NO135659B - - Google Patents

Download PDF

Info

Publication number
NO135659B
NO135659B NO2410/71A NO241071A NO135659B NO 135659 B NO135659 B NO 135659B NO 2410/71 A NO2410/71 A NO 2410/71A NO 241071 A NO241071 A NO 241071A NO 135659 B NO135659 B NO 135659B
Authority
NO
Norway
Prior art keywords
monomers
isoprene
copolymers
catalyst
copolymerization
Prior art date
Application number
NO2410/71A
Other languages
Norwegian (no)
Other versions
NO135659C (en
Inventor
R M Suggitt
J H Estes
S Kravitz
Original Assignee
Texaco Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Development Corp filed Critical Texaco Development Corp
Publication of NO135659B publication Critical patent/NO135659B/no
Publication of NO135659C publication Critical patent/NO135659C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2791Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/085Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/12Silica and alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

Fremgangsmåte til fremstilling av sampolymerisater av 1,3-butadien og isopren. Process for producing copolymers of 1,3-butadiene and isoprene.

Foreliggende oppfinnelse angår en fremgangsmåte til fremstilling av 1,3-butadien-isopren-sampolymerisater. The present invention relates to a method for the production of 1,3-butadiene-isoprene copolymers.

Det er kjent å anvende oppløselige katalysatorer erholdt fra Al(CaH5)2Cl og kom-pleksforatindelser av kobolt til fremstilling av butadienpolymerisater med i det vesent-lige cis-l,4-struktur. Slike katalysatorer kan også anvendes til å polymerisere andre konjugerte diolefiner enn butadien som f. eks. isopren. Det er imidlertid funnet at av isopren kan der ikke fåes polymerisater som er meget rike på cis-l,4-enheter, i det minste ikke under vanlige betingelser således som det er tilfelle med butadien. De polyisoprener som fåes ved romtemperatur består i alminnelighet av makromolekyler med 1,4-enheter (ca. 55 pst.) og 3,4-enheter (ca. 45 pst.). It is known to use soluble catalysts obtained from Al(CaH5)2Cl and complex phorate derivatives of cobalt for the production of butadiene polymers with essentially cis-1,4 structure. Such catalysts can also be used to polymerize conjugated diolefins other than butadiene, such as e.g. isoprene. However, it has been found that polymers that are very rich in cis-1,4 units cannot be obtained from isoprene, at least not under normal conditions, as is the case with butadiene. The polyisoprenes obtained at room temperature generally consist of macromolecules with 1,4-units (approx. 55 per cent) and 3,4-units (approx. 45 per cent).

Videre er polymeriseringshastigheten for isopren med slike katalysatorer ti gan-ger eller mere lavere enn for butadien ved samme temperatur. Furthermore, the polymerization rate for isoprene with such catalysts is ten times or more lower than for butadiene at the same temperature.

Det er mulig å fremstille sampolymerisater av butadien og isopren ved hjelp av de ovenfor angitte katalysatorer. Herved har det imidlertid ikke vært mulig å oppnå sampolymerisater med et høyt innhold av isopren i makromolekylet. I de sampolymerisater som er erholdt hittil og som inneholder opptil ca. 10 pst. isopren, har isopren-enhetene forskjellig struktur, overveiende cis-1,4- og 3,4-struktur. It is possible to produce copolymers of butadiene and isoprene using the above-mentioned catalysts. In this way, however, it has not been possible to obtain copolymers with a high content of isoprene in the macromolecule. In the copolymers that have been obtained so far and that contain up to approx. 10% isoprene, the isoprene units have different structures, predominantly cis-1,4- and 3,4-structure.

