til 4. must be at least 2.5 and preferably between 3 and 4.4 or from 3 to 4.

Da det er nødvendig å regulere pH som beskrevet, må elektrolytten hensiktsmessig pufres. Et utmerket pufringsmiddel er et dihydrogenfosfat av et alkalimeta11, fortrinnsvis av natrium, som kan tilsettes til elektrolytten som sådant eller som alkali og fosforsyre. Andre pufringsmidler som kan brukes, innbefatter alkalimetalltartrater og -laktater tilsatt som sådanne eller som syre og alkali. Det er funnet at avsetningen inneholder en liten mengde av anionet av pufringsmiddelet, idet denne mengde varierer med strømtettheten og konsentrasjonen av pufringsmiddelet. As it is necessary to regulate the pH as described, the electrolyte must be suitably buffered. An excellent buffering agent is a dihydrogen phosphate of an alkali metal, preferably of sodium, which can be added to the electrolyte as such or as alkali and phosphoric acid. Other buffering agents which may be used include alkali metal tartrates and lactates added as such or as acid and alkali. It has been found that the deposit contains a small amount of the anion of the buffering agent, this amount varying with the current density and the concentration of the buffering agent.

I enhver elektrolytt som inneholder et bestemt pufringsmiddel, kan pH om nødvendig innstilles ved tilsetning av alkalihydroksyd. In any electrolyte containing a specific buffering agent, the pH can be adjusted if necessary by the addition of alkali hydroxide.

Elektrolysen utføres fortrinnsvis ved en temperatur fra romtemperatur til 30°C. Elektrolytten inneholder fortrinnsvis fra 0,1 til 0,65 M (NH4)2S04FeS04•6H20 og fra 0,1 til 0,5 The electrolysis is preferably carried out at a temperature from room temperature to 30°C. The electrolyte preferably contains from 0.1 to 0.65 M (NH4)2S04FeS04•6H20 and from 0.1 to 0.5

M Nal^PO^•2H20. Anoden bør helst bestå av jern og således M Nal^PO^•2H2O. The anode should preferably consist of iron and thus

være oppløselig i elektrolytten. be soluble in the electrolyte.

Tykkelsen av den dannede avsetning øker vesentlig The thickness of the formed deposit increases significantly

med elektrolysetiden, og tiden i hvilken elektrolysen utføres, representerer under standard-betingelser for øvrig et bekvemt praktisk middel til å regulere tykkelsen av avsetningen på folien. Tykkelsen kan hensiktsmessig være fra 10 til lOO^um, skjønt større tykkelser kan tilveiebringes. with the electrolysis time, and the time in which the electrolysis is carried out, under standard conditions otherwise represents a convenient practical means of regulating the thickness of the deposit on the foil. The thickness can suitably be from 10 to 100 µm, although greater thicknesses can be provided.

Avsetninger dannet som beskrevet ovenfor, har en blå-sort farge, synes å være kolloidale og har en meget stor overflate. Batterier i hvilke de brukes, har en god utgångs-kapasitet, men kapasiteten minker i uønsket grad ved gjentatte sykluser. Deposits formed as described above have a blue-black color, appear to be colloidal and have a very large surface area. Batteries in which they are used have a good output capacity, but the capacity decreases to an undesirable extent with repeated cycles.

Et foretrukket og meget viktig trekk ved oppfinnelsen er innføring av en liten mengde svovel i avsetningen, enten som elementært svovel eller som jernsulfid. Det er funnet at dette øker utgangskapasiteten og levetiden for hver syklus betydelig. Svovel tilsettes fortrinnsvis til elektrolytten som natriummetabisulfitt, hvis konsentrasjon i elektrolytten A preferred and very important feature of the invention is the introduction of a small amount of sulfur in the deposit, either as elemental sulfur or as iron sulphide. This has been found to significantly increase the output capacity and lifetime of each cycle. Sulfur is preferably added to the electrolyte as sodium metabisulphite, whose concentration in the electrolyte

