NO133193B - - Google Patents

Download PDF

Info

Publication number
NO133193B
NO133193B NO469872A NO469872A NO133193B NO 133193 B NO133193 B NO 133193B NO 469872 A NO469872 A NO 469872A NO 469872 A NO469872 A NO 469872A NO 133193 B NO133193 B NO 133193B
Authority
NO
Norway
Prior art keywords
disilicide
diboride
mixture
sintering
powder
Prior art date
Application number
NO469872A
Other languages
Norwegian (no)
Other versions
NO133193C (en
Inventor
H Charbonnel
L Hamon
Original Assignee
Alsacienne Atom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alsacienne Atom filed Critical Alsacienne Atom
Publication of NO133193B publication Critical patent/NO133193B/no
Publication of NO133193C publication Critical patent/NO133193C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents

Description

Foreliggende oppfinnelse angår en fremgangsmåte for The present invention relates to a method for

fremstilling av porose og ledende keramiske materialer. production of porous and conductive ceramic materials.

Det er kjent at ved flere tekniske prosesser, som f.eks. stopningsprosesser, som omfatter transport eller behandling av flytende materialer, er veggene i de innretninger som befinner seg i kontakt med det flytende metall vanligvis utfort av et keramisk, material med folgende egenskaper: Vedkommende keramiske material må forst og frémst være passivt, hvilket vil si at det ikke må reagere med metall; It is known that in several technical processes, such as stopping processes, which include the transport or treatment of liquid materials, the walls of the devices that are in contact with the liquid metal are usually made of a ceramic material with the following properties: The ceramic material in question must first and foremost be passive, which means that it must not react with metal;

Videre må det keramiske material være i stand til å motstå sterke termiske sjokk; og det må derfor være porost; Furthermore, the ceramic material must be able to withstand strong thermal shocks; and therefore it must be porous;

Endelig må materialet være vanskelig å oksydere. Finally, the material must be difficult to oxidize.

Det er fra sokerens side forsokt å tilvirke keramiske materialer med de ovenfor angitte egenskaper, såvel som den egenskap at det lett kan fores elektrisk strom gjennom materialet til det It has been attempted on the part of the seeker to produce ceramic materials with the above-mentioned properties, as well as the property that electric current can easily be passed through the material to the

smeltede metall. Dette innebærer da forholdsvis liten elektrisk motstand i det keramiske material, samt god vætning av materialet med det flytende metall. molten metal. This then implies relatively little electrical resistance in the ceramic material, as well as good wetting of the material with the liquid metal.

I henhold til oppfinnelsen foreslås en fremgangsmåte som muliggjor fremstilling av meget porose og ledende keramiske materialer med de ovenfor angitte egenskaper. According to the invention, a method is proposed which enables the production of highly porous and conductive ceramic materials with the above-mentioned properties.

Denne fremgangsmåte går ut på sintring av et utgangsmaterial bestående av diborid av titan, zirkonium, hafnium eller wolfram, fortrinnsvis blandet med disilisid av titan, zirkonium, hafnium eller wolfram.og har som særtrekk i henhold til oppfinnelsen at en viss mengde av nevnte utgangsmaterial i form av fint pulver oppdeles i to deler, hvorav den ene, som utgjor 20-80% av den totale mengde, utsettes for en for-sintring under trykk og ved en temperatur i området 1000-2000°C, og deretter knuses til granuler som blandes med den annen del av pulvermengden, hvorpå blandingen eltes sammen med 1-6 % fluorid av et metall fra gruppe Ia eller Ib i det periodiske system og det hele vibreres for sintringen, som utfores i en form ved en temperatur i området 1000-1500°C uten overtrykk og i inert atmosfære, f.eks. av argon. This method involves the sintering of a starting material consisting of diboride of titanium, zirconium, hafnium or tungsten, preferably mixed with disilicide of titanium, zirconium, hafnium or tungsten. and has as a distinctive feature according to the invention that a certain amount of said starting material in form of fine powder is divided into two parts, one of which, which makes up 20-80% of the total quantity, is subjected to pre-sintering under pressure and at a temperature in the range of 1000-2000°C, and then crushed into granules which is mixed with the second part of the powder quantity, after which the mixture is kneaded together with 1-6% fluoride of a metal from group Ia or Ib in the periodic table and the whole is vibrated for sintering, which is carried out in a mold at a temperature in the range of 1000-1500 °C without excess pressure and in an inert atmosphere, e.g. of argon.

