NO134663B - - Google Patents

Download PDF

Info

Publication number
NO134663B
NO134663B NO3323/73A NO332373A NO134663B NO 134663 B NO134663 B NO 134663B NO 3323/73 A NO3323/73 A NO 3323/73A NO 332373 A NO332373 A NO 332373A NO 134663 B NO134663 B NO 134663B
Authority
NO
Norway
Prior art keywords
alloy
extruded
phase
extrusion
alloys
Prior art date
Application number
NO3323/73A
Other languages
Norwegian (no)
Other versions
NO134663C (en
Inventor
L R Morris
F B Miners
Original Assignee
Alcan Res & Dev
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Res & Dev filed Critical Alcan Res & Dev
Publication of NO134663B publication Critical patent/NO134663B/no
Publication of NO134663C publication Critical patent/NO134663C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Conductive Materials (AREA)
  • Vehicle Body Suspensions (AREA)

Description

Nærværende oppfinnelse vedrorer aluminiumlegeringer som The present invention relates to aluminum alloys which

inneholder magnesium og silicium i det generelle mengdeom- contains magnesium and silicon in the general quantity

rådet fra 0,3 til 1,2 vekts-% Mg og 0,2 til 1,2 vekts-% Si. ranged from 0.3 to 1.2 wt% Mg and 0.2 to 1.2 wt% Si.

En legering av denne typen, som inneholder 0,45 - 0,9 % Mg og An alloy of this type, containing 0.45 - 0.9% Mg and

0,2 - o,6 % Si, er den som har funnet mest anvendelse ved ekstrudering av aluminiumsprodukter. Denne legering er i vide kretser kjent som "Alloy 6063" ifolge United States Aluminium Association Standards. Andre legeringer med andre mengde- 0.2 - o.6% Si is the one that has found the most use in the extrusion of aluminum products. This alloy is widely known as "Alloy 6063" according to the United States Aluminum Association Standards. Other alloys with other amount-

forhold av Mg og Si, eller som er tilsatt mindre mengder av andre elementer, har funnet utstrakt anvendelse ved ekstrude- ratios of Mg and Si, or to which smaller amounts of other elements have been added, have found extensive use in extruding

ring av aluminiumprodukter. Lignende legeringer anvendes i andre land selv om de kjemiske sammensetningsgrenser kan være noe forskjellig ring of aluminum products. Similar alloys are used in other countries, although the chemical composition limits may be somewhat different

^fra de som er registrert hos The Aluminium Association. ^from those registered with The Aluminum Association.

De mest vanlig anvendte spesifikasjonene for AA 6063 ^—klassen The most commonly used specifications for the AA 6063 ^—grade

av legeringer tillater forekomst av Cu, Cr, zn, Ti og Mn som forurensninger i mengder opptil 0,1% for hvert av de nevnte __ elementer, mens det er satt en maksimal grense på 0,35% for jern og en maksimal grense på 0,15% for andre forurensninger of alloys allows the presence of Cu, Cr, Zn, Ti and Mn as impurities in amounts up to 0.1% for each of the aforementioned __ elements, while a maximum limit of 0.35% is set for iron and a maximum limit of 0.15% for other pollutants

(hver 0,05%). I normale kommersielle legeringer har man imidlertid en total forurensningsmengde (inkludert Fe) på ca. 0,3 - 0,4%. Det er også vanlig å ha et overskudd av silisium-innhold i forhold til det som kreves for å overfore hele magnesiuminnholdet til Mg2Si. (each 0.05%). In normal commercial alloys, however, there is a total amount of contamination (including Fe) of approx. 0.3 - 0.4%. It is also common to have an excess of silicon content in relation to what is required to transfer the entire magnesium content to Mg2Si.