-4 -2 -4 -2

fortrinnsvis er fra 10 til 10 M. Andre svovelholdige forbindelser som er kjemisk stabile i oppløsningen og kan brukes for dette formål, er tiourea og natriumtiosulfat, og også kolloidalt svovel kan innføres i avsetningen fra et preferably is from 10 to 10 M. Other sulfur-containing compounds which are chemically stable in solution and can be used for this purpose are thiourea and sodium thiosulphate, and also colloidal sulfur can be introduced into the deposit from a

svovelholdig pufringsmiddel, f.eks. en natriumsulfitt/svovel-syrling-pufferoppløsning som blir delvis spaltet under elektrolysen, hvorved det ønskede svovelinnhold blir innført. Det i den avsatte aktive masse innførte svovel utgjør fortrinnsvis fra 0,1 til 1,0 vekt-%. sulphurous buffering agent, e.g. a sodium sulphite/sulfur acid buffer solution which is partially decomposed during the electrolysis, whereby the desired sulfur content is introduced. The sulfur introduced into the deposited active mass preferably amounts to from 0.1 to 1.0% by weight.

Svovelet kan også innføres i avsetningen under den elektrolytiske begynnelsesladning av elektroden som består av den ledende bærer og en negativ aktiv masse dannet på bæreren som ovenfor beskrevet. Svovelet kan avledes fra et alkalimetallsulfid eller polysulfid til stede i elektrolytten i en konsentra--3 -1 The sulfur can also be introduced into the deposit during the initial electrolytic charge of the electrode which consists of the conductive carrier and a negative active mass formed on the carrier as described above. The sulfur can be derived from an alkali metal sulfide or polysulfide present in the electrolyte in a concen--3 -1

sjon fra 10 <-3> til 10 molar. tion from 10 <-3> to 10 molar.

Det er videre funnet at det er fordelaktig å innføre kobber i avsetningen. Dette kan gjøres ved å innføres et opp-løselig kobbersalt, fortrinnsvis kobbersulfat, i elektrolytten i en slik mengde av en mengde av kobber som utgjør fra 1 til 20 vekt-% av jernet, inngår i avsetningen. Når kobber innføres på denne måte, er anoden fortrinnsvis uoppløselig. It has also been found that it is advantageous to introduce copper into the deposit. This can be done by introducing a soluble copper salt, preferably copper sulphate, into the electrolyte in such a quantity that a quantity of copper which constitutes from 1 to 20% by weight of the iron is included in the deposit. When copper is introduced in this way, the anode is preferably insoluble.

I det følgende gis en del eksempler. I hvert av dem ble den aktive masse avsatt på en 7 mikron tykk nikkelfolie ved elektrolyse ved romtemperatur. I hvert tilfelle bestemte man også vektøkningen mao lt i mg/cm 2, og i de fleste tilfelle bestemte man jerninnholdet i avsetningen i prosent. Utgangskapasiteten etter fu]^l ladning i en oppløsning inneholdende 20% KOH og 1,5 g/i LiOH ble bestemt i hvert eksempel i milliampere-timer (mAh) pr. cm 2 elektrodeoverflate før spenningen sank til -0,6V mot en kvikksølv-kvikksølvoksyd-referanseelektrode, og i de fleste tilfelle ble også kapasiteten bestemt etter forskjellige antall ladnings- og utladningssykluser i den samme oppløsning. In the following, a number of examples are given. In each of them, the active mass was deposited on a 7 micron thick nickel foil by electrolysis at room temperature. In each case, the weight gain measured in mg/cm 2 was also determined, and in most cases the iron content of the deposit was determined as a percentage. The output capacity after full charge in a solution containing 20% KOH and 1.5 g/l LiOH was determined in each example in milliampere-hours (mAh) per cm 2 electrode surface before the voltage dropped to -0.6V against a mercury-mercury oxide reference electrode, and in most cases the capacity was also determined after different numbers of charge and discharge cycles in the same solution.

