NO134330B - - Google Patents
Download PDFInfo
- Publication number
- NO134330B NO134330B NO1875/73A NO187573A NO134330B NO 134330 B NO134330 B NO 134330B NO 1875/73 A NO1875/73 A NO 1875/73A NO 187573 A NO187573 A NO 187573A NO 134330 B NO134330 B NO 134330B
- Authority
- NO
- Norway
- Prior art keywords
- sulfur
- solvent
- metal
- sulphide
- oxidation
- Prior art date
Links
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 71
- 229910052717 sulfur Inorganic materials 0.000 claims description 38
- 239000011593 sulfur Substances 0.000 claims description 38
- 238000007254 oxidation reaction Methods 0.000 claims description 24
- 239000002904 solvent Substances 0.000 claims description 24
- 239000002002 slurry Substances 0.000 claims description 20
- 229910052976 metal sulfide Inorganic materials 0.000 claims description 18
- 239000007900 aqueous suspension Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- 230000003647 oxidation Effects 0.000 claims description 15
- 239000005864 Sulphur Substances 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 8
- 239000011707 mineral Substances 0.000 claims description 8
- 229910052952 pyrrhotite Inorganic materials 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 6
- 229910052951 chalcopyrite Inorganic materials 0.000 claims description 5
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052954 pentlandite Inorganic materials 0.000 claims description 5
- 238000009736 wetting Methods 0.000 claims description 4
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 claims description 3
- 238000009854 hydrometallurgy Methods 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- 239000012141 concentrate Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 10
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 235000010755 mineral Nutrition 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- -1 ferrous metals Chemical class 0.000 description 5
- 235000013980 iron oxide Nutrition 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 150000004763 sulfides Chemical class 0.000 description 4
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 3
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000005188 flotation Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229950011008 tetrachloroethylene Drugs 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- YALHCTUQSQRCSX-UHFFFAOYSA-N sulfane sulfuric acid Chemical compound S.OS(O)(=O)=O YALHCTUQSQRCSX-UHFFFAOYSA-N 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- MPSRDSQITWIFME-UHFFFAOYSA-N 1,1,1-trichloropentane Chemical compound CCCCC(Cl)(Cl)Cl MPSRDSQITWIFME-UHFFFAOYSA-N 0.000 description 1
- 229910021556 Chromium(III) chloride Inorganic materials 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical class [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- MJLGNAGLHAQFHV-UHFFFAOYSA-N arsenopyrite Chemical compound [S-2].[Fe+3].[As-] MJLGNAGLHAQFHV-UHFFFAOYSA-N 0.000 description 1
- 229910052964 arsenopyrite Inorganic materials 0.000 description 1
- 229910052948 bornite Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- 239000011636 chromium(III) chloride Substances 0.000 description 1
- 235000007831 chromium(III) chloride Nutrition 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- 229910000356 chromium(III) sulfate Inorganic materials 0.000 description 1
- 239000011696 chromium(III) sulphate Substances 0.000 description 1
- 235000015217 chromium(III) sulphate Nutrition 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052963 cobaltite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- KYRUBSWVBPYWEF-UHFFFAOYSA-N copper;iron;sulfane;tin Chemical compound S.S.S.S.[Fe].[Cu].[Cu].[Sn] KYRUBSWVBPYWEF-UHFFFAOYSA-N 0.000 description 1
- 229910052955 covellite Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 229910052971 enargite Inorganic materials 0.000 description 1
- MSNWSDPPULHLDL-UHFFFAOYSA-K ferric hydroxide Chemical compound [OH-].[OH-].[OH-].[Fe+3] MSNWSDPPULHLDL-UHFFFAOYSA-K 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 229910052949 galena Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- MROPDIJPBVFDRT-UHFFFAOYSA-N manganese(3+);trinitrate Chemical compound [Mn+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O MROPDIJPBVFDRT-UHFFFAOYSA-N 0.000 description 1
- PAVJEQIFHXNOSM-UHFFFAOYSA-H manganese(3+);trisulfate Chemical compound [Mn+3].[Mn+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O PAVJEQIFHXNOSM-UHFFFAOYSA-H 0.000 description 1
- 229910052960 marcasite Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052953 millerite Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- BNIXVQGCZULYKV-UHFFFAOYSA-N pentachloroethane Chemical compound ClC(Cl)C(Cl)(Cl)Cl BNIXVQGCZULYKV-UHFFFAOYSA-N 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910052969 tetrahedrite Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- UDBAOKKMUMKEGZ-UHFFFAOYSA-K trichloromanganese Chemical compound [Cl-].[Cl-].[Cl-].[Mn+3] UDBAOKKMUMKEGZ-UHFFFAOYSA-K 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0407—Leaching processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
- C22B3/06—Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
Foreliggende oppfinnelse angår hydrometallurgi og mer spesielt den vandige oksydasjon av metallsulfider for å frigjøre elementært svovel. The present invention relates to hydrometallurgy and more particularly to the aqueous oxidation of metal sulphides to release elemental sulphur.