Det er nu funnet (og dette er et trekk It has now been found (and this is a move

ved foreliggende oppfinnelse) at man kan in the present invention) that one can

få sampolymerisater med ønsket sammensetning ved sampolymerisering av butadien og isopren når man anvender monomere som er fri for acetylen- og allen-hydrocarboner og for svovelforbindelser, obtain copolymers with the desired composition by copolymerizing butadiene and isoprene when using monomers that are free of acetylene and allene hydrocarbons and of sulfur compounds,

dvs. ved å gå ut fra praktisk talt rene monomere eller fra et utgangsmateriale som foruten de monomere bare inneholder bestanddeler som er inerte overfor katalysatoren, som mettede alifatiske hydrocarboner eller olefinhydrocarboner som ikke er polymeriserbare med de anvendte katalysatorer, eller nitrogen eller andre inerte gasser, samt utføre polymeriseringen i nærvær av aromatiske oppløsningsmidler. i.e. starting from practically pure monomers or from a starting material which, in addition to the monomers, only contains components which are inert towards the catalyst, such as saturated aliphatic hydrocarbons or olefinic hydrocarbons which are not polymerizable with the catalysts used, or nitrogen or other inert gases, as well as carrying out the polymerization in the presence of aromatic solvents.

Det er kjent at de monomere ved sampolymerisering av to monomere ikke går It is known that the monomers in the copolymerization of two monomers do not work

inn i sampolymerisatet i det samme mol-forhold som molforholdet i utgangsmaterialet. Dette er en regel som særlig gjelder i tilfelle som det foreliggende, i hvilke de to monomeres polymeriseringshastigheter into the copolymer in the same molar ratio as the molar ratio in the starting material. This is a rule that particularly applies in cases such as the present, in which the polymerization rates of the two monomers

er meget forskjellige. are very different.

Av denne grunn varierer sammensetningen av monomerblandinger under sampolymeriseringen når man går ut fra en hvilken som helst bestemt blanding av de to monomere, følgelig varierer også sampolymerisatenes sammensetning med tiden. For this reason, the composition of monomer mixtures varies during the copolymerization when starting from any particular mixture of the two monomers, consequently the composition of the copolymers also varies with time.

Sampolymerisater med en konstant sammensetning kan (unntagen i meget sjeldne tilfelle som azeotropisk polymeri-sering) da bare fremstilles ved å holde kon-sentrasjonen av begge monomere konstant under polymeriseringen. Dette kan oppnås ved kontinuerlig å gjenopprette utgangsmaterialets sammensetning under polyme-riseringens gang eller ved å ta forskjellige tekniske forholdsregler, hva der imidlertid gjør prosessen vanskelig å utføre. Copolymers with a constant composition can (except in very rare cases such as azeotropic polymerisation) then only be produced by keeping the concentration of both monomers constant during the polymerisation. This can be achieved by continuously restoring the composition of the starting material during the course of the polymerization or by taking various technical precautions, which, however, make the process difficult to carry out.

Det er nu funnet at man med disse katalysatorer og ved å gå ut fra meget rene monomere som angitt i det foregående, kan utføre sampolymerisering av butadien med isopren slik at forholdet mellom de to monomeres polymeriseringshastigheter er praktisk talt det samme som forholdet mellom deres konsentrasjoner. It has now been found that with these catalysts and by starting from very pure monomers as stated above, it is possible to carry out copolymerization of butadiene with isoprene so that the ratio between the polymerization rates of the two monomers is practically the same as the ratio between their concentrations.

Dette gjør det mulig å eliminere de forholdsregler som hittil måtte treffes når de to monomere som skal sampolymerise-res, har forskjellige sampolymeriserings-hastigheter. Det er innlysende at dette er en betydelig praktisk fordel. This makes it possible to eliminate the precautions that have hitherto had to be taken when the two monomers to be copolymerized have different copolymerization rates. It is obvious that this is a significant practical advantage.