Eksempel 1 Example 1

Elektrolytten inneholdt 0,6 M ferroammoniumsulfat (FeS04(NH4)2S046H20) og 0,5 M natriumdihydrogenfosfat (NaH2P04-2H~0) , idet pH var 3,1. Strømmen hadde en katodisk strømtetthet på 70 mA/cm 2 i en tid på 12,8 minutter. Vektøkningen var 6,8 mg/cm 2 og tykkelsen ' på o avsetningen på o hver side av folien var 62 mikron. Utgangskapasiteten var 1,6 mAh/cm 2. Kapasiteten etter 10 sykluser var 0,2 mAh/cm <2>. The electrolyte contained 0.6 M ferroammonium sulfate (FeS04(NH4)2S046H20) and 0.5 M sodium dihydrogen phosphate (NaH2P04-2H~0), the pH being 3.1. The current had a cathodic current density of 70 mA/cm 2 for a time of 12.8 minutes. The weight gain was 6.8 mg/cm 2 and the thickness of the deposit on each side of the foil was 62 microns. The initial capacity was 1.6 mAh/cm 2. The capacity after 10 cycles was 0.2 mAh/cm <2>.

Eksempel 2 Example 2

Elektrolytten var den samme som i eksempel 1, unntatt at pH ble innstilt til 3,3 ved tilsetning av 0,2 M NaOH. Den katodiske strømtetthet var 50 mA/cm 2, og etter 18 minutter vsair de vaekv tøfkonliinen gen var 121,204 0 ramgi/krcm ono. og Uttygaknkgeslksaen paasv itaevtsen etnvainr ge1n ,5p6 å mhAvh/ercm p. Kapasiteten etter 10'sykluser var 0,l8 mAh/cm o. The electrolyte was the same as in Example 1, except that the pH was adjusted to 3.3 by adding 0.2 M NaOH. The cathodic current density was 50 mA/cm 2 , and after 18 minutes vsair de vekv tofconlinien gen was 121.204 0 ramgi/krcm ono. and the Uttygaknkngeslksaen paasv itaevtsen etnvainr ge1n 1.5p6 to mhAvh/ercm p. The capacity after 10' cycles was 0.18 mAh/cm o.

Det kan ses at man ikke innførte svovel i avsetningen i eksempel 1 og 2, og at kapasiteten var lav etter 10 sykluser i hvert eksempel. I de resterende eksempler innførte man svovel. It can be seen that no sulfur was introduced into the deposit in examples 1 and 2, and that the capacity was low after 10 cycles in each example. In the remaining examples, sulfur was introduced.

Eksempel 3. Example 3.

Elektrolytten inneholdt 0,4 M ferroammoniumsulfat, 0,2 M natrium-dihydrogenf osf at, 0,1 M natriumhydroksyd og 0,001 M natriumbisulfitt, idet pH var 3*6. Strømtettheten var 90 mA/cm p, elektrolysetiden 12 minutter og mengden av den avsatte svovel 0,163 vektprosent. Vektøkningen var 6,05 mg/cm , og mengden av jern i den aktive masse 77%. I de forskjellige sykluser fant man følgende kapasiteter: The electrolyte contained 0.4 M ferrous ammonium sulfate, 0.2 M sodium dihydrogen phosphate, 0.1 M sodium hydroxide and 0.001 M sodium bisulfite, the pH being 3*6. The current density was 90 mA/cm p, the electrolysis time 12 minutes and the amount of the deposited sulfur 0.163% by weight. The weight gain was 6.05 mg/cm, and the amount of iron in the active mass 77%. In the different cycles, the following capacities were found:

Eksempel 4. Example 4.

Elektrolytten Inneholdt 0,6 M ferroammoniumsulfat, 0,6 M natriumdihydrogenfosfat og 0,00006 M natriummetabisulfitt. pH var mellom 3 og 4, strømtettheten 70 mA/cm og elektrolysetiden 12,8 minutter. Mengden av avsatt svovel var 0,10 vektprosent, vekt-økningen 7*8 mg/cm , og jerninnholdet i avsetningen 67$. Det ble funnet følgende kapasiteter: The electrolyte contained 0.6 M ferrous ammonium sulfate, 0.6 M sodium dihydrogen phosphate and 0.00006 M sodium metabisulfite. The pH was between 3 and 4, the current density 70 mA/cm and the electrolysis time 12.8 minutes. The amount of sulfur deposited was 0.10 percent by weight, the weight increase 7*8 mg/cm , and the iron content of the deposit 67$. The following capacities were found:

Eksempel 5- Example 5-

Eksempel 4 ble gjentatt, unntatt at metabisulfitt-inn-holdet av elektrolytten ble økt til 0,0006 M. Mengden av avsatt svovel var 0,4 vektprosent, vektøkningen 7*5 mg/cm 2og jerninnholdet 62$. Det ble funnet følgende kapasiteter: Example 4 was repeated, except that the metabisulphite content of the electrolyte was increased to 0.0006 M. The amount of deposited sulfur was 0.4 weight percent, the weight gain 7*5 mg/cm 2 and the iron content 62%. The following capacities were found:

Eksempel 6. Example 6.