Metallsulfider, både av jernmetaller og ikke-jernmetaller, i vandig suspensjon, kan oksyderes for å sette fri elementært svovel og for å oppløse eller å felle ut metallene. Metallsulfidene kan oksyderes av oppløsninger som inneholder oksyderende forbindelser slik som jern (III) saltdppløsninger, ved bruk av et gassformet oksydasjonsmiddel slik som klor, luft, oksygenanriket luft, oksygen eller osonisert luft, eller på elektrolytisk måte. Metal sulphides, both of ferrous and non-ferrous metals, in aqueous suspension, can be oxidized to liberate elemental sulfur and to dissolve or precipitate the metals. The metal sulfides can be oxidized by solutions containing oxidizing compounds such as iron (III) salt solutions, using a gaseous oxidizing agent such as chlorine, air, oxygen-enriched air, oxygen or ozonized air, or electrolytically.
Hvis vandig oksydasjon gjennomføres i en lukket behol-der under trykk stiger temperaturen i den vandige suspensjon hurtig til over smeltepunktet for svovel fordi oksydasjonene er eksoterme. Det smeltede svovel fukter og dekker metallsulfidene og "kutter av" oksydasjonsreaksjonene. Selv om den vandige suspensjon holdes ved omgivelsestrykk og ved en temperatur under smeltepunktet for svovel, kan oksydasjonen skape tilstrekkelig varme i lokale områder til å smelte forhåndenværende frigjort elementært svovel som kan fukte og dekke sulfidene og derved partielt "kutte av" ytterligere oksydasjonsreaksjoner. If aqueous oxidation is carried out in a closed container under pressure, the temperature in the aqueous suspension rises rapidly to above the melting point of sulfur because the oxidations are exothermic. The molten sulfur moistens and covers the metal sulphides and "cuts off" the oxidation reactions. Even if the aqueous suspension is maintained at ambient pressure and at a temperature below the melting point of sulphur, the oxidation can create sufficient heat in local areas to melt any liberated elemental sulfur present which can wet and coat the sulphides and thereby partially "cut off" further oxidation reactions.
Hvis det ikke var for de ufullstendige oksydasjons-reaksj oner som ble forårsaket av fukt ing og dekking av metall-sulf idene av smeltet elementært svovel, ville vandige oksyda-sj onsreaksj oner med fordel gjennomføres ved temperaturer betyde-lig over smeltepunktet for svovel for å trekke fordel av den forbedrede oksydasjonskinetikk ved forhøyede temperaturer og for å felle ut jevn som et hurtig avsettende hematitt i stedet for et gelatinøst jern (III) hydroksyd. If it were not for the incomplete oxidation reactions caused by the wetting and covering of the metal sulfides by molten elemental sulfur, aqueous oxidation reactions would advantageously be carried out at temperatures significantly above the melting point of sulfur to to take advantage of the improved oxidation kinetics at elevated temperatures and to precipitate uniformly as a rapidly settling hematite rather than a gelatinous iron(III) hydroxide.
Det er nå oppdaget av metallsulfider suspendert i vandige oppløsninger kan oksyderes ved temperaturer over smeltepunktet for svovel, mens fuktingen og dekkingen av metallsulfidene av smeltet svovel kan minimaliseres slik at oksydasjons-reaksj onene kan gjennomføres til de er ferdige. It has now been discovered that metal sulphides suspended in aqueous solutions can be oxidized at temperatures above the melting point of sulphur, while the wetting and covering of the metal sulphides by molten sulfur can be minimized so that the oxidation reactions can be carried out to completion.