I den stbpte tilstand forekommer legenngselementene og for-urensningene i det ekstruderte stykket enten i fast losning i aluminium-grunnmassen, eller segregert i form av intermetalliske faser ved grensene til kornene som utgjores av storknet legering, eller ved grensene til ? ,k dendritt-cellene inne i disse korn. Det har i noen år vært vanlig praksis å homogenisere strukturen til 6063 —legeringen, ved hjelp av en varmebehandling, som har tilsiktet å eliminere grovere partikler av magnesium-silisid—fasen og mikroseigring eller "krystallseigring" av In the solidified state, the alloying elements and impurities in the extruded piece occur either in solid solution in the aluminum base mass, or segregated in the form of intermetallic phases at the boundaries of the grains which are made up of solidified alloy, or at the boundaries of ? ,k the dendrite cells inside these grains. It has been common practice for some years to homogenize the structure of the 6063 alloy, by means of a heat treatment, which aims to eliminate coarser particles of the magnesium silicide phase and micro-segregation or "crystal-segregation" of

magnesium og silisium i dendritt-cellene, da det ikke er mulig å oppnå optimale egenskaper eller ekstruderings-hastigheter i ekstruderte produkter som er fremstilt fra stbpeblokk som inneholder en slik seigring av magnesium og silisium. Ifolge vanlig praksis blir de stbpte blokker oppvarmet i flere timer til en temperatur på ca. 550°C og hurtig avkjblt for på den måten å låse fast en storre del av magnesium-silisidet i losning, og for å sikre at resten av denne fase utfelles i form av meget findelte og dispergerte partikler. Ekstruderte produkter med meget gode mekaniske egenskaper kan fremstilles ved gunstige ekstruderingstrykk og -hastigheter hvis stbpeblokker,' som er homogenisert på denne måte, gjenoppvarmes hurtig til ekstruderingstemperaturen. Imidlertid er overflate-finishen til ekstruderte produkter, som er fremstilt av slike stbpeblokker, ikke alltid så god som bnsket. magnesium and silicon in the dendritic cells, as it is not possible to achieve optimal properties or extrusion speeds in extruded products made from blocks containing such a concentration of magnesium and silicon. According to common practice, the stacked blocks are heated for several hours to a temperature of approx. 550°C and rapidly cooled in order to lock a larger part of the magnesium silicide in solution, and to ensure that the rest of this phase is precipitated in the form of very finely divided and dispersed particles. Extruded products with very good mechanical properties can be produced at favorable extrusion pressures and speeds if blocks homogenized in this way are quickly reheated to the extrusion temperature. However, the surface finish of extruded products made from such blocks is not always as good as desired.

LOyerflatefinishen til et ekstrudert produkt er i stor utstrek- The LOyer surface finish of an extruded product is largely

\ning avhengig av med hvilken hastighet metallet presses ut av \ning depending on the speed at which the metal is pushed out

dysen. Det er et formål med nærværende oppfinnelse å avsted- the nozzle. It is an object of the present invention to

komme en forbedring av 6063-sammensetningen og lignende Al-Mg-Si-legeringer med magnesium- og silisium-innhold som come an improvement of the 6063 composition and similar Al-Mg-Si alloys with magnesium and silicon content which

ligger innenfor de tidligere nevnte mengdeområder, og som til- lies within the previously mentioned quantity ranges, and which

later en okning av ekstruderingshastigheten uten tap av overflatefinish hos de ekstruderte produkter, eller omvendt å av-stedkomme en bedre overflatefinish-standard uten endring av ekstruderingshastighet, og da sammenlignet med en typisk allows an increase in the extrusion speed without loss of surface finish in the extruded products, or conversely to achieve a better surface finish standard without changing the extrusion speed, and then compared to a typical

6063-prove i folge den generelle spesifikasjon. 6063 sample according to the general specification.

En hovedårsak til_manglende kvalitet av overflate- A main reason for_lack of quality of surface-

finishen til ekstruderte produkter av legering 6063 er at det brytes los faste komponenter fra overflaten til metallet når dette presses gjennom dyse-munnstykket. Disse defekter mani-festerer seg som lyst fargede innripede mikro-linj er eller the finish of extruded products of alloy 6063 is that solid components are broken off from the surface of the metal when it is pressed through the die nozzle. These defects manifest themselves as brightly colored incised micro-lines or

-ringer på overflaten til det ekstruderte produkt, og betegnes vanligvis som "pick-up". Vanligvis vil forekomsten av "pick- -rings on the surface of the extruded product, and are usually referred to as "pick-up". Usually, the occurrence of "pick-

up" og den odeleggende virkning på refleksegenskaper og glatt- up" and the destructive effect on reflective properties and smooth-

het av overflaten til det ekstruderte metall oke med ekstruderingshastigheten. heat of the surface of the extruded metal increases with the extrusion speed.