Dette er et eksempel på bruken av et annet pufringsmiddel. Elektrolytten inneholdt 0,5 M ferroammoniumsulfat, 0,1 M melkesyre 0,033 M natriumhydroksyd og 0,001 M natriummetabisulfitt. Strøm-tettheten var 70 mA/cm , elektrolysetiden 9 minutter, pH 3*7 og vektøkninhen 4,1 mg/cm 2. Kapasiteten var til å begynne med 0,52 og i niende syklus 0,50. This is an example of the use of another buffering agent. The electrolyte contained 0.5 M ferrous ammonium sulfate, 0.1 M lactic acid, 0.033 M sodium hydroxide, and 0.001 M sodium metabisulfite. The current density was 70 mA/cm 2 , the electrolysis time 9 minutes, pH 3*7 and the weight gain 4.1 mg/cm 2 . The capacity was initially 0.52 and in the ninth cycle 0.50.

Eksempel 7- Example 7-

Dette er et annet eksempel for nok et annet pufringsmiddel og kan sammenlignes med eksempel 6. Elektrolytten inneholdt 0,5 M ferroammoniumsulfat, 0,1 M vinsyre, 0,066 M .natriumhydroksyd og 0,001 M natriummetabisulfitt, idet pH var 2,7. Strømtettheten var 70 mA/cm 2, elektrolysetiden 9 minutter og vektøkningen 6,05 mg/cm 2■. Begynnelseskapasiteten var 1,31* men sank til 0,46 i niende syklus. This is another example for yet another buffering agent and can be compared with example 6. The electrolyte contained 0.5 M ferrous ammonium sulfate, 0.1 M tartaric acid, 0.066 M sodium hydroxide and 0.001 M sodium metabisulphite, the pH being 2.7. The current density was 70 mA/cm 2 , the electrolysis time 9 minutes and the weight increase 6.05 mg/cm 2■. Initial capacity was 1.31* but decreased to 0.46 in the ninth cycle.

Eksempel 8. Example 8.

Dette er et eksempel for bruken av en annen svovelforbind-else.' Elektrolytten inneholdt 0,6 M ferroammoniumsulfat, 0,1 M natriumdihydrogenfosfat og 0,002 M tiourea. pH var mellom 3 og 4, strømtettheten 70 mA/cm 2 og elektrolysetiden 12,8 minutter. Mengden av avsatt svovel var 0,17 vektprosent. Vektøkningen var 11,2 mg/cm 2 og jerninnholdet i avsetningen 63^. Det ble funnet følgende kapasiteter: This is an example of the use of another sulfur compound.' The electrolyte contained 0.6 M ferroammonium sulfate, 0.1 M sodium dihydrogen phosphate and 0.002 M thiourea. The pH was between 3 and 4, the current density 70 mA/cm 2 and the electrolysis time 12.8 minutes. The amount of deposited sulfur was 0.17% by weight. The weight gain was 11.2 mg/cm 2 and the iron content in the deposit 63^. The following capacities were found:

Eksempel 9- Example 9-

Eksempel 8 ble gjentatt, unntatt at tiourea ble erstattet med 0,002 M natriumtiosulfat. Vektøkningen var 10,8 mg/cm 2 og jerninnholdet i avsetningen 75* 1%. Det ble funnet følgende kapasiteter : Example 8 was repeated, except that the thiourea was replaced by 0.002 M sodium thiosulfate. The weight gain was 10.8 mg/cm 2 and the iron content in the deposit 75*1%. The following capacities were found:

Eksempel 10. Example 10.