Foreliggende oppfinnelse angår således en fremgangsmåte for oksydasjon av mineralske metallsulfider i en vandig suspensjon for å frigjøre elementært svovel, og fremgangsmåten karakteriseres ved at et flytende vannublandbart svoveloppløs-ningsmiddel tilsettes til den vandige suspensjon av metall-sulf idet for å oppløse frigjort elementært svovel for derved å hindre at smeltet elementært svovel fukter og dekker metallsulfidene, hvorved oppslemmingen oppvarmes til en temperatur over 100°C under et oksygenpartialtrykk på minst 3 atmosfærer. Fremgangsmåten ifølge oppfinnelsen kan benyttes for .b.ehandl.ing av alle sulfidmalmer og malmkonsentrater, svovelholdige metallurgiske mellomprodukter og andre svovelholdige stoffer for å gjenvinne metallverdier og å holde fast sulfidsvovelet som elementært svovel og sulfatsvovel. For eksempel kan jernpyritter, marcasit, arsenopyritt og/eller pyrotitt behandles for å oppnå jernoksyder og svovel både i elementær og sulfatform. Fremgangsmåten ifølge oppfinnelsen finner imidlertid sin største anven-delse ved behandling av sulfidmalmer som inneholder ikke-jern-metallverdier. Således behandles sulfidmalmer som inneholder ikke-metallverdier, nikkel, kobolt, kobber, bly og sink, med fordel etter fremgangsmåten ifølge oppfinnelsen. Ikke-jern-metallverdiene er vanligvis forbundet med mineraler slik som chalcopyritt, cubanitt, bornitt, chalocitt, covelitt, diginitt, enargitt, tetrahedritt, tannentitt, cobaltitt, stannitt, milleritt, heazlewooditt, polydymitt, sigenitt, gersdorffitt, pentlanditt, lauritt, faleritt, galena og lignende. The present invention thus relates to a method for the oxidation of mineral metal sulphides in an aqueous suspension to release elemental sulphur, and the method is characterized by the fact that a liquid water-immiscible sulfur solvent is added to the aqueous suspension of the metal sulphide to dissolve released elemental sulphur, thereby to prevent molten elemental sulfur from wetting and covering the metal sulphides, whereby the slurry is heated to a temperature above 100°C under an oxygen partial pressure of at least 3 atmospheres. The method according to the invention can be used for the treatment of all sulphide ores and ore concentrates, sulfur-containing metallurgical intermediates and other sulphur-containing substances in order to recover metal values and to retain the sulphide sulfur as elemental sulfur and sulphate sulphur. For example, iron pyrites, marcasite, arsenopyrite and/or pyrrhotite can be treated to obtain iron oxides and sulfur in both elemental and sulfate form. However, the method according to the invention finds its greatest application in the treatment of sulphide ores which contain non-ferrous metal values. Thus sulphide ores containing non-metallic values, nickel, cobalt, copper, lead and zinc, are treated with advantage according to the method according to the invention. The non-ferrous metal values are usually associated with minerals such as chalcopyrite, cubanite, bornite, chalcopyrite, covellite, diginite, enargite, tetrahedrite, tannentite, cobaltite, stannite, millerite, heatzlewoodite, polydymite, sigenite, gersdorffitte, pentlandite, laurite, phalerite, galena and the like.
Selv om utvunnede malmer etter egnet knusing og maling kan behandles som de er ved foreliggende fremgangsmåte, er det fordelaktig å anrike malmen for å få et malmkonsentrat. Egnede anrikningsteknikker omfattende sikting, gravitasjonsseparasjon, magnetisk separasjon, flotasjon og lignende kan benyttes for å oppnå et malmkonsentrat. Uansett om. malmen er konsentrert eller ikke, er det fordelaktig å finoppdele sulfidmineralet som skal behandles ifølge oppfinnelsen for å oppnå maksimalt overflate-areal for å fremme væske-faststoffreaksjonen mellom sulfidet og oksydasjonsmidlet og for å forbedre behandlingsegenskapene. Although mined ores after suitable crushing and grinding can be treated as they are by the present method, it is advantageous to enrich the ore to obtain an ore concentrate. Suitable beneficiation techniques including sieving, gravity separation, magnetic separation, flotation and the like can be used to obtain an ore concentrate. No matter if. whether the ore is concentrated or not, it is advantageous to finely divide the sulphide mineral to be treated according to the invention to obtain maximum surface area to promote the liquid-solid reaction between the sulphide and the oxidizing agent and to improve the treatment properties.
Partikkelstørrelsen for sulfidene kan variere innen vide grenser. Imidlertid er det fordelaktig at malmen eller malmkonsentratet har en partikkelstørrelse på omkring 100 % - 65 mesh (Tyler Screen Size (TSS)). I de fleste tilfeller kan malmkonsentrater som oppnås fra foregående flotasjon med en partikkelstørrelse innen området omkring 100 % - 100 mesh TSS The particle size of the sulphides can vary within wide limits. However, it is advantageous for the ore or ore concentrate to have a particle size of around 100% - 65 mesh (Tyler Screen Size (TSS)). In most cases, ore concentrates obtained from previous flotation with a particle size in the range of around 100% - 100 mesh TSS
og omkring 25 % - 325 mesh TSS behandles ved fremgangsmåten ifølge oppfinnelsen. Mest fordelaktig har malmkonsentratene en partikkelstørrelse på omkring 100 % - 325 mesh for å øke kine-tikken for oksydasjonsreaksjonene og for å sikre i det vesentlige totalomdanning av sulfidsvovelet. and about 25% - 325 mesh TSS is treated by the method according to the invention. Most advantageously, the ore concentrates have a particle size of about 100% - 325 mesh to increase the kinetics of the oxidation reactions and to ensure essentially total conversion of the sulphide sulphur.