Det er i mange tilfeller en fordel å tilblande en viss prosentmengde (0 - 25%) av et disilisid av et metall tilhorende samme gruppe som nevnte diborid, idet en sådan blanding av diborid og disilisid oksyderes ved en vesentlig hoyere temperatur enn diboridet. alene. It is in many cases an advantage to mix in a certain percentage amount (0 - 25%) of a disilicide of a metal belonging to the same group as said diboride, as such a mixture of diboride and disilicide is oxidized at a significantly higher temperature than the diboride. alone.

Ved en angitte blanding av fint pulver og knuste korn med lignende sammensetning som pulveret, idet andelen av korn i blandingen ligger mellom 20 og 80%, vil den elektriske motstand i det keramiske material bli vesentlig reduset. In the case of a specified mixture of fine powder and crushed grain with a similar composition to the powder, the proportion of grain in the mixture being between 20 and 80%, the electrical resistance in the ceramic material will be substantially reduced.

Det nevnte diborid kan f.eks. være et diborid av titan,zirkonium, hafnium eller wolfram. Disilisidet kan være et disilisid av et av de samme eller et forskjellig metall. The aforementioned diboride can e.g. be a diboride of titanium, zirconium, hafnium or tungsten. The disilicide can be a disilicide of one of the same or a different metal.

Blandingen av pulver og korn eltes sammen med 1 - 6% av et fluorid, og utsettes så for vibrasjon under en kort tid i en stopeform. The mixture of powder and grain is kneaded together with 1 - 6% of a fluoride, and then subjected to vibration for a short time in a stope form.

Når fluoridet oppvarmes påvirker fluoridionene pulveret og kornene av diborid og disilisid, således at sintringen kan utfores ved en lavere temperatur enn den ellers ville være nodvendig, uten at dette nodvendigvis medforer en sintring under trykk. Denne sintring utfores i en atmosfære av inert gass. For å unngå sprekkdannelser i det keramiske material under avkjoling, dekkes den nedre del av stopeformen enten med grafittfilt eller et grafitisk pappskikt, som markedfores under varemerket "PAPYEX:1 Fluoridet forefinnes ikke lenger i den dannede keramiske substans. When the fluoride is heated, the fluoride ions affect the powder and grains of diboride and disilicide, so that sintering can be carried out at a lower temperature than would otherwise be necessary, without this necessarily entailing sintering under pressure. This sintering is carried out in an atmosphere of inert gas. To avoid cracking in the ceramic material during cooling, the lower part of the stop mold is covered either with graphite felt or a graphite cardboard layer, which is marketed under the trademark "PAPYEX:1 The fluoride is no longer present in the formed ceramic substance.

De folgende utforelseseksempler er bare angitt for å anskueliggjøre foreliggende oppfinnelse. The following exemplary embodiments are only given to illustrate the present invention.

Eksempel 1. Example 1.

En blanding av fint pulver (hver partikkel er noen få p. i diameter) omfatter 85% titan-diborid og 15% titan-disilisid. Denne blanding oksyderes ved 1250°C sammenlignet med en oksyderingstemperatur på 600°C for titan-diborid alene. A mixture of fine powder (each particle is a few p. in diameter) comprises 85% titanium diboride and 15% titanium disilicide. This mixture is oxidized at 1250°C compared to an oxidation temperature of 600°C for titanium diboride alone.