Man har nå forutsett at en av hovedårsakene til overflate- It has now been assumed that one of the main causes of surface

defekter på grunn av "pick-up" skyldes nærvær av den intermetalliske fasen som kalles (3-Al-Fe-Si i stopeblokken under ekstruderingsprosessen. Denne fase, som er uloselig under de ovennevnte normale homogeniserings-betingelser, vokser i form av tynne, sproe plater, og dannes under fremstillingen av stopeblokken ved kokillestopings-prosessen med direkte avkjoling.p-Al-Fe-Si antas å ha den kjemiske formelen Fe2Si2Alg, og har en krystallstruktur av den monokline typen. Den uloselige defects due to "pick-up" are due to the presence of the intermetallic phase called (3-Al-Fe-Si in the stop block during the extrusion process. This phase, which is insoluble under the above-mentioned normal homogenization conditions, grows in the form of thin, sproe plates, and is formed during the manufacture of the stop block by the mold stopping process with direct cooling. p-Al-Fe-Si is believed to have the chemical formula Fe2Si2Alg, and has a crystal structure of the monoclinic type. The insoluble

Fe-rike fasen kan også forekomme i en annen form, nemlig som oc-Al-Fe-Si. Denne fase antas å ha den kjemiske formelen Fe3~Si- The Fe-rich phase can also occur in another form, namely as oc-Al-Fe-Si. This phase is believed to have the chemical formula Fe3~Si-

Al12°Q har en krystallstruktur av den kubiske typen. Man har Al12°Q has a crystal structure of the cubic type. One has

nå funnet at en vesentlig minskning av "pick-up"-defekter kan oppnås hvis den nærværende Al-Fe-Si-fasen i stopeblokken under ekstruderingen foreligger i a-fasen, og man antar at dette skyldes at denne fase er mindre mekanisk spro enn P-formen. Dette er særlig tilfelle når mengden?.vået for jern i now found that a significant reduction in "pick-up" defects can be achieved if the present Al-Fe-Si phase in the stop block during extrusion is in the a-phase, and it is assumed that this is due to this phase being less mechanically brittle than The P shape. This is particularly the case when the quantity?.wet for iron i

legeringen holdes innenfor 0,05 - 0,3%. Over 0,3% jern har "pick-up" en tendens til å oke, uavhengig av fasen bestående av den aluminium-jern-silisium-intermetalliske forbindelsen, mens når Fe-mengden er under 0,05%, så er de jern-rike fasene ikke skadelige for overflatekvaliteten til det ekstruderte stykket. the alloy is kept within 0.05 - 0.3%. Above 0.3% iron, the "pick-up" tends to increase, regardless of the phase consisting of the aluminium-iron-silicon intermetallic compound, while when the amount of Fe is below 0.05%, the iron- rich phases not detrimental to the surface quality of the extruded piece.

Legeringen ifolge oppfinnelsen er av den art som foruten aluminium inneholder 0,3 - 1,2% Mg, 0,2 - 1,2% Si, 0 - 0,4% Cu og 0 - 0,1% av hhv. Zn og Mn, 0,05 - 0,3% Fe som forurensning <p>g totalt 0,15% (0,05% av hver) av andre forurensninger, og karak-teristisk for legeringen er at den også inneholder Sr og/eller Ca i en samlet mengde på 0,01 - 0,5%. The alloy according to the invention is of the type which, in addition to aluminium, contains 0.3 - 1.2% Mg, 0.2 - 1.2% Si, 0 - 0.4% Cu and 0 - 0.1% of respectively. Zn and Mn, 0.05 - 0.3% Fe as impurity <p>g a total of 0.15% (0.05% of each) of other impurities, and characteristic of the alloy is that it also contains Sr and/ or Ca in a total amount of 0.01 - 0.5%.