Det finoppdelte sulfidmateriale oppslemmes med vann og eventuelle reagenser for å oppnå en oppslemming som inneholder mellom omkring 2 vekt-% faststoffer og 50 vekt-% faststoffer, helst mellom omkring 5 vekt-% og 30 vekt-% faststoffer. Oppslem-mingstettheter innen disse områder sikrer effektiv apparatutnyttelse, minimaliserer problemene som er forbundet med materialbehandling og gir gode væske-faststoffkontakter mellom det fint oppdelte sulfidmateriale og oksydasjonsreagensene. The finely divided sulfide material is slurried with water and any reagents to obtain a slurry containing between about 2% by weight solids and 50% by weight solids, preferably between about 5% by weight and 30% by weight solids. Slurry densities within these ranges ensure efficient equipment utilization, minimize the problems associated with material processing and provide good liquid-solid contacts between the finely divided sulphide material and the oxidation reagents.
Det vil være klart for fagmannen at massetetthetene i de fleste tilfeller vil variere med kvaliteten av malmen eller malmkonsentratet, og den ønskede konsentrasjon for metallverdiene i den endelige oppløsning. It will be clear to the person skilled in the art that the bulk densities will in most cases vary with the quality of the ore or ore concentrate, and the desired concentration for the metal values in the final solution.
Et flytende, vannublandbart svoveloppløsningsmiddel tilsettes til den vandige suspensjon av sulfidmateriale for å oppløse elementært svovel som er satt fri ved oksydasjonsreaksjonene. Svoveloppløsningsmidlet bør være vannublandbart for å lette etterfølgende separering fra utlutningsoppløsningen. I tillegg bør svoveloppløsningsmidlet være flytende og ikke oksy-derbart under utlutningsbetingelsene. Eksempler på slike oppløsningsmidler er klorerte hydrokarboner slik som tetrakloretylen, karbontetraklorid, trikloretylen, triklorpentan, penta-kloretan og tetrakloretan. Svoveloppløsningsmidlet tilsettes fordelaktig til den vandige suspensjon i mengder tilstrekkelig til å oppløse minst omkring 50 % av frigjort elementært svovel og aller helst i mengder som minst er tilstrekkelig til å opp-løse i det vesentlige alt frigjort svovel. Det vil være klart for fagmannen at mengdene av svovel som benyttes vil variere innen vide områder og er avhengig av oppslemningstettheten,, mengden elementært svovel som settes fri og temperaturen som benyttes for den vandige oksydasjon. Totaloppløsning av frigjort elementært svovel sikrer i det vesentlige totalomdanning av sulfidsvovelet. A liquid, water-immiscible sulfur solvent is added to the aqueous suspension of sulfide material to dissolve elemental sulfur released by the oxidation reactions. The sulfur solvent should be water immiscible to facilitate subsequent separation from the leach solution. In addition, the sulfur solvent should be liquid and not oxidizable under the leaching conditions. Examples of such solvents are chlorinated hydrocarbons such as tetrachloroethylene, carbon tetrachloride, trichloroethylene, trichloropentane, pentachloroethane and tetrachloroethane. The sulfur solvent is advantageously added to the aqueous suspension in quantities sufficient to dissolve at least about 50% of liberated elemental sulphur, and most preferably in quantities which are at least sufficient to dissolve substantially all liberated sulphur. It will be clear to the person skilled in the art that the amounts of sulfur used will vary within wide areas and depend on the slurry density, the amount of elemental sulfur that is set free and the temperature used for the aqueous oxidation. Total dissolution of liberated elemental sulfur essentially ensures total transformation of the sulphide sulphur.
Fremgangsmåten ifølge oppfinnelsen er brukbar ved en-hver oksydativ utlutningsprosess hvori det frigjøres elementært svovel. Når det f.eks. utlutes metallsulfider med oksyderende oppløsninger av polyvalente metallsalter, slik som jern (III) sulfat, jern (III) klorid, jern(III) nitrat, mangan (III) sulfat, mangan (III) klorid, mangan (III) nitrat, krom (III) klorid eller krom (III) sulfat,kan et svoveloppløsningsmiddel benyttes for å oppløse frigjort elementært svovel for å fremme væske-faststoff-reaksjonen mellom den oksyderende oppløsning og metall-sulf idet. På samme måte kan fremgangsmåten ifølge oppfinnelsen benyttes når metallsulfider, spesielt i forbindelse med vesentlige mengder pyrotitt, oksyderes i vandig suspensjon med g;ass-formige oksydasjonsmidler slik som klor eller oksygen, eller ved elektrolyseteknikker. Mest fordelaktig benyttes svoveloppløs-ningsmidler ved oksydasjon av metallsulfider ved temperaturer -over omkring 110°C og ved over-atmosfæriske trykk, under hvilke 'betingelser virkningen av frigjort elementært svovel er mest merkbare, spesielt når driftstemperaturene overskrider svovelets smeltepunkt. The method according to the invention is applicable to any oxidative leaching process in which elemental sulfur is released. When it e.g. metal sulfides are leached with oxidizing solutions of polyvalent metal salts, such as iron (III) sulfate, iron (III) chloride, iron (III) nitrate, manganese (III) sulfate, manganese (III) chloride, manganese (III) nitrate, chromium (III ) chloride or chromium (III) sulfate, a sulfur solvent can be used to dissolve liberated elemental sulfur to promote the liquid-solid reaction between the oxidizing solution and the metal sulfide. In the same way, the method according to the invention can be used when metal sulphides, especially in connection with significant amounts of pyrrhotite, are oxidized in aqueous suspension with gaseous oxidizing agents such as chlorine or oxygen, or by electrolysis techniques. Sulfur solvents are most advantageously used in the oxidation of metal sulphides at temperatures above about 110°C and at above-atmospheric pressures, under which conditions the effect of liberated elemental sulfur is most noticeable, especially when the operating temperatures exceed the sulfur's melting point.