Det er kjent at man for å vise sampoly-meriseringers forløp anvender reaktivitets-koeffisientene for de to monomere. Disse betegnes i alminnelighet med r, og r2 (for definisjon av disse se J. P. Flory, «Prin-ciples of Polymer Chemistry» — 1953, side 179 og følgende). I de alminneligste poly-meriseringer er r! i alminnelighet forskjellig fra r, og forholdet r, : r2 er i alminnelighet av samme størrelsesorden som forholdet mellom homopolymeriseringshastighetene, v, : v.... Ved sampolymerisering av isopren og butadien under de betingelser som her er funnet, inntreffer det at r1 = r2 — 1, skjønt v, (isoprenets homopolymeriserings-hastighet) er flere tiendeparter mindre enn Vo (butadienets homopolymeriseringshas-tighet). Sampolymeriseringer av denne type representerer derfor et spesielt tilfelle som ikke kunne forutsees fra det som er kjent fra homopolymerisering av de to monomere. It is known that in order to show the progress of copolymerizations, the reactivity coefficients for the two monomers are used. These are generally denoted by r, and r2 (for definition of these see J.P. Flory, "Principles of Polymer Chemistry" — 1953, page 179 et seq.). In the most common polymerizations, r! generally different from r, and the ratio r, : r2 is generally of the same order of magnitude as the ratio between the homopolymerization rates, v, : v.... When copolymerizing isoprene and butadiene under the conditions found here, it occurs that r1 = r2 — 1, although v, (the homopolymerization rate of the isoprene) is several tenths less than Vo (the homopolymerization rate of the butadiene). Copolymerizations of this type therefore represent a special case that could not be predicted from what is known from homopolymerization of the two monomers.

Ved hjelp av fremgangsmåten ifølge oppfinnelsen skaffes der høymolekylære, lineære sampolymerisater av 1,3-butadien og isopren, i hvilke de enheter som skriver seg fra begge monomere, har fremherskende eller fullstendig cis-l,4-struktur. De foretrukne sampolymerisater inneholder opptil 90 pst. sampolymerisert isopren og minst 70 pst. enheter som skriver seg fra begge monomere og som har cis-1,4-struktur. By means of the method according to the invention, high molecular weight, linear copolymers of 1,3-butadiene and isoprene are obtained, in which the units which are written from both monomers have a predominant or complete cis-1,4 structure. The preferred copolymers contain up to 90 percent copolymerized isoprene and at least 70 percent units derived from both monomers and having cis-1,4 structure.

De karakteristiske hovedtrekk ved fremgangsmåten ifølge oppfinnelsen er at man sampolymeriserer en blanding av de to rene monomere i hvilken vektsforholdet mellom de monomere er lik det vektsforhold som ønskes i sampolymerisatet, og som eventuelt inneholder bestanddeler som er inerte overfor katalysatoren, hvorved man utfører sampolymeriseringen i et aromatisk oppløsningsmiddel og i nærvær av en i hydrocarboner oppløselig kobolt-katalysator, som er sammensatt av en kobolt-kompleks-forbindelse og et dialkyl-aluminiumklorid. The main characteristic features of the method according to the invention are that a mixture of the two pure monomers is copolymerized in which the weight ratio between the monomers is equal to the weight ratio desired in the copolymer, and which possibly contains components that are inert to the catalyst, whereby the copolymerization is carried out in a aromatic solvent and in the presence of a hydrocarbon-soluble cobalt catalyst, which is composed of a cobalt complex compound and a dialkyl aluminum chloride.

I eksemplene i det følgende beskrives sampolymeriseringsforsøk som illustrerer det ovenfor angitte. I de forskjellige forsøk ble sammensetningen av utgangsmaterialet variert innen et overordentlig stort område, nemlig fra ca. 3 pst. til ca. 90 pst. isopren. In the examples below, copolymerization experiments are described which illustrate the above. In the various experiments, the composition of the starting material was varied within an extremely large range, namely from approx. 3 percent to approx. 90 percent isoprene.