Mens tilsetningen av kalsium eller strontium i de angitte mengder er nyttige for å forbedre overflate-karakteristika til de ekstruderte produkter, som inneholder magnesium og silisium i det innledningsvis angitte mengdeområdet, så foretrekker man While the addition of calcium or strontium in the indicated amounts is useful for improving the surface characteristics of the extruded products, which contain magnesium and silicon in the initially indicated amount range, it is preferred

å holde magnesiuminnholdet under 0,7% og den totale mengden av magnesium pluss silisium under 1,5%. Med disse mengder av Mg og Si oppnåes de beste overflater ved ekstrudering. to keep the magnesium content below 0.7% and the total amount of magnesium plus silicon below 1.5%. With these amounts of Mg and Si, the best surfaces are obtained by extrusion.

Mens, som ovenfor angitt, tilsetning av kalsium eller strontium While, as stated above, the addition of calcium or strontium

1 mengder på 0,01 til 0,5% forutsettes, så har de beste resultater ifolge oppfinnelsen blitt oppnådd ved en tilsetning på ca. 0,02 - 0,05%. Med tilsetning av Sr eller Ca i en mengde på 1 amounts of 0.01 to 0.5% are assumed, then the best results according to the invention have been obtained by an addition of approx. 0.02 - 0.05%. With the addition of Sr or Ca in an amount of

ca. 0,05% vil i alt vesentlig hele Al-Fe-Si-fasen foreligge about. 0.05%, essentially the entire Al-Fe-Si phase will be present

i a-forra i den ubearbeidede stopeblokk. Mens den ubearbeidede stopeblokk kan ekstruderes helt tilfredsstillende ved relativt lave hastigheter /uten ytterligere varmebehandling, så kan hoyere ekstruderingshastigheter oppnås ved å oppvarme emnet eller blokken over Mg2Si-solvus-temperaturen i tilstrekkelig tid for å bringe Mg^i-fasen i losning. Mengdenivået for tilsetning av Sr eller Ca holdes fortrinnsvis ved ca. 0,02 - 0,05% da i hovedsak hele fordelen med tilsetningen er oppnådd ved dette nivå. Over dette nivå oppnås liten, hvis overhodet noen, forbedring av overflate-egenskapene, og det er en gradvis minskning av legeringens st yrke-egenskaper'. Det er mulig å tilsette in a-front in the unworked stope block. While the blank stope block can be extruded quite satisfactorily at relatively low speeds/without further heat treatment, higher extrusion speeds can be achieved by heating the billet or block above the Mg 2 Si solvus temperature for a sufficient time to bring the Mg 2 i phase into solution. The quantity level for addition of Sr or Ca is preferably kept at approx. 0.02 - 0.05% as essentially the entire benefit of the addition is achieved at this level. Above this level, little, if any, improvement in surface properties is achieved, and there is a gradual reduction in the alloy's strength properties'. It is possible to add

både Ca og Sr, og effekten er i alt vesentlig additiv. Dette medforer imidlertid ingen fordeler, og det kompliserer driften. Når Sr og Ca tilsettes sammen, så bor den totale tilsetning av de to komponentene ligge innenfor oven angitte område. both Ca and Sr, and the effect is essentially additive. However, this does not bring any advantages, and it complicates the operation. When Sr and Ca are added together, the total addition of the two components must lie within the range specified above.

Vi har funnet at a-Al-Fe-Si-fasen fremmes ved tilsetning av ett eller flere av elementene Na, Be og B til slike legeringer som falt innenfor nærværende klasse. Av forskjellige grunner er det imidlertid ikke praktisk å inkorporere disse elementer i den nodvendige mengde under normal drift. F.eks. vil tilsetninger av Be medfore potensielle toksisitetsproblemer. We have found that the a-Al-Fe-Si phase is promoted by the addition of one or more of the elements Na, Be and B to such alloys that fell within the present class. For various reasons, however, it is not practical to incorporate these elements in the required amount during normal operation. E.g. additions of Be will cause potential toxicity problems.