Når sulfidmineraler oksyderes ved overatmosfærisk trykk og ved temperaturer over smeltepunktet for svovel, oppslemmes en fint oppdelt eller et malmkonsentrat med vann, tilbakeført væske og sure vandige oppløsninger. Fordelaktig har malmen eller malmkonsentratet en partikkelstørrelse innen området omkring 100 % - 100 mesh TSS og den oppslemmes med det vandige medium i mengder slik at det oppnås en oppslemming som inneholder mellom omkring 2 vekt-% og 50 vekt-% faststoffer for å sikre hurtig og i det vesentlige total oksydasjon med effektiv apparatutnyttelse. Et flytende vann-ublandbart svoveloppløs-ningsmiddel tilsettes fordelaktig til oppslemmingen i mengder som er tilstrekkelig til å oppløse minst omkring 50 % og aller helst alt frigjort elementært svovel. Oppslemmingen og svovel-oppløsningsmidlet mates til en autoklav og oppvarmes til en temperatur over omkring 110°C, fordelaktig mellom omkring 130 og 170°C under et oksygenpartialtrykk på minst omkring 3 atm., When sulphide minerals are oxidized at superatmospheric pressure and at temperatures above the melting point of sulphur, a finely divided ore concentrate is slurried with water, recirculated liquid and acidic aqueous solutions. Advantageously, the ore or ore concentrate has a particle size in the range of about 100% - 100 mesh TSS and it is slurried with the aqueous medium in amounts so as to obtain a slurry containing between about 2% by weight and 50% by weight of solids to ensure rapid and essentially total oxidation with efficient device utilization. A liquid water-immiscible sulfur solvent is advantageously added to the slurry in amounts sufficient to dissolve at least about 50% and most preferably all of the liberated elemental sulfur. The slurry and sulfur solvent are fed to an autoclave and heated to a temperature above about 110°C, advantageously between about 130 and 170°C under an oxygen partial pressure of at least about 3 atm.,
helst mellom omkring 10 atm. og 30 atm., for å oksydere sulfidsvovelet i sulfidmineralene i malmen eller malmkonsentratet til elementært svovel og sulfatsvovel. Under oksydasjonen blir oppslemmingen heftig omrørt for å fremme gass-væske-, væske-faststoff-, væske-væske- og gass-fast stoff-kontakt for å sikre hurtig reaksjon og for å oppløse alt tilstedeværende frigjort svovel slik at dette ikke påvirker oksydasjonsreaksjonene. Ved' ferdige oksydasjonsreaksjoner avkjøles oppslemmingen og svovelet kan gjenvinnes fra oppløsningsmidlet på kjent måte ved krystallisasjon eller destillasjon, oppløste metallverdier kan gjenvinnes fra den vandige oppløsning og ikke-omsatte sulfider eller edelmetaller kan gjenvinnes fra utlutningsresten. preferably between about 10 atm. and 30 atm., to oxidize the sulphide sulfur in the sulphide minerals in the ore or ore concentrate to elemental sulfur and sulphide sulphur. During the oxidation, the slurry is vigorously stirred to promote gas-liquid, liquid-solid, liquid-liquid and gas-solid contact to ensure rapid reaction and to dissolve any liberated sulfur present so that this does not affect the oxidation reactions. When oxidation reactions are complete, the slurry is cooled and the sulfur can be recovered from the solvent in a known manner by crystallization or distillation, dissolved metal values can be recovered from the aqueous solution and unreacted sulphides or precious metals can be recovered from the leach residue.