Under sampolymeriseringen ble prøver av de dannede sampolymerisater tatt ut på forskjellige tidspunkter og undersøkt ved spektroskopi i det infrarøde område. De re-sultater man fikk ved disse undersøkelser av prøver uttatt etter på hverandre føl-gende tidsintervaller fra sampolymeringens begynnelse er praktisk talt like og viser at de erholdte sampolymerisater har en sammensetning som er meget lik (innenfor feilgrensene ved undersøkelsene i det in-frarøde område) utgangsblandingens sammensetning. During the copolymerization, samples of the formed copolymers were taken out at different times and examined by spectroscopy in the infrared range. The results obtained from these investigations of samples taken at successive time intervals from the beginning of the copolymerization are practically the same and show that the obtained copolymers have a composition that is very similar (within the error limits of the investigations in the infrared range ) the composition of the starting mixture.

For å fremstille sampolymerisater med en ønsket sammensetning er det derfor tilstrekkelig å føre inn i sampolymerise-ringsreaktoren de to monomere i det mengdeforhold som ønskes for sampolymerisatet. In order to produce copolymers with a desired composition, it is therefore sufficient to introduce into the copolymerization reactor the two monomers in the quantity ratio desired for the copolymer.

Som nevnt i det foregående, har buta-dienhomopolymerisater erholdt ved hjelp av de her anvendte katalysatorer i det ve-sentlige en cis-l,4-struktur (> 95 pst.), mens isopren-homopolymerisater erholdt med de samme katalysatorer, har en blan-det 1,4- og 3,4-struktur og isoprenenheter i de sampolymerisater som hittil er erholdt med katalysatorer av denne type, har forskjellige strukturer uten at en av struktu-rene er klart fremherskende i forhold til den eller de andre. As mentioned above, butadiene homopolymers obtained with the catalysts used here essentially have a cis-1,4 structure (> 95 per cent), while isoprene homopolymers obtained with the same catalysts have a the mixed 1,4- and 3,4-structure and isoprene units in the copolymers that have been obtained so far with catalysts of this type have different structures without one of the structures being clearly predominant in relation to the other.

Det er da overraskende at de sampo-lymeriserte isoprenenheter har overveiende cis-l,4-struktur i sampolymerisater erholdt ifølge oppfinnelsen, mens 3,4-enhetene er tilstede i mengder som er meget mindre enn dem man har i homopolymerisater fremstilletved hjelp av samme katalysatorer og i de tidligere kjente sampolymerisater. Dette bekrefter ytterligere at de produkter man får ved fremgangsmåten ifølge oppfinnelsen, er virkelige sampolymerisater og ikke mekaniske blandinger av to homopolymerisater. It is then surprising that the co-polymerized isoprene units have a predominantly cis-1,4 structure in copolymers obtained according to the invention, while the 3,4 units are present in amounts that are much smaller than those found in homopolymers produced using the same catalysts and in the previously known copolymers. This further confirms that the products obtained by the method according to the invention are real copolymers and not mechanical mixtures of two homopolymers.

I de sampolymerisater som har et lite innhold av isoprenenheter (mindre enn 10 pst.), har minst 95 pst. av disse enheter cis-l,4-konfigurasjon. I sampolymerisater med større innhold av isoprenenheter (60— 70 pst.) observeres en liten økning i innholdet av 3,4-isoprenenheter, men cis-1,4-enhetene forblir alltid de fremherskende (minst ca. 80 pst. av den totale mengde av isopren-enheter). In the copolymers which have a low content of isoprene units (less than 10 per cent), at least 95 per cent of these units have cis-1,4 configuration. In copolymers with a higher content of isoprene units (60-70 per cent), a slight increase in the content of 3,4-isoprene units is observed, but the cis-1,4 units always remain the predominant ones (at least approx. 80 per cent of the total amount of isoprene units).

Det er kjent at i elastomere erholdt fra diolefin-polymerisater avhenger de dyna-miske egenskaper (tlbakesprangs-elastisi-tet, hysterese osv.) blant annet av mono-merenhetenes konfigurasjon og at disse egenskaper er bedre når monomerenhetene har 1,4-konfigurasjon i stedet for 1,2- eller 3,4-konfigurasjon. Den praktiske interesse av det ovenfor anførte angående sammensetningen av de produkter som fåes ved fremgangsmåten ifølge oppfinnelsen, er derfor åpenbar. It is known that in elastomers obtained from diolefin polymers, the dynamic properties (rebound elasticity, hysteresis, etc.) depend, among other things, on the configuration of the monomer units and that these properties are better when the monomer units have a 1,4-configuration in instead of 1.2 or 3.4 configuration. The practical interest of what has been stated above regarding the composition of the products obtained by the method according to the invention is therefore obvious.

