NO133210B - - Google Patents

Download PDF

Info

Publication number
NO133210B
NO133210B NO17120367A NO17120367A NO133210B NO 133210 B NO133210 B NO 133210B NO 17120367 A NO17120367 A NO 17120367A NO 17120367 A NO17120367 A NO 17120367A NO 133210 B NO133210 B NO 133210B
Authority
NO
Norway
Prior art keywords
core
conductor
winding
wires
layers
Prior art date
Application number
NO17120367A
Other languages
Norwegian (no)
Other versions
NO133210C (en
Inventor
A T Edwards
G A Mussen
Original Assignee
Alcan Res & Dev
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US606337A external-priority patent/US3378631A/en
Application filed by Alcan Res & Dev filed Critical Alcan Res & Dev
Publication of NO133210B publication Critical patent/NO133210B/no
Publication of NO133210C publication Critical patent/NO133210C/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • H01B5/10Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material
    • H01B5/101Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a space
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G7/00Overhead installations of electric lines or cables
    • H02G7/14Arrangements or devices for damping mechanical oscillations of lines, e.g. for reducing production of sound

Description

Den foreliggende oppfinnelse vedrorer en selvdempende leder for anvendelse i lufttransmisjonslinjer omfattende en sentral styrke-tilveiebringende kjerne og et par adskilte hule lederelementer som er radielt bevegelige med hensyn til hverandre for selvdempningsformål. The present invention relates to a self-damping conductor for use in overhead transmission lines comprising a central strength-providing core and a pair of separate hollow conductor elements which are radially movable with respect to each other for self-damping purposes.

Konvensjonelle ledere for lufttransmisjonslinjeliner er sammen-satte av enkelte tråder som er slått sammen, slike ledere er ofte sammensatt av en kjerne av tråder av et materiale med hby strekkfasthet og som spesielt er beregnet på å tjene for.det meste utelukkende som strekkelement mens andre tråder av godt ledende metall er anbragt rundt kjernetrådene og tjener til Conventional conductors for overhead transmission line lines are composed of single strands joined together, such conductors are often composed of a core of strands of a material with high tensile strength and which is specifically intended to serve mostly exclusively as a tensile element while other strands of well-conducting metal is placed around the core wires and serves to

!ledning av elektrisk strom.!conduction of electric current.

Ledere for lufttransmisjonslinjer har en tendens til å bli utsatt for alvorlige vibrasjonsproblemer. Når ledere utsettes for vin-der av lav hastighet/dvs. i området 1-30 km/t, oppstår"æo-liske vibrasjoner". Disse vibrasjoner har en liten amplitude (en amplitude på f.eks. inntil lederens diameter) og hoy fre-kvens (f.eks. fra 1 til 200 Hz), og jo mer strekket i lederen okes, desto mer besværlig blir vibrasjonene. Overhead transmission line conductors tend to be subject to serious vibration problems. When conductors are exposed to winds of low speed/i.e. in the range 1-30 km/h, "Aeolian vibrations" occur. These vibrations have a small amplitude (an amplitude of e.g. up to the diameter of the conductor) and high frequency (e.g. from 1 to 200 Hz), and the more the stretch in the conductor is increased, the more difficult the vibrations become.

Et formål med den foreliggende oppfinnelse er å bevirke dempning av vibrasjoner i luftlinjeledere slik at de destruktive egenskaper ved slike vibrasjoner elimineres, dvs. svekking av mastene, uttretting av ledermetallet ved strekking utover elasti-sitet sgrensen. One purpose of the present invention is to effect damping of vibrations in overhead line conductors so that the destructive properties of such vibrations are eliminated, i.e. weakening of the masts, fatigue of the conductor metal by stretching beyond the elastic limit.