En legering ifolge nærværende oppfinnelse hadde folgende sammensetning: Si 0,40 - 0,50%; Mg 0,45 - 0,55%j Fe 0,15 - 0,25%; Sr eller Ca 0,015 - 0,05%; den totale mengden av andre forurensninger 0,2% (maks.); resten Al. Denne legering ble stopt i runde ekstruderings-emner ved stopningsprosessen med direkte avkjoling, og emnene blir varmebehandlet ved tempera-turer mellom 500 og 580°C i ca. 1 time for å lose magnesium-silisidet. Når dette materialet ble ekstrudert, fant man at det var en markant forbedring når det gjalt speilrefleksjon og glatthet for de ekstruderte produkter sammenlignet med ekstruderte produkter av samme legering (men uten tilsetning av hverken Sr eller Ca). An alloy according to the present invention had the following composition: Si 0.40 - 0.50%; Mg 0.45 - 0.55%j Fe 0.15 - 0.25%; Sr or Ca 0.015 - 0.05%; the total amount of other pollutants 0.2% (max.); the rest Al. This alloy was stuffed into round extrusion blanks by the blanking process with direct cooling, and the blanks are heat-treated at temperatures between 500 and 580°C for approx. 1 hour to loosen the magnesium silicide. When this material was extruded, it was found that there was a marked improvement in the specular reflection and smoothness of the extruded products compared to extruded products of the same alloy (but without the addition of either Sr or Ca).

I et serieforsok ble denne legering, som inneholdt hhv. 0,018% Ca (a) og 0,05% Ca (b) sammenlignet med en standardlegering, In a serial experiment, this alloy, which contained respectively 0.018% Ca (a) and 0.05% Ca (b) compared to a standard alloy,

(c) som var fri for Ca. Emnene ble ekstrudert etter gjen-oppvarmning til 425°C ved 45,72 m/min med folgende resultater: (c) which was free of Ca. The blanks were extruded after reheating to 425°C at 45.72 m/min with the following results:

I andre testserier ble legeringer, som inneholdt hhv..0,015% Sr (a) og 0,05% (Sr (b) sammenlignet med standard-legering (c) som var Sr-fri. Emnene ble ekstrudert etter gjenoppvarming til 400<0>C ved 68,58 m/min. med folgende resultater: In other test series, alloys containing 0.015% Sr (a) and 0.05% (Sr (b) respectively) were compared with standard alloy (c) which was Sr-free. The blanks were extruded after reheating to 400<0 >C at 68.58 m/min with the following results:

Man vil således se at man har oppnådd en markant forbedring med hensyn til ekstruderings-karakteristika. One will thus see that a marked improvement has been achieved with regard to extrusion characteristics.

I ytterligere forsok ble samme legering undersakt, hvorved legeringen inneholdt 0,2 og 0,5% Sr og 0,2 og 0,5% Ca. In a further experiment, the same alloy was examined, whereby the alloy contained 0.2 and 0.5% Sr and 0.2 and 0.5% Ca.

Disse legeringer ble ekstrudert gjennom den samme pressform som blea;anvendt i foregående forsok ved 83,82 m/min. og ble sammenlignet med standard-legering (c) under samme betingelser. These alloys were extruded through the same die used in the previous experiment at 83.82 m/min. and was compared with standard alloy (c) under the same conditions.

Legeringene med Ca og Sr-tilsetninger ble ekstrudert med en meget lys og "pick-up"-fri overflate, mens overflaten til ekstruderte produkter fra standardlegeringen var matt og oppviste stygge "pick-up". The alloys with Ca and Sr additions were extruded with a very bright and "pick-up" free surface, while the surface of extruded products from the standard alloy was dull and showed unsightly "pick-ups".