I en fordelaktig utførelsesform av foreliggende oppfinnelse blir elementært svovel, kobber og nikkel gjenvunnet separat fra sulfidmalmer som inneholder pyrotitt, chalcopyritt og pentlanditt. Malmen males til å begynne med og underkastes en anrikning for å oppnå et malmkonsentrat. Malmkonsentratet oppslemmes med vann for å oppnå en oppslemming som inneholder mellom omkring 2 vekt-% og 50 vekt-% faststoffer, fordelaktig mellom omkring 5 vekt-% og 30 vekt-% faststoffer. Oppslemmingen kan dannes av vann, oppløsninger av mineralsyrer slik som svovelsyre, eller tilbakeførte væsker. Et flytende, vannublandbart svoveloppløsningsmiddel tilsettes fordelaktig til den vandige suspensjon i en mengde tilstrekkelig til å oppløse minst omkring 50 % og helst alt frigjort elementært svovel. Fordelaktig er det flytende vannublandbare svoveloppløsningsmiddel et klorert hydrokarbon. In an advantageous embodiment of the present invention, elemental sulphur, copper and nickel are recovered separately from sulphide ores containing pyrrhotite, chalcopyrite and pentlandite. The ore is initially ground and subjected to beneficiation to obtain an ore concentrate. The ore concentrate is slurried with water to obtain a slurry containing between about 2% by weight and 50% by weight solids, advantageously between about 5% by weight and 30% by weight solids. The slurry can be formed from water, solutions of mineral acids such as sulfuric acid, or recycled liquids. A liquid, water-immiscible sulfur solvent is advantageously added to the aqueous suspension in an amount sufficient to dissolve at least about 50% and preferably all of the liberated elemental sulfur. Advantageously, the liquid water-immiscible sulfur solvent is a chlorinated hydrocarbon.
Denne vandige suspensjon av det nikkelholdige og kobberholdige sulfidmalm-konsentrat og svoveloppløsningsmidlet This aqueous suspension of the nickel-bearing and copper-bearing sulphide ore concentrate and the sulfur solvent
mates til en autoklav og oppvarmes til en temperatur over omkring 110°C, fordelaktig mellom omkring 130 og 170°C, under et oksygenpartialtrykk på minst omkring 3 atm., fordelaktig mellom omkring 10 atm. og 30 atm., for å oksydere sulfidsvovelet i pyrotitten og pentlantitten til elementært svovel og sulfat svovel, for å oksydere og å felle ut jern som jernoksyd ag for å oppløse nikkel. Under oksydasjonen av porytitt og pentlantitt omrøres den vandige suspensjon og det flytende oppløsningsmiddel heftig fed to an autoclave and heated to a temperature above about 110°C, advantageously between about 130 and 170°C, under an oxygen partial pressure of at least about 3 atm., advantageously between about 10 atm. and 30 atm., to oxidize the sulfide sulfur in the pyrrhotite and pentlantite to elemental sulfur and sulfate sulfur, to oxidize and to precipitate iron as iron oxide and to dissolve nickel. During the oxidation of porytite and pentlantite, the aqueous suspension and the liquid solvent are stirred vigorously
for å fremme gass-væskekontakt mellom oksygen, den.vandige oppløsning og sulfidmineralene, og for grundig å blande svovel-oppløsningsmidlet med den vandige suspensjon for å sikre i det vesentlige total oppløsning av frigjort elementært svovel i svoveloppløsningsmidlet. Når i det vesentlige all pyrotitt og pentlanditt er oksydert, slippes den vandige suspensjon og svoveloppløsningsmidlet ut fra autoklaven. Etter henstand kan svoveloppløsningsmidlet med oppløst svovel lett separeres fra den vandige suspensjon. Elementært svovel kan gjenvinnes fra svoveloppløsningsmidlet ved krystallisasjon eller ved destillasjon av oppløsningsmidlet. Den vandige fase kan underkastes væske-faststoffseparasjon for å oppnå en anriket nikkeloppløs-ning og en rest som inneholder jernoksyd og ikke omsatte kobber-verdier. Resten kan oppslemmes igjen og deretter underkastes fIotasjon for å oppnå chalcopyrittkonsentrat som kan behandles på kjent måte for å gjenvinne kobberet. to promote gas-liquid contact between oxygen, the aqueous solution and the sulphide minerals, and to thoroughly mix the sulfur solvent with the aqueous suspension to ensure substantially total dissolution of liberated elemental sulfur in the sulfur solvent. When substantially all of the pyrrhotite and pentlandite have been oxidized, the aqueous suspension and the sulfur solvent are discharged from the autoclave. After settling, the sulfur solvent with dissolved sulfur can be easily separated from the aqueous suspension. Elemental sulfur can be recovered from the sulfur solvent by crystallization or by distillation of the solvent. The aqueous phase can be subjected to liquid-solid separation to obtain an enriched nickel solution and a residue containing iron oxide and unreacted copper values. The residue can be reslurried and then subjected to flotation to obtain chalcopyrite concentrate which can be treated in a known manner to recover the copper.