Det er kjent å dempe disse vibrasjoner ved anvendelse av en indre kjerne av stålwire og en separat ytre vikling av ledere, idet den ytre vikling har en storre indre diameter enn den ytre diameter for kjernen som er sterkt strukket og således i vesentlig grad bidrar til lederens styrke. Når lederen utsettes for vibrasjoner under bruk, slår viklingstrådene og kjernetrådene mot hverandre slik at vibrasjonene dempes på grunn av interferens, It is known to dampen these vibrations by using an inner core of steel wire and a separate outer winding of conductors, the outer winding having a larger inner diameter than the outer diameter of the core, which is strongly stretched and thus significantly contributes to the conductor's strength. When the conductor is subjected to vibrations during use, the winding wires and the core wires strike against each other so that the vibrations are dampened due to interference,

og ved absorbering og utveksling av vibrasjonsenergien i sammen-støt mellom den indre kjerne og den ytre vikling. Efter som de sterke stålkjernetrådene er mye hårdere enn de godt ledende viklingstråder, vanligvis aluminiumlegering, er denne konstruk-sjonen utsatt for sterk slitasje ved dempning av transmisjons-linj evibrasj oner. and by absorbing and exchanging the vibrational energy in collisions between the inner core and the outer winding. As the strong steel core wires are much harder than the well-conducting winding wires, usually aluminum alloy, this construction is exposed to strong wear when damping transmission line vibrations.

Med uttrykket "aluminium" skal herefter forstås både aluminium og aluminiumslegeringer av den type som anvendes i transmisjons-linjeledere. The term "aluminium" shall henceforth mean both aluminum and aluminum alloys of the type used in transmission line conductors.

Tilstotende lag av kjerne- og viklingstråder er vanligvis slåttAdjacent layers of core and winding wires are usually stranded

i motsatte retninger for maksimal torsjonsmotstand og stabilitet, og således finner sammenstot mellom kjernen og omviklingstråder sted ved kontaktpunkter hvis det er slått med runde tråder i motsatte retninger. Således oppstår det meget hoye slagbelast-ninger i slike punkter. Imidlertid kan noen tilstotende lag av kjernen og viklingstråder også være slått i samme retning, men in opposite directions for maximum torsional resistance and stability, and thus the collision between the core and winding wires takes place at contact points if it is struck with round wires in opposite directions. Thus, very high impact loads occur at such points. However, some adjacent layers of the core and winding wires may also be wound in the same direction, but

også i dette tilfellet finner sammenstøtene sted ved kontaktpunkter fordi selv om viklingsstigningen for to lag kan være den samme/er det usannsynlig at trådslagningen vil falle sammen, hvilket betyr at det fremdeles oppstår hoye belastninger ved kontaktpunkter. also in this case the clashes take place at contact points because even though the winding pitch for two layers may be the same/it is unlikely that the threading will coincide, which means that high stresses still occur at contact points.

Ved vibrasjon stoter kjernen og viklingstrådene sammen som det er meningen de skal gjore, men på grunn av de ovenfor nevnte kontaktpunkter vil et hvert blott beskyttende belegg som f.eks. sink slites vekk fra de enkelte stålkjernetråder, og viklingstrådene av aluminium eller av annet godt ledende metall blir også slitt ved disse punkter. Hvis belegget slites vekk fra stålkjernetrådene, kan disse bli utsatt for korrosjonsangrep, og hvis de ytre tråder av aluminium risses eller slites på annen måte, vil deres styrke bli alvorlig redusert. Disse resultater er meget uonskelige sett ut fra vedlikeholdssynspunkt, og er minst like uonsket som de vibrasjonsinduserte.problemer. During vibration, the core and winding wires collide as they are meant to do, but due to the above-mentioned contact points, a mere protective coating such as e.g. zinc is worn away from the individual steel core wires, and the winding wires made of aluminum or other highly conductive metal are also worn at these points. If the coating wears away from the steel core wires, these can be exposed to corrosion attack, and if the outer aluminum wires are scratched or otherwise worn, their strength will be seriously reduced. These results are very undesirable from a maintenance point of view, and are at least as undesirable as the vibration-induced problems.