Claims (3)

1. Aluminiumlegering med god ekstruderbarhet og god overflatefinish i ekstrudert tilstand, som foruten aluminium inneholder 0,3 - 1,2 % Mg, 0,2 - 1, 2 % Si, 0 - 0,4 % Cu og 0 - 0,1 % av hhv. Zn og Mn, 0,05 - 0,3 % Fe som forurensning og totalt 0,15 % (0,05 % av hver) av andre forurensninger, karakterisert ved at den også inneholder Sr og/eller Ca i en samlet mengde på 0,01 - 0,5 %.1. Aluminum alloy with good extrudability and good surface finish in the extruded state, which, in addition to aluminum, contains 0.3 - 1.2% Mg, 0.2 - 1.2% Si, 0 - 0.4% Cu and 0 - 0.1 % of resp. Zn and Mn, 0.05 - 0.3% Fe as impurity and a total of 0.15% (0.05% of each) of other impurities, characterized in that it also contains Sr and/or Ca in a total amount of 0 .01 - 0.5%. 2. Aluminiumlegering ifolge krav 1, karakterisert ved at den samlede mengde av Sr og/eller Ca ligger i området 0,02 - 0,05 %.2. Aluminum alloy according to claim 1, characterized in that the total amount of Sr and/or Ca is in the range 0.02 - 0.05%. 3. Aluminiumlegering ifolge krav 2, karakterisert ved at innholdet av Mg er under 0,7 % og summen av innholdet av Mg og Si er under 1,5 %.3. Aluminum alloy according to claim 2, characterized in that the content of Mg is below 0.7% and the sum of the content of Mg and Si is below 1.5%.
NO3323/73A 1972-08-23 1973-08-22 NO134663C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB3935572A GB1430758A (en) 1972-08-23 1972-08-23 Aluminium alloys

Publications (2)

Publication Number Publication Date
NO134663B true NO134663B (en) 1976-08-16
NO134663C NO134663C (en) 1976-11-24

Family

ID=10409110

Family Applications (1)

Application Number Title Priority Date Filing Date
NO3323/73A NO134663C (en) 1972-08-23 1973-08-22

Country Status (12)

Country Link
US (1) US3926690A (en)
JP (1) JPS4986207A (en)
BE (1) BE803892A (en)
CA (1) CA993688A (en)
CH (1) CH608522A5 (en)
DE (1) DE2341689A1 (en)
ES (1) ES418116A1 (en)
FR (1) FR2197074B1 (en)
GB (1) GB1430758A (en)
IT (1) IT992774B (en)
NL (1) NL7311573A (en)
NO (1) NO134663C (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810455B2 (en) * 1979-11-20 1983-02-25 昭和軽金属株式会社 Aluminum alloy for rolling
US4412869A (en) * 1980-12-23 1983-11-01 Aluminum Company Of America Aluminum alloy tube product and method
US4406717A (en) * 1980-12-23 1983-09-27 Aluminum Company Of America Wrought aluminum base alloy product having refined Al-Fe type intermetallic phases
US4412870A (en) * 1980-12-23 1983-11-01 Aluminum Company Of America Wrought aluminum base alloy products having refined intermetallic phases and method
GB2090289B (en) * 1980-12-23 1985-05-22 Aluminum Co Of America Wrought aluminum base alloy having refined intermetallic phases
US4409036A (en) * 1980-12-23 1983-10-11 Aluminum Company Of America Aluminum alloy sheet product suitable for heat exchanger fins and method
US4937044A (en) * 1989-10-05 1990-06-26 Timminco Limited Strontium-magnesium-aluminum master alloy
GB9318041D0 (en) * 1993-08-31 1993-10-20 Alcan Int Ltd Extrudable a1-mg-si alloys
US5571347A (en) * 1994-04-07 1996-11-05 Northwest Aluminum Company High strength MG-SI type aluminum alloy
US5469911A (en) * 1994-04-12 1995-11-28 Reynolds Metals Company Method for improving surface quality of electromagnetically cast aluminum alloys and products therefrom
DE69622664T2 (en) * 1995-10-09 2002-11-14 Honda Giken Kogyo K.K., Tokio/Tokyo thixocasting
DE69802504T2 (en) * 1997-03-21 2002-06-27 Alcan International Ltd., Montreal AL-MG-SI ALLOY WITH GOOD EXPRESS PROPERTIES
US6042660A (en) * 1998-06-08 2000-03-28 Kb Alloys, Inc. Strontium master alloy composition having a reduced solidus temperature and method of manufacturing the same
US6334978B1 (en) * 1999-07-13 2002-01-01 Alcoa, Inc. Cast alloys
JP2005015842A (en) * 2003-06-25 2005-01-20 Tateyama Alum Ind Co Ltd Aluminum alloy extrusion material having excellent etching treatment uniformity
ATE360711T1 (en) * 2004-03-11 2007-05-15 Geesthacht Gkss Forschung METHOD FOR PRODUCING PROFILES FROM MAGNESIUM MATERIAL USING EXTRUSION
DE102004022817A1 (en) * 2004-05-08 2005-12-01 Erbslöh Ag Decorative anodizable, easily deformable, mechanically highly loadable aluminum alloy, process for its production and aluminum product made from this alloy
JP5321960B2 (en) 2009-01-06 2013-10-23 日本軽金属株式会社 Method for producing aluminum alloy
CA2721752C (en) * 2009-11-20 2015-01-06 Korea Institute Of Industrial Technology Aluminum alloy and manufacturing method thereof
CA2721761C (en) * 2009-11-20 2016-04-19 Korea Institute Of Industrial Technology Aluminum alloy and manufacturing method thereof
CN110832092A (en) 2017-08-01 2020-02-21 阿莱利斯铝业迪弗尔私人有限公司 6 xxxx-series rolled sheet products with improved formability
CN118064772B (en) * 2024-04-24 2024-06-25 湖南卓创精材科技股份有限公司 High-reflectivity Al-Mg-Si alloy, preparation method and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1412280A (en) * 1920-03-29 1922-04-11 Aluminum Co Of America Aluinum alloy
US2993784A (en) * 1956-06-21 1961-07-25 Huddle Roy Alfred Ulfketel Aluminium alloys
US3252841A (en) * 1964-09-25 1966-05-24 Dow Chemical Co Aluminum alloy