Egenskapene hos butadien-isopren-sampolymerisater fremstillet ifølge oppfinnelsen kan varieres ved å variere deres prosentvise sammensetning. Sampolymerisatet med et lite innhold av isopren-enheter (3—4 pst.) har smeltepunkt som er ganske lite lavere enn polybutadienets, men de er allikevel istand til å krystallisere under strekning ved romtemperatur. Ved å øke isopren-innholdet senkes sampolymerisatenes smeltepunkt og man får elastomere som ikke krystalliserer under strekning. Ved å variere isopren-innholdet er det derfor mulig å få produkter med meget forskjellige egenskaper og som er egnet for forskjellige anvendelser. The properties of butadiene-isoprene copolymers produced according to the invention can be varied by varying their percentage composition. The copolymer with a small content of isoprene units (3-4 per cent) has a melting point that is quite a bit lower than that of polybutadiene, but they are still able to crystallize during stretching at room temperature. By increasing the isoprene content, the melting point of the copolymers is lowered and elastomers are obtained that do not crystallize during stretching. By varying the isoprene content, it is therefore possible to obtain products with very different properties and which are suitable for different applications.

Et interessant trekk ved butadien-iso-prensampolymerisater er at noen av deres egenskaper er bedre enn egenskapene hos polymerisater erholdt fra butadien alene. Det er således kjent at polybutadiener med et høyt innhold av cis-l,4-enheter har meget gode elastiske og mekaniske egenskaper, men en dårlig vedheftningsevne og ri-vestyrke som er lavere enn naturgummis. An interesting feature of butadiene-isoprene copolymers is that some of their properties are better than the properties of polymers obtained from butadiene alone. It is thus known that polybutadienes with a high content of cis-1,4 units have very good elastic and mechanical properties, but a poor adhesion and tear strength which is lower than that of natural rubber.

Det er nu funnet at disse egenskaper er bedre i sampolymerisater erholdt i overensstemmelse med oppfinnelsen. It has now been found that these properties are better in copolymers obtained in accordance with the invention.

De katalysatorer som anvendes i fremgangsmåten ifølge oppfinnelsen kan fremstilles ved metoder som tidligere er beskrevet av patentinnehaveren, f. eks. ved å omsette (i alminnelighet i et aromatisk oppløsningsmiddel) en kobolt-forbindelse (f. eks., acetylacetonatet eller kompleks-forbindelser av koboltklorid-pyridintypen) med Al(CaH5)2Cl. The catalysts used in the method according to the invention can be produced by methods previously described by the patent holder, e.g. by reacting (usually in an aromatic solvent) a cobalt compound (eg, acetylacetonate or complexes of the cobalt chloride-pyridine type) with Al(CaH5)2Cl.

Katalysatorene kan i fremgangsmåten ifølge oppfinnelsen fremstilles i nærvær av én av eller begge monomere. In the method according to the invention, the catalysts can be prepared in the presence of one or both monomers.

Polymeriseringstemperaturen kan varieres innen et stort område, dvs. mellom The polymerization temperature can be varied within a large range, i.e. between

ca. 100 og —80° C, men ligger fortrinnsvis mellom 50 og —50° C. about. 100 and -80° C, but is preferably between 50 and -50° C.

Den praktiske fremgangsmåte er ikke forskjellig fra den som er beskrevet for homopolymerisering av butadien. The practical procedure does not differ from that described for the homopolymerization of butadiene.

I det følgende beskrives som eksempler noen utførelsesformer for oppfinnelsen. I disse er alle mengdeforhold angitt i vektpst. In the following, some embodiments of the invention are described as examples. In these, all quantity ratios are stated in weight units.