Dette eksempel viser at en svovelholdig forbindelse kan This example shows that a sulfur-containing compound can

virke både som et pufringsmiddel og som kilde for det i avsetningen innførte svovel. Elektrolytten inneholdt 0,5 M ferro-ammoniumsulf at og 0,03 M natriumsulfitt, og svoveldioksyd ble boblet inn i oppløsningen for å gi et innhold på ca. 0,1 M svovel-syre, idet pH av elektrolytten • var 3,8. Strømtettheten var 60 mAh/cm 2, act both as a buffering agent and as a source for the sulfur introduced into the deposit. The electrolyte contained 0.5 M ferrous ammonium sulphate and 0.03 M sodium sulphite, and sulfur dioxide was bubbled into the solution to give a content of approx. 0.1 M sulfuric acid, the pH of the electrolyte • being 3.8. The current density was 60 mAh/cm 2 ,

elekttolysetiden 10 minutter og vektøkningen 4,3 mg/cm p. Begynnelseskapasiteten var 0,93* og den økte til 1,02 i tyvende syklus. the electrolysis time 10 minutes and the weight gain 4.3 mg/cm p. The initial capacity was 0.93* and it increased to 1.02 in the twentieth cycle.

Det fremgår klart av eksempel 3 og 8 at nærvær av en passende mengde svovel i avsetningen fører til økt kapasitet i løpet av flere sykluser, og av eksempel 4 og 5 at det er viktig å innføre tilstrekkelig svovel hvis det ønskede resultat skal oppnås. It is clear from examples 3 and 8 that the presence of a suitable amount of sulfur in the deposit leads to increased capacity during several cycles, and from examples 4 and 5 that it is important to introduce sufficient sulfur if the desired result is to be achieved.

Eksempel 11 Example 11

Dette eksempel illustrerer både innføring av kobber under elektrolysen og innføring av svovel under begynnelsesladningen av avsetningen. Elektrolytten inneholdt 0,4 M ferroammoniumsulfat /FeS0lf(NH^)2S0i|-6H207, 0,1 M melkesyre, 0,05 M natriumhydroksyd og 0,04 M kuprisulfat, idet pH var 2,15. Strømtettheten var 50 mA/cm 2 , elektrolysetiden 14 minutter og vektøkningen 14,5 mg/cm 2. Kobberet i avsetningen var 15*7 vektprosent jern. Den resulterende elektrode ble fullstendig ladet i 20% K0H pluss 1,5 g/l LiOH inneholdende 7 x 10"-5 M natriumsulfid (Na2S.9H20) og ble deretter ut-satt for sykluser i 20$ K0H pluss 1,5 g/l LiOH. This example illustrates both the introduction of copper during the electrolysis and the introduction of sulfur during the initial charge of the deposit. The electrolyte contained 0.4 M ferroammonium sulfate /FeS0lf(NH^)2S0i|-6H2O7, 0.1 M lactic acid, 0.05 M sodium hydroxide and 0.04 M cupric sulfate, the pH being 2.15. The current density was 50 mA/cm 2 , the electrolysis time 14 minutes and the increase in weight 14.5 mg/cm 2. The copper in the deposit was 15*7 weight percent iron. The resulting electrode was fully charged in 20% K0H plus 1.5 g/l LiOH containing 7 x 10"-5 M sodium sulfide (Na2S.9H2O) and then cycled in 20% K0H plus 1.5 g/l l LiOH.

Kapasiteten av elektroden var som følger: The capacity of the electrode was as follows:

Aktiv masse kan avsettes ifølge oppfinnelsen på hvilken som helst passende startplate, men for å oppnå det beste forhold mellom kapasiteten og vekten, foretrekkes det at denne startplate er en folie med en minimal tykkelse som er forenlig med strømmen som skal trekkes fra batteriet. Folien kan fordelaktig perforeres, og en stabel av avsetningsbærende folier kan derpå formes til en batteriplate som beskrevet i norsk patentsøknad nr. 1472/70. Active mass can be deposited according to the invention on any suitable starting plate, but in order to obtain the best ratio between capacity and weight, it is preferred that this starting plate is a foil with a minimum thickness compatible with the current to be drawn from the battery. The foil can advantageously be perforated, and a stack of deposit-bearing foils can then be formed into a battery plate as described in Norwegian patent application no. 1472/70.