Oppfinnelsen skal illustreres nærmere ved følgende eksempel. The invention shall be illustrated in more detail by the following example.
Eksempel Example
Prøver av et nikkelholdig pyrotittkonsentrat ved 0,8 % nikkel, 58,5 % jern, 36,6 % svovel og resten i det vesentlige Samples of a nickel-bearing pyrrhotite concentrate at 0.8% nickel, 58.5% iron, 36.6% sulfur and essentially the rest
gangarter, ble oppslemmet med vann for å oppnå oppslemminger som inneholdt 37,5 vekt-% faststoffer. Oppslemmingene ble ma.tet til en "Parr" 2 liters autoklav som var utstyrt med kjøleviklinger og et røreverk. Forsøkene 1-3 ble gjennomført for sammenlignings-formål og ble gjennomført i varierende tidsrom uten svovelopp-løsningsmiddel tilsatt til oppslemmingen. I forsøk 4 ble 0,35 volumdeler tetrakloretylen tilsatt til autoklaven pr. volumdel oppslemming. , Den chargerte autoklav ble oppvarmet til 1<1>I0°C og det ble lagt et oksygenpartialtrykk på 17,5 atm. over det flytende innhold i autoklaven. Oppslemmingene ble omrørt heftig for å sikre hurtig oksydasjon av pyrotitt' og pentlanditt og, i forsøk 4, for å gi god blanding av vandig oppslemming og tetrakloretylen . gaits, were slurried with water to obtain slurries containing 37.5 wt% solids. The slurries were fed to a "Parr" 2 liter autoclave which was equipped with cooling coils and an agitator. Experiments 1-3 were carried out for comparison purposes and were carried out for varying periods of time without sulfur solution solvent added to the slurry. In experiment 4, 0.35 parts by volume of tetrachlorethylene were added to the autoclave per volume fraction slurry. , The charged autoclave was heated to 1<1>10°C and an oxygen partial pressure of 17.5 atm was applied. over the liquid contents of the autoclave. The slurries were stirred vigorously to ensure rapid oxidation of pyrrhotite and pentlandite and, in experiment 4, to provide good mixing of aqueous slurry and tetrachlorethylene.
Etterhvert som oksydasjonen av sulfid skred frem, ble kjøleviklingene tatt i bruk for å fjerne reaksjonsvarme og for å holde oppslemmingen på den på forhånd bestemte temperatur. Oppslemmingene ble holdt ved reaksjonstemperaturen i varierende tidsrom. Etter en gitt tid ble oksygenet skrudd av og autoklav-innholdet ble avkjølt og sluppet ut ved en temperatur på omkring 90°C. Ved henstand skilte innholdet seg i en organisk fase som inneholdt oppløst svovel og en vandig fase som inneholdt suspendert jernoksyd, ikke omsatte sulfider og en nikkelholdig oppløsning.. Rent svovel ble krystallisert ut fra den organiske fase ved avkjøling av denne til 20°C, og svovelet ble deretter gjenvunnet ved filtrering. Den vandige fase ble filtrert, jern-oksydet ble kassert og utlutningsoppløsningen ble behandlet ytterligere for å gjenvinne nikkel. Resultatene er angitt i tabell I. As the oxidation of sulphide progressed, the cooling coils were brought into use to remove heat of reaction and to keep the slurry at the predetermined temperature. The slurries were kept at the reaction temperature for varying periods of time. After a given time, the oxygen was turned off and the autoclave contents were cooled and discharged at a temperature of about 90°C. On standing, the contents separated into an organic phase containing dissolved sulfur and an aqueous phase containing suspended iron oxide, unreacted sulphides and a nickel-containing solution. Pure sulfur was crystallized from the organic phase by cooling it to 20°C, and the sulfur was then recovered by filtration. The aqueous phase was filtered, the iron oxide was discarded and the leach solution was further treated to recover nickel. The results are shown in Table I.