Det er kjent at koronautladningsfenomenet kan kreve at den ytre diameter av en lufttransmisjonslinjeleder må være over et visst minimum for å begrense utladningstapene til et akseptabelt nivå. Tverrsnittet for en ledervikling som er påkrevet for foring av strommen, betinger en minste indre diameter som langt over-skrider diameteren for konvensjonelle kjerner som er slått av stålwire, for å bære lederviklingen, og den derav folgende It is known that the corona discharge phenomenon may require that the outer diameter of an overhead transmission line conductor must be above a certain minimum in order to limit the discharge losses to an acceptable level. The cross-section of a conductor winding required for carrying the current requires a minimum internal diameter that far exceeds the diameter of conventional cores made of steel wire, to support the conductor winding, and the resulting

store differanse mellom den indre diameter av viklingen og den ytre diameter av kjernen kan fore til meget store sammenstot-belastninger mellom kjernen og viklingen på grunn av vibrasjon. Folgelig er det allerede foreslått å anordne en hul vikling av ledertråder med en hul kjerne med en jevn ytre overflate for å redusere gapet mellom viklingen og kjernen. I slike konstruksjoner er imidlertid de motstående overflater av viklingen og kjernen, enn skjont jevne, av meget forskjellig hårdhet, hvilket resulterer i at slitasjon av lederviklingen vil bli meget sterk, og videre at den hule kjernen vil ha en betydelig stivhet. large difference between the inner diameter of the winding and the outer diameter of the core can lead to very large combined loads between the core and the winding due to vibration. Consequently, it has already been proposed to provide a hollow winding of conductor wires with a hollow core with a smooth outer surface to reduce the gap between the winding and the core. In such constructions, however, the opposite surfaces of the winding and the core, although smooth, are of very different hardness, which results in the wear of the conductor winding being very strong, and further that the hollow core will have a considerable stiffness.

Med det formål å overvinne disse vanskeligheter kjennetegnes oppfinnelsen ved at de motstående overflatene av de hule lederelementene er dannet av et materiale som er blott i forhold til stål, og at den styrke-tilveiebringende kjernen er lost anordnet inne i det indre hule lederelementet, hvorved det befinner seg to konsentriske rom mellom nevnte leders elementer. With the aim of overcoming these difficulties, the invention is characterized by the fact that the opposing surfaces of the hollow conductor elements are formed of a material which is bare in relation to steel, and that the strength-providing core is loosely arranged inside the inner hollow conductor element, whereby the two concentric spaces are located between said leader's elements.

Når det ovenfor ble henvist til et element eller lederviklingslag med en overflate av et materiale som er blott i forhold til stål, ble det tilsiktet å innebære at den relevante overflate av elementet begrenses av et sjikt av et materiale av vesentlig tykkelse og ikke en tynn film eller et belegg som f.eks. kan opp-nås ved å galvanisere ståltråder. When the above referred to an element or conductor winding layer having a surface of a material bare relative to steel, it was intended to imply that the relevant surface of the element is bounded by a layer of material of substantial thickness and not a thin film or a coating such as can be achieved by galvanizing steel wires.

Oppfinnelsen skal nærmere beskrives nedenfor ved hjelp av ut-forelseseksempler under henvisning til tegningene hvorpå:fig. 1 er et tverrsnitt av en leder med et indre og et ytre lederviklingssjikt og med en los kjerne bestående av et flertall tråder, hvilken kjerne har en jevn ytre overflate, The invention will be described in more detail below by means of exemplary embodiments with reference to the drawings on which: fig. 1 is a cross-section of a conductor with an inner and an outer conductor winding layer and with a loose core consisting of a plurality of strands, which core has a smooth outer surface,

fig. 2 er et tverrsnitt gjennom et alternativt arrangement som omfatter et indre og et ytre lederviklingssjikt og med en kjerne dannet av runde tråder som er slått, fig. 2 is a cross-section through an alternative arrangement comprising an inner and an outer conductor winding layer and with a core formed of round wires which are wound,

fig. 3 er et delvis tverrsnitt av et annet arrangement av et indre og et ytre lederviklingssjikt fir anvendelse i forbindelse med kjernen vist i fig. 1 eller 2, fig. 3 is a partial cross-sectional view of another arrangement of inner and outer conductor winding layers for use in connection with the core shown in FIG. 1 or 2,

fig. 4, 5 og 6 er tverrsnitt i likhet med fig.3, hvorpåfig. 4, 5 and 6 are cross-sections similar to fig.3, whereupon

det vises tverrsnitt av andre på avstand fra hverandre anbragte indre og ytre lederviklingslag. cross-sections of other spaced apart inner and outer conductor winding layers are shown.