På grunn av de utmerkede egenskaper av den ifølge oppfinnelsen avsatte aktive masse kan den om ønsket brukes i rør eller lommer. Hvis massen skal brukes på denne måte, kan den kontinu-erlig fjernes fra bæreren mens den avsettes. Den kan f.eks. avsettes på en roterende trommelkatode og fjernes med en skraper. Due to the excellent properties of the active mass deposited according to the invention, it can be used in tubes or pockets if desired. If the mass is to be used in this way, it can be continuously removed from the carrier as it is deposited. It can e.g. deposited on a rotating drum cathode and removed with a scraper.

Claims (6)

1. Fremgangsmåte til fremstilling av en negativ jernholdig aktiv masse for batterier på en elektrisk ledende metallfolie, hvor den aktive masse består av jern og jernoksyd eller jernhydroksyd og eventuelt svovel eller kobber og avsettes elektrolytisk fra en elektrolytt inneholdende toverdige jern-ioner, ammonium-ioner og et pufringsmiddel, karakterisert ved at elektrolysen utføres i en elektrolytt inneholdende 0,1-0,65 mol/l ferroammoniumsulfat eller ferroammoniumsulfamat, idet elektrolyttens pH holdes mellom 2,5 og 5,5, fortrinnsvis mellom 3 og 4,4, i avhengighet av en katodestrømstetthet mellom 20 og 140 mA/cm 2 , fortrinnsvis 20-10O mA/cm 2, hvoretter den aktive masse eventuelt underkastes en formeringsbehandling i en egnet elektrolytt.1. Process for producing a negative ferrous active mass for batteries on an electrically conductive metal foil, where the active mass consists of iron and iron oxide or iron hydroxide and possibly sulfur or copper and is electrolytically deposited from an electrolyte containing divalent iron ions, ammonium ions and a buffering agent, characterized in that the electrolysis is carried out in an electrolyte containing 0.1-0.65 mol/l ferroammonium sulfate or ferroammonium sulfamate, the pH of the electrolyte being kept between 2.5 and 5.5, preferably between 3 and 4.4, depending of a cathode current density between 20 and 140 mA/cm 2 , preferably 20-100 mA/cm 2 , after which the active mass is optionally subjected to a propagation treatment in a suitable electrolyte. 2. Fremgangsmåte i følge krav 1, karakterisert ved at elektrolysen utføres ved en temperatur mellom 20 og 30°C, og at elektrolytten inneholder 0,1-0,65 M (NH4)2S04FeS04•6H20 og 0,1-0,50 M NaH2P04-2H20.2. Method according to claim 1, characterized in that the electrolysis is carried out at a temperature between 20 and 30°C, and that the electrolyte contains 0.1-0.65 M (NH4)2S04FeS04•6H20 and 0.1-0.50 M NaH2P04-2H20. 3. Fremgangsmåte i følge krav 1 eller 2, karakterisert ved at svovel innføres elektrolytisk i det avsatte materiale i en mengde på fortrinnsvis 0,1-1,0 vekt-% beregnet på det avsatte materiale.3. Method according to claim 1 or 2, characterized in that sulfur is electrolytically introduced into the deposited material in an amount of preferably 0.1-1.0% by weight calculated on the deposited material. 4. ' Fremgangsmåte i følge krav 3, karakterisert ved at svovelet erholdes fra natriummetabisulfitt tilsatt elektrolytten.4. Method according to claim 3, characterized in that the sulfur is obtained from sodium metabisulphite added to the electrolyte. 5. Fremgangsmåte i følge krav 3, karakterisert ved at svovelet innføres i det avsatte materiale under en elektrolytisk behandling som følger etter dannelsen av den aktive masse, fortrinnsvis under elektrisk oppladning, idet behandlingen ut-føres i en løsning som inneholder kaliumhydroksyd, litiumhydroksyd og et alkalimetallsulfid eller -polysulfid.5. Method according to claim 3, characterized in that the sulfur is introduced into the deposited material during an electrolytic treatment that follows the formation of the active mass, preferably during electrical charging, the treatment being carried out in a solution containing potassium hydroxide, lithium hydroxide and a alkali metal sulfide or polysulfide. 6. Fremgangsmåte i følge et av kravene 1-5, karakterisert ved at det til elektrolytten tilsettes et oppløselig kobbersalt, fortrinnsvis kobbersulfat, i slike mengder at det avsettes et kobberinnhold på 1-20 vekt-% beregnet på . jerninnholdet i det avsatte materiale.6. Method according to one of claims 1-5, characterized in that a soluble copper salt, preferably copper sulphate, is added to the electrolyte in such quantities that a copper content of 1-20% by weight calculated on . the iron content of the deposited material.
NO2181/72A 1971-06-21 1972-06-19 NO135763C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB2897771 1971-06-21
GB1136072*[A GB1392188A (en) 1971-06-21 1972-03-10 Production of rion electrodes for storage batteries