Eksempel 1 Example 1

Sampolymeriseringer utføres under de foran angitte betingelser. Detaljer fremgår av nedenstående tabell 1. Som et spesielt eksempel beskrives i det følgende sampolymerisering i overensstemmelse med forsøk 3 i tabellen. Copolymerizations are carried out under the conditions stated above. Details appear in table 1 below. As a special example, copolymerization is described in the following in accordance with experiment 3 in the table.

Der anvendes en 0,5 liters reaktor av glass, forsynt med røreverk og dryppe-trakt. Luften i reaktoren fortrenges med vannfri nitrogen. A 0.5 liter glass reactor is used, equipped with a stirrer and a dropping funnel. The air in the reactor is displaced with anhydrous nitrogen.

De følgende stoffer anbringes i reaktoren : og følgende stoffer anbringes i dryppetrakten: The following substances are placed in the reactor: and the following substances are placed in the drip funnel:

Etter 20 minutter tilføres katalysator-oppløsningen fra dryppetrakten til reaktoren (som holdes ved en konstant temperatur på 13° C), hvorved sampolymeriseringen begynner. 90 minutter etter sampolymeriserin-gens begynnelse uttas en prøve av reak-sjonsblandingen fra reaktoren. Sampolymerisatet i prøven koaguleres med methanol og saltsyre, vaskes med ren methanol, tørkes i vakuum ved romtemperatur og un-derkastes undersøkelse i spektrets infrarøde område. After 20 minutes, the catalyst solution is fed from the dropping funnel to the reactor (which is maintained at a constant temperature of 13° C), whereupon the copolymerization begins. 90 minutes after the start of the copolymerisation, a sample of the reaction mixture is taken from the reactor. The copolymer in the sample is coagulated with methanol and hydrochloric acid, washed with pure methanol, dried in a vacuum at room temperature and subjected to examination in the infrared range of the spectrum.

Undersøkelsen viser at sampolymerisatet inneholder 54 pst. isopren. Lignende prøver som taes ut etter 175, 245, 360 og 425 minutter regnet fra sampolymerise-ringens begynnelse viser at sampolymerisa-tets sammensetning ikke endres med tiden. De andre forsøk som er oppført i tabell 1 ble utført på samme måte, idet bare utgangsmaterialets sammensetning eller katalysatoren ble variert. The investigation shows that the copolymer contains 54 per cent isoprene. Similar samples taken after 175, 245, 360 and 425 minutes from the start of the copolymerization show that the composition of the copolymer does not change with time. The other experiments listed in Table 1 were carried out in the same way, only the composition of the starting material or the catalyst being varied.

I tabell 2 i det følgende er oppført re-Isultatene av undersøkelser i spektrets in-frarøde område av sampolymerisater erholdt i noen av de i tabell 1 oppførte forsøk. Table 2 below lists the results of investigations in the infrared range of the spectrum of copolymers obtained in some of the experiments listed in table 1.

Eksempel 2 Example 2

Man går frem som angitt i eksempel 1, idet følgende stoffer anbringes i reaktoren: og følgende stoffer anbringes i dryppetrakten: Proceed as indicated in example 1, with the following substances placed in the reactor: and the following substances placed in the drip funnel:

Etter 20 minutter tilføres katalysator-oppløsningen fra dryppetrakten til reaktoren i hvilken temperaturen holdes på 5° C. After 20 minutes, the catalyst solution is fed from the dropping funnel to the reactor in which the temperature is kept at 5°C.

Etter 30 minutter (2,5 pst. omsetning), 90 minutter (7,5 pst. omsetning) og 12 ti-mer (45 pst. omsetning) tas der ut en prø-ve fra reaksj onsblandingen. Prøvene renses som angitt i eksempel 1 og undersøkes i spektrets infrarøde område. I alle tilfelle er sampolymerisatenes sammensetning meget lite forskjellig fra den opprinnelige monomer-blandings sammensetning. After 30 minutes (2.5% conversion), 90 minutes (7.5% conversion) and 12 hours (45% conversion), a sample is taken from the reaction mixture. The samples are purified as indicated in example 1 and examined in the infrared range of the spectrum. In all cases, the composition of the copolymers is very little different from the composition of the original monomer mixture.