Also Published As

Publication number Publication date
GB1430758A (en) 1976-04-07
DE2341689A1 (en) 1974-03-21
ES418116A1 (en) 1976-08-01
US3926690A (en) 1975-12-16
FR2197074B1 (en) 1976-11-19
NO134663C (en) 1976-11-24
IT992774B (en) 1975-09-30
AU5906473A (en) 1975-02-13
CA993688A (en) 1976-07-27
FR2197074A1 (en) 1974-03-22
JPS4986207A (en) 1974-08-19
CH608522A5 (en) 1979-01-15
NL7311573A (en) 1974-02-26
BE803892A (en) 1974-02-22

Similar Documents

Publication Publication Date Title
NO134663B (en)
US2915391A (en) Aluminum base alloy
US4588553A (en) Aluminium alloys
NZ205764A (en) Aluminium alloys containing lithium,magnesium and zinc and uses thereof
EP1359232A2 (en) Method of improving fracture toughness in aluminium-lithium alloys
US1945297A (en) Aluminum alloy
US2915390A (en) Aluminum base alloy
US4323399A (en) Process for the thermal treatment of aluminium - copper - magnesium - silicon alloys
CN104178673A (en) Magnesium alloy and preparation method thereof
JPS59159961A (en) Superplastic al alloy
US3320055A (en) Magnesium-base alloy
GB787665A (en) Improvements relating to aluminium-base alloys
US3146096A (en) Weldable high strength magnesium base alloy
US3419385A (en) Magnesium-base alloy
CN110983117A (en) Aluminum alloy for capacitor shell and preparation method of aluminum alloy plate strip of aluminum alloy
US1848816A (en) Robert s
CN106222497B (en) A kind of anticorrosion aluminium bat and preparation method thereof
CN114774744A (en) 6-series aluminum alloy with low deformation resistance and high corrosion resistance
US1911078A (en) Aluminum alloy
US3146098A (en) Zinc base alloys
US4069072A (en) Aluminum alloy
US2098081A (en) Aluminum alloy
US1472739A (en) Aluminum-base alloy
US3370945A (en) Magnesium-base alloy
US2003297A (en) Aluminum alloy