Publications (2)

Publication Number Publication Date
NO135763B true NO135763B (en) 1977-02-14
NO135763C NO135763C (en) 1977-06-01

Family

ID=26248226

Family Applications (1)

Application Number Title Priority Date Filing Date
NO2181/72A NO135763C (en) 1971-06-21 1972-06-19

Country Status (14)

Country Link
AT (1) AT320046B (en)
BE (1) BE785203A (en)
CA (1) CA976608A (en)
CH (1) CH565456A5 (en)
DE (1) DE2229977A1 (en)
ES (1) ES404060A1 (en)
FR (1) FR2143122B1 (en)
GB (1) GB1392188A (en)
IE (1) IE37034B1 (en)
IL (1) IL39659A (en)
LU (1) LU65540A1 (en)
NL (1) NL7208173A (en)
NO (1) NO135763C (en)
SE (1) SE376690B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132261A1 (en) * 2015-02-16 2016-08-25 King Abdullah University Of Science And Technology Methods of phosphidation and structures made therefrom

Also Published As

Publication number Publication date
SE376690B (en) 1975-06-02
AT320046B (en) 1975-01-27
FR2143122A1 (en) 1973-02-02
DE2229977A1 (en) 1973-01-18
AU4324472A (en) 1973-12-13
NO135763C (en) 1977-06-01
FR2143122B1 (en) 1977-12-23
GB1392188A (en) 1975-04-30
CA976608A (en) 1975-10-21
CH565456A5 (en) 1975-08-15
IL39659A (en) 1975-08-31
ES404060A1 (en) 1975-12-16
LU65540A1 (en) 1973-01-22
IE37034L (en) 1972-12-21
BE785203A (en) 1972-12-21
IE37034B1 (en) 1977-04-27
NL7208173A (en) 1972-12-27
IL39659A0 (en) 1972-08-30

Similar Documents

Publication Publication Date Title
US3898098A (en) Process for producing iron electrode
CA1074857A (en) Lithium primary cell
JPS59186260A (en) Cathode for chemical battery and chemical battery
CN104766971B (en) Positive electrode, the water system battery containing positive electrode
JPH0357580B2 (en)
US3414440A (en) Gamma manganese dioxide, method of preparing and dry cell type battery employing gamma type manganese dioxide
US3653967A (en) Positive electrode for use in nickel cadmium cells and the method for producing same and products utilizing same
WO2023071394A1 (en) Metal sulfide negative electrode material for sodium ion battery, and preparation method therefor
US3326721A (en) Nickel cadmium batteries
US4224391A (en) Electrolyte for zinc anode batteries and method of making same
US3790454A (en) Electrodeposition of sponge nickel
NO135763B (en)
US1942791A (en) Electrode for secondary cells
US3895961A (en) Electrodeposition of iron active mass
US3905833A (en) Cyanide and mercury corrosion inhibitors for zinc alkaline galvanic cells
US3826684A (en) Nickel electrode cell with improved high temperature charge acceptance
US4048027A (en) Process for producing electrolytic MnO2 from molten manganese nitrate hexahydrate
WO2020155190A1 (en) High voltage rechargeable zinc-manganese battery
CA1072911A (en) Electrodeposition of iron active mass
US2007170A (en) Oxide electrode for alkaline accumulators
US1599121A (en) Production of depolarizing agent for voltaic battery
US2156222A (en) Counterelectromotive-force cell
JP2707340B2 (en) Manufacturing method of electrolytic manganese dioxide
CN108306003A (en) A kind of preparation method of iron manganese phosphate
US3649362A (en) Primary battery