Eksempel 3 Example 3

Man går frem som angitt i de foregående eksempler og anvender: One proceeds as indicated in the preceding examples and applies:

i reaksj onsbeholderen: in the reaction vessel:

i dryppetrakten: in the drip funnel:

Reaksj onsbeholderen holdes på 0° C og katalysatoroppløsningen føres inn i denne etter 20 minutter. En prøve av reak-sjonsblandingen uttas etter 15 minutter (5 pst.'s omsetning) og den annen prøve etter 90 minutter (20 pst.'s omsetning). Prøvene renses og undersøkes i spektrets infrarøde område. Man finner at de erholdte sampolymerisater har samme sammensetning som utgangsblandingen av monomere. The reaction container is kept at 0° C and the catalyst solution is fed into it after 20 minutes. A sample of the reaction mixture is taken after 15 minutes (5% conversion) and the other sample after 90 minutes (20% conversion). The samples are cleaned and examined in the infrared range of the spectrum. It is found that the obtained copolymers have the same composition as the starting mixture of monomers.

Claims (5)

1. Fremgangsmåte til fremstilling av sampolymerisater av 1,3-butadien og isopren, i hvilke de enheter som skriver seg fra begge monomere har fremherskende cis-l,4-struktur, karakterisert ved at man sampolymeriserer en blanding av de to rene. monomere i hvilken vektsforholdet mellom de monomere er lik det vektsforhold som ønskes i sampolymerisatet, og som eventuelt inneholder bestanddeler som er inerte overfor katalysatoren, idet man utfører sampolymeriseringen i et aromatisk oppløsningsmiddel og i nærvær av en i hydrocarboner oppløselig kobolt-katalysator, som er sammensatt av en kobolt-kompleks-forbindelse og et dialkyl-aluminiumklorid.1. Process for the production of copolymers of 1,3-butadiene and isoprene, in which the units that are formed from both monomers have a predominant cis-1,4 structure, characterized by copolymerizing a mixture of the two pure. monomers in which the weight ratio between the monomers is equal to the weight ratio desired in the copolymer, and which optionally contains components that are inert to the catalyst, carrying out the copolymerization in an aromatic solvent and in the presence of a hydrocarbon-soluble cobalt catalyst, which is composed of a cobalt complex compound and a dialkyl aluminum chloride. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at man som bestanddeler som er inerte overfor katalysatoren anvender nitrogen eller andre inerte gasser eller mettede alifatiske eller olefin-ske hydrocarboner som ikke er polymeriserbare med den oppløselige katalysator som brukes i sampolymeriseringen.2. Method according to claim 1, characterized in that nitrogen or other inert gases or saturated aliphatic or olefinic hydrocarbons which are not polymerizable with the soluble catalyst used in the copolymerization are used as components which are inert to the catalyst. 3. Fremgangsmåte ifølge påstand 1 eller 2, karakterisert ved at man anvender en katalysator som er sammensatt av kobolt-acetylacetonat eller av kom-pleksforbindelser av koboltklorid og pyri-din, samt et dialkyl-aluminiumklorid.3. Method according to claim 1 or 2, characterized in that a catalyst is used which is composed of cobalt acetylacetonate or of complex compounds of cobalt chloride and pyridine, as well as a dialkyl aluminum chloride. 4. Fremgangsmåte ifølge hvilken som helst av de foregående påstander, karakterisert ved at man utfører sampolymeriseringen ved en temperatur fra —80 til +100° C, fortrinnsvis fra —50 til +50° C.4. Method according to any of the preceding claims, characterized in that the copolymerization is carried out at a temperature of -80 to +100° C, preferably from -50 to +50° C. 5. Fremgangsmåte ifølge hvilken som helst av de foregående påsctander, karakterisert ved at man som aromatisk oppløsningsmiddel anvender toluen, benzen eller et halogenert benzenderivat som klorbenzen.5. Method according to any of the preceding claims, characterized in that toluene, benzene or a halogenated benzene derivative such as chlorobenzene is used as an aromatic solvent.
NO2410/71A 1970-06-25 1971-06-24 NO135659C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4995870A 1970-06-25 1970-06-25
US6095470A 1970-06-25 1970-06-25