Claims (5)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA141,592A CA965964A (en) | 1972-05-08 | 1972-05-08 | Process for oxidizing metal sulfides in aqueous suspensions |
Publications (2)
Publication Number | Publication Date |
---|---|
NO134330B true NO134330B (en) | 1976-06-14 |
NO134330C NO134330C (en) | 1976-09-22 |
Family
ID=4093208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO1875/73A NO134330C (en) | 1972-05-08 | 1973-05-07 |
Country Status (14)
Country | Link |
---|---|
JP (1) | JPS4961021A (en) |
AU (1) | AU446688B2 (en) |
BE (1) | BE799157A (en) |
BR (1) | BR7303297D0 (en) |
CA (1) | CA965964A (en) |
FR (1) | FR2183958B1 (en) |
GB (1) | GB1365667A (en) |
IT (1) | IT985874B (en) |
NL (1) | NL7306436A (en) |
NO (1) | NO134330C (en) |
PH (1) | PH10977A (en) |
SE (1) | SE386656B (en) |
ZA (1) | ZA732794B (en) |
ZM (1) | ZM7273A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4346062A (en) * | 1981-01-14 | 1982-08-24 | Occidental Research Corporation | Chlorination leaching with sulfur extraction for recovery of zinc values |
FR2597464B1 (en) * | 1986-04-17 | 1988-07-29 | Elf Aquitaine | PROCESS FOR RECOVERING SULFUR FROM ORES CONTAINING PYRITES |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE541355A (en) * | 1953-05-09 |
-
1972
- 1972-05-08 CA CA141,592A patent/CA965964A/en not_active Expired
-
1973
- 1973-04-25 ZA ZA732794A patent/ZA732794B/en unknown
- 1973-04-27 PH PH14554A patent/PH10977A/en unknown
- 1973-04-27 ZM ZM72/73*UA patent/ZM7273A1/en unknown
- 1973-04-30 AU AU54983/73A patent/AU446688B2/en not_active Expired
- 1973-05-03 SE SE7306166A patent/SE386656B/en unknown
- 1973-05-07 BE BE1005016A patent/BE799157A/en unknown
- 1973-05-07 NO NO1875/73A patent/NO134330C/no unknown
- 1973-05-07 BR BR3297/73A patent/BR7303297D0/en unknown
- 1973-05-07 GB GB2160373A patent/GB1365667A/en not_active Expired
- 1973-05-08 NL NL7306436A patent/NL7306436A/xx unknown
- 1973-05-08 FR FR7316564A patent/FR2183958B1/fr not_active Expired
- 1973-05-08 IT IT68289/73A patent/IT985874B/en active
- 1973-05-08 JP JP48051055A patent/JPS4961021A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
DE2323154B2 (en) | 1975-07-31 |
ZA732794B (en) | 1974-04-24 |
FR2183958A1 (en) | 1973-12-21 |
PH10977A (en) | 1977-10-18 |
FR2183958B1 (en) | 1975-12-26 |
BE799157A (en) | 1973-11-07 |
ZM7273A1 (en) | 1973-12-21 |
NL7306436A (en) | 1973-11-12 |
AU5498373A (en) | 1974-03-28 |
IT985874B (en) | 1974-12-20 |
JPS4961021A (en) | 1974-06-13 |
BR7303297D0 (en) | 1974-07-18 |
AU446688B2 (en) | 1974-03-28 |
SE386656B (en) | 1976-08-16 |
NO134330C (en) | 1976-09-22 |
DE2323154A1 (en) | 1973-11-22 |
GB1365667A (en) | 1974-09-04 |
CA965964A (en) | 1975-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100418944B1 (en) | Atmospheric mineral leaching process | |
US8052774B2 (en) | Method for concentration of gold in copper sulfide minerals | |
US4097271A (en) | Hydrometallurgical process for recovering copper and other metal values from metal sulphides | |
US4004991A (en) | Two-stage pressure leaching process for zinc and iron bearing mineral sulphides | |
US5104445A (en) | Process for recovering metals from refractory ores | |
US5651947A (en) | Recovery of zinc from sulphidic concentrates | |
US7169371B2 (en) | Process for the treatment of molybdenum concentrate | |
US3816105A (en) | Hydrometallurgical process for extraction of copper and sulphur from copper iron sulphides | |
NO129913B (en) | ||
US3909248A (en) | Separation of nickel from copper | |
US5238662A (en) | Processes for recovering precious metals | |
US2898196A (en) | Method of treating pyrrhotitic mineral sulphides containing non-ferrous metal values for the recovery of said metal values and sulfur | |
US3981962A (en) | Decomposition leach of sulfide ores with chlorine and oxygen | |
US3642435A (en) | Method of recovering water-soluble nonferrous metal sulfates from sulfur-bearing ores | |
US5074910A (en) | Process for recovering precious metals from sulfide ores | |
Habashi | Action of nitric acid on chalcopyrite | |
US3886257A (en) | Sulfate leaching of copper ores using silver catalyst | |
Vazarlis | Hydrochloric acid-hydrogen peroxide leaching and metal recovery from a Greek zinc-lead bulk sulphide concentrate | |
US3034864A (en) | Sulfur recovery | |
US3088820A (en) | Process for the recovery of metal values from low grade materials | |
GB1598454A (en) | Leaching of metal sulphides | |
US3477927A (en) | Hydrometallurgical process for treating sulphides containing non-ferrous and ferrous metal values | |
NO134330B (en) | ||
EP1507878B1 (en) | Chloride assisted hydrometallurgical extraction of metals | |
US3974253A (en) | Leaching of copper ores to recover sulfur and silver catalyst |