Ved utforelsesformen ifolge fig. 1-6 har lederen i det minste to på avstand fra hverandre skrueviklede ledertrådesjikt, av hvilke lag i det minste et er anordnet slik at de individuelle tråder har stor innbyrdes kontaktflate med inntil hverandre be-liggende tråder slik at aksiale spenninger (f.eks. belastning under bruk) forer til små eller ingen radiale krefter i slike lag. In the embodiment according to fig. 1-6, the conductor has at least two, spaced apart, helically wound conductor wire layers, of which at least one layer is arranged so that the individual wires have a large mutual contact surface with adjacent wires so that axial stresses (e.g. load during use) leads to little or no radial forces in such layers.

I fig. 1 omfatter en leder 110 en vikling 111 og en los indre kjerne 112. Viklingen 111 omfatter to sjikt 113 og 114. Hvert av sjiktene 113 og 114 omfatter et flertall ledere henholdsvis 113a, 114a, som er formet for å gi en stabil kontakt med tilstotende tråder i det samme sjikt ved påvirking av krefter som virker i omkretsretningen. In fig. 1, a conductor 110 comprises a winding 111 and a loose inner core 112. The winding 111 comprises two layers 113 and 114. Each of the layers 113 and 114 comprises a plurality of conductors 113a, 114a respectively, which are shaped to provide a stable contact with adjacent threads in the same layer under the influence of forces acting in the circumferential direction.

Mellom paret av sjikt 113, 114 forefinnes det et ringformetBetween the pair of layers 113, 114 there is an annular

gap 115. Sjiktene 113, 114 og deres individuelle tråder 113a og 114a er dimensjonerte slik at gapet 115 eksisterer når lederen 110 utsettes for det normale strekk frembragt av vekten av selve lederen og dens ytre belastning når den er opphengt, og denne tilstand er vist i fig. 1. gap 115. The layers 113, 114 and their individual strands 113a and 114a are dimensioned so that the gap 115 exists when the conductor 110 is subjected to the normal tension produced by the weight of the conductor itself and its external load when suspended, and this condition is shown in fig. 1.

For å opprettholde gapet 115 kan de individuelle tråder, f.eks. trådene 113a i sjikt 113 være slik dimensjonerte at hvert sjikt har en i den vesentlige konstant indre og ytre diameter når sjikttrådene er utsatt for vanlig strekk. To maintain the gap 115, the individual threads, e.g. the threads 113a in layer 113 be dimensioned such that each layer has an essentially constant inner and outer diameter when the layer threads are exposed to normal tension.

I fig. 2 er det vist en leder 110' omfattende en vikling 111'av to sjikt og en kjerne 112". Prinsippene for denne utforelseform er de samme som for de som er beskrevet under henvisning til fig. 1. Denne utforelsesform viser en annen form av de individuelle tråder 113b, 114b. I denne utforelsesform omfatter sjiktene 113' 114' vekselvis runde tråder og tråder med takkede tverrsnitt, hvor det vekselvise arrangement gir en periferisk låsevirkning og likevel anvender et visst antall tråder med rundt tverrsnitt av okonomiske grunner. Den totale effekt er den samme fordi de skrueviklede tråder 113', 114' i hvert av sjiktene presses sammen i omkretretning på grunn av strekk under bruk slik at det gir et mellomsjiktgap 115' mellom sjiktene med de fordeler som allerede er beskrevet ovenfor. In fig. 2 shows a conductor 110' comprising a winding 111' of two layers and a core 112". The principles of this embodiment are the same as those described with reference to Fig. 1. This embodiment shows another form of the individual wires 113b, 114b. In this embodiment, the layers 113' 114' alternately comprise round wires and wires with jagged cross-sections, where the alternating arrangement provides a circumferential locking effect and still uses a certain number of wires with round cross-sections for economic reasons. The total effect is the same because the screw-wound threads 113', 114' in each of the layers are pressed together in the circumferential direction due to tension during use so that it gives an inter-layer gap 115' between the layers with the advantages already described above.