Publications (2)

Publication Number Publication Date
NO135659B true NO135659B (en) 1977-01-31
NO135659C NO135659C (en) 1977-05-11

Family

ID=26727739

Family Applications (1)

Application Number Title Priority Date Filing Date
NO2410/71A NO135659C (en) 1970-06-25 1971-06-24

Country Status (8)

Country Link
BE (1) BE768678A (en)
CH (1) CH578373A5 (en)
DE (1) DE2130843A1 (en)
FR (1) FR2099302A5 (en)
GB (1) GB1313839A (en)
NL (1) NL7108764A (en)
NO (1) NO135659C (en)
SE (1) SE375319B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2234039A1 (en) * 1973-06-20 1975-01-17 Catalyse Soc Prod Francais Reforming catalyst contg. platinum and ruthenium - with a third metal component for increased life and activity
US4721825A (en) * 1983-06-17 1988-01-26 Idemitsu Kosan Company Limited Process for the production of xylene
US11931724B2 (en) * 2018-12-26 2024-03-19 Kolon Industries, Inc. Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same

Also Published As

Publication number Publication date
NO135659C (en) 1977-05-11
GB1313839A (en) 1973-04-18
FR2099302A5 (en) 1972-03-10
BE768678A (en) 1971-12-17
DE2130843A1 (en) 1971-12-30
NL7108764A (en) 1971-12-28
SE375319B (en) 1975-04-14
CH578373A5 (en) 1976-08-13

Similar Documents

Publication Publication Date Title
US4879349A (en) Selective hydrogenation process
US4751275A (en) Process and catalyst for the preparation of syndiotactic 1,2,-polybutadiene
US3673281A (en) Catalytic hydrogenation of polymers containing double bonds
US3287333A (en) Process for preparing a conjugated diene-vinyl-aromatic block copolymer with a lithium-condensed aromatic ring compound catalyst
US3926933A (en) Catalysts for producing high trans-polybutadiene
NO301934B1 (en) Liquid, vulcanizable copolymer, and process for producing liquid block copolymer
CA2037246A1 (en) Process for the synthesis of a high vinyl isoprene-butadiene copolymer
US3331826A (en) Polymerization of conjugated diolefins with a lithium based catalyst and a hydrocarbon chain terminator
US4223116A (en) Conjugated diene polymerization process and catalyst
US2273158A (en) Polymerization process
US3502637A (en) Homogeneous stereospecific catalysts and polymerization of butadiene therewith
NO135659B (en)
US4139490A (en) Dehydrocarbyl magnesium and an alkali metal compound catalyst composition for polymerizing conjugated dienes
US4127710A (en) Copolymerization of a 1,3-cyclodiene and a linear conjugated diene
US5001199A (en) Selective hydrogenation process
US4148985A (en) Polymerization process
US4224426A (en) Polymerization process for cis-1,4-polybutadiene using cycloalkane solvents and an aromatic polymerization regulator
US3779944A (en) Butadiene polymerization catalyst
Furukawa et al. Alternating copolymer of butadiene and propylene. III
NO133928B (en)
US3819767A (en) Process for producing block copolymer
US4174431A (en) Process for polymerizing conjugated dienes
RU2345092C1 (en) Method of obtaining catalyst of butadiene polymerisation and co-polymerisation of butadiene with isoprene
US3275614A (en) Process of producing cis-1, 4-polybutadiene with a catalyst containing an organic iodine compound
US2908672A (en) Polymerization of conjugated diolefins with a catalyst consisting of a binary alloy of a group ii-a metal and lithium