I fig. 3 - 6 er det vist ytterligere utforelsesformer hvor trådene 113c, 114c, til 113f er forsynt med forskjellig tverrsnitt som gir låsingen i omkretsretning under påvirking av krefter i denne retning slik at sammenholdelsen av hvert sjikt opprettholdes under strekk samtidig som gapet opprettholdes mellom sjiktene. In fig. 3 - 6 further embodiments are shown where the threads 113c, 114c, to 113f are provided with different cross-sections which provide the locking in the circumferential direction under the influence of forces in this direction so that the cohesion of each layer is maintained under tension at the same time as the gap is maintained between the layers.

I alle disss utforelsesformer kan det anvendes en kjerne av forskjellige konstruksjoner. In all of these embodiments, a core of different constructions can be used.

Selv om det foretrekkes at hvert sjikt har den samme sammenset-ning hva angår trådenes tverrsnitt, er dette ikke essensielt. Although it is preferred that each layer has the same composition as regards the cross-section of the threads, this is not essential.

Et ytre sjikt av tråder av rundt eller annet tverrsnitt kan anvendes påu-tsiden av det ytre sjikt, dvs. på utsiden av sjikt An outer layer of threads of round or other cross-section can be used on the outside of the outer layer, i.e. on the outside of the layer

113 i fig. 1/for å beskytte det mot værpåvirkning.113 in fig. 1/to protect it from the weather.

Det er ved konstruksjon av aluminiumsluftlinjeledere kjent å anvende en slått kjerne av en aluminiumlegering med relativ hdy strekkstyrke i steden for en slått stålkjerne. Det skal be-merkes at ved de ovenfor angitte eksempler kan stålkjernen eller kjerneelementer erstattes av en aluminiumlegeringskjerne eller aluminiumlegeringskjerneelementer av passende dimensjon og legeringsmateriale. Særlig kan den kjernen som er slått av runde tråder som angitt i fig. 2 hensiktsmessig dannes av tråder av aluminiumlegering av hensiktsmessig strekkstyrke efter som dette vil fore til lav slitasje av det indre ledersjikt, hvilken slitasje er et resultat av sammenstot mellom kjernen og det indre ledersjikt. In the construction of aluminum overhead conductors, it is known to use a beaten core of an aluminum alloy with relatively high tensile strength instead of a beaten steel core. It should be noted that in the examples given above, the steel core or core elements can be replaced by an aluminum alloy core or aluminum alloy core elements of suitable dimensions and alloy material. In particular, the core which is made of round threads as indicated in fig. 2 is suitably formed from aluminum alloy threads of suitable tensile strength as this will lead to low wear of the inner conductor layer, which wear is a result of the collision between the core and the inner conductor layer.

Med uttrykket "element" skal forstås en kjerne eller en ledervikling. The term "element" is to be understood as a core or a conductor winding.

Claims (1)

S elvdempende leder for anvendelse i lufttransmisjonslinjer omfattende en sentral styrketilveiebringende kjerne (112) og et par adskilte hule lederelementer (113, 114) som er radielt bevegelige med hensyn til hverandre for selvdempningsformål, karakterisert ved at de motstående overflatene av de hule lederelementene (113, 114) er dannet av et materiale som er blott i forhold til stål, og at den styrketilveiebringende kjernen (112) er lost anordnet inne i det indre hule lederelementet (114), hvorved det befinner seg to konsentriske rom mellom nevnte leders elementer (112, 113, 114).Self-damping conductor for use in overhead transmission lines comprising a central strength-providing core (112) and a pair of separate hollow conductor elements (113, 114) which are radially movable with respect to each other for self-damping purposes, characterized in that the opposing surfaces of the hollow conductor elements (113, 114) is formed from a material which is bare in relation to steel, and that the strength-providing core (112) is loosely arranged inside the inner hollow conductor element (114), whereby there are two concentric spaces between said conductor elements (112, 113, 114).
NO17120367A 1966-12-30 1967-12-29 NO133210C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60633866A 1966-12-30 1966-12-30
US606337A US3378631A (en) 1966-12-30 1966-12-30 Conductor with self-damping characteristics

Publications (2)

Publication Number Publication Date
NO133210B true NO133210B (en) 1975-12-15
NO133210C NO133210C (en) 1976-03-24

Family

ID=27085225

Family Applications (1)

Application Number Title Priority Date Filing Date
NO17120367A NO133210C (en) 1966-12-30 1967-12-29

Country Status (8)

Country Link
BE (1) BE708750A (en)
CH (1) CH487480A (en)
ES (1) ES348805A1 (en)
FR (1) FR1550656A (en)
GB (1) GB1206470A (en)
NL (2) NL6717805A (en)
NO (1) NO133210C (en)
SE (1) SE350359C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939791Y2 (en) * 1978-12-08 1984-11-08 古河電気工業株式会社 bait damper
JPS5939790Y2 (en) * 1978-12-08 1984-11-08 古河電気工業株式会社 Vibration isolation device for power lines
DE3037587C2 (en) * 1980-10-04 1982-11-04 Drahtwerk Waidhaus Schmidt KG NE-Veredlungswerk, 8481 Waidhaus Stranded wire consisting of several individual wires and the process for their manufacture
NL8503141A (en) * 1985-11-15 1987-06-01 Philips Nv HOT-EYE WIRE AND GLASS PROVIDED THEREOF.
BE1002786A4 (en) * 1989-01-26 1991-06-11 Hainaut Cableries Cordries Sa ELECTRIC CABLE FOR HIGH VOLTAGES.
GB9011423D0 (en) * 1990-05-22 1990-07-11 Bicc Plc Overhead electric and optical transmission systems

Also Published As

Publication number Publication date
NL6717805A (en) 1968-07-01
ES348805A1 (en) 1969-07-16
SE350359B (en) 1972-10-23
DE1615677B2 (en) 1975-12-18
GB1206470A (en) 1970-09-23
FR1550656A (en) 1968-12-20
NO133210C (en) 1976-03-24
DE1615677A1 (en) 1972-01-05
SE350359C (en) 1974-04-18
CH487480A (en) 1970-03-15
BE708750A (en) 1968-07-01
NL136812C (en)

Similar Documents

Publication Publication Date Title
NO171203B (en) HEAT-SEALABLE CRYSTALLIC INCIDENTAL PROPYLEN-COPOLYMER MIXTURE AND USE THEREOF
DK161351B (en) COMPOSITE AIR CONDUCTOR CABLE
NO133210B (en)
RU161777U1 (en) RAILWAY CONTACT NETWORK ROPE
US20120067020A1 (en) Composite cable
US3445586A (en) Loose-core conductor having improved self-damping combined with improved internal wear resistance
JP2017517836A (en) Conductors for exposed overhead lines, especially for medium-high temperature thermal limits and low expansion at high electrical loads
RU171205U1 (en) Bearing reinforced cable of the contact network of the railway
US20130269308A1 (en) Double rustproof pc strand
JP2015118896A (en) Overhead transmission line
US2189785A (en) Wire propeller blade
EP3722853B1 (en) Overhead power line made to prevent snow sleeves accretion
JP6239702B1 (en) Overhead electric wire and method for manufacturing the same
US3443019A (en) Spacer damper
CN110468686B (en) Bridge anti vibration cable
JP6424296B2 (en) Elevator wire rope
US1481934A (en) Wire rope
US3153268A (en) Wire rope socket
CN210223616U (en) Improved tensile cable
US2087876A (en) Annular strand
RU142762U1 (en) UNINSULATED STEEL ALUMINUM WIRE HIGH STRENGTH, HIGH TEMPERATURE FOR ELECTRIC TRANSMISSION AIR LINES (OPTIONS)
RU2738209C1 (en) Lightning protection cable (versions)
CN105356398B (en) A kind of overhead transmission line shearing-force type strain hardware fitting
JP2014002863A (en) Steel core aluminum stranded wire and method for manufacturing the same
JP5413804B2 (en) Design method of armor rod for repairing stranded wire