60% av pulverblåndingen ble sintret under trykk og meget hoy temperatur, nemlig 1800°C, for derved å oppnå et meget kompakt produkt med nesten ingen porositet. Ved knusingen av dette produkt, ble det oppnådd korn med noen få mm diameter, og som ble tilfort de gjenværende 40% av den fine pulverblanding. 60% of the powder mixture was sintered under pressure and at a very high temperature, namely 1800°C, in order to obtain a very compact product with almost no porosity. When crushing this product, grains with a diameter of a few mm were obtained, which were added to the remaining 40% of the fine powder mixture.

Den således oppnådde blanding ble eltet sammen med 3% litiumfluid og deretter utsatt for vibrasjoner i en form. The mixture thus obtained was kneaded together with 3% lithium fluid and then subjected to vibrations in a mould.

Etter sintring av blandingen ble det oppnådd et produkt med After sintering the mixture, a product with

en porositet storre enn 40%, og dette forbedret i vesentlig grad dens motstandsevne mot termisk sjokk. For dette formål ble grafittformen og den tilforte blanding i denne bragt til en temperatur på 13 50° og varmebehandlet i 2 timer i en argonatmosfære. a porosity greater than 40%, and this significantly improved its resistance to thermal shock. For this purpose, the graphite mold and the added mixture therein were brought to a temperature of 13 50° and heat treated for 2 hours in an argon atmosphere.

Keramiske materialer som omfatter titan-diborid og titan-disilisid og er fremstilt ved ovenfor angitte frangangmåter, er gode elektriske ledere, forblir passive i nærvær av flytende metall , muliggjor god fuktning,samt har stor motstandsevne mot termiske sjokk og oksyderes forst ved hoy temperatur. Ceramic materials that include titanium diboride and titanium disilicide and are produced by the above-mentioned methods are good electrical conductors, remain passive in the presence of liquid metal, enable good wetting, and have great resistance to thermal shocks and are only oxidized at high temperatures.

Eksempel 2. Example 2.

En annen prove er fremstilt ved samme fremgangsmåte ved anvendelse av haf niundLborid og litiumf luorid. Ettersom haf nium-diborid oksyderes ved hoy temperatur, var det ikke nodvendig å tilsette disilisid til hafnium-diboridpulveret. Another sample is prepared by the same method using hafnium boride and lithium fluoride. As hafnium diboride oxidizes at high temperature, it was not necessary to add disilicide to the hafnium diboride powder.

En blanding som omfattet 95% store korn av hafnium-diborid, fremstilt A mixture comprising 95% large grains of hafnium diboride, prepared

ved sintring under trykk og en temperatur på 2000°C og 35% av fint pulver av samme substans, ble tildannet. by sintering under pressure and a temperature of 2000°C and 35% of fine powder of the same substance, was formed.

95% av denne blanding ble så tilsatt 4% av litiumfluorid, 95% of this mixture was then added to 4% of lithium fluoride,

hvoretter den således oppnådde sammensetning ble utsatt for vibrasjoner i en grafittform. Denne ble så i argonatmosfære bragt opp til en temperatur på 1000°C i 1 time, hvoretter den umiddelbart ble utsatt for en temperatur på 1350°C i 2 timer. after which the composition thus obtained was subjected to vibrations in a graphite mold. This was then brought up to a temperature of 1000°C for 1 hour in an argon atmosphere, after which it was immediately exposed to a temperature of 1350°C for 2 hours.

Det keramiske haf niumdiborid.-material som ble oppnådd ved denne The ceramic hafnium diboride material obtained by this

fremgangsmåte, hadde en porositet på 30 - 35 %, alt etter provestykket, og hadde god mekanisk fasthet. method, had a porosity of 30 - 35%, depending on the sample, and had good mechanical strength.

Anvendelse av meget porost og ledende keramisk material er en Application of highly porous and conductive ceramic material is one

særskilt fordel i pumper for flytende metall, i elektrolyse- particular advantage in pumps for liquid metal, in electrolysis

apparater, nærmere bestemt for tilvirkning av elektroder, eller også for lettere fremstilling av varmeelementror for oppvarmning under utnyttelse av Joule-effekten. devices, specifically for the production of electrodes, or also for the easier production of heating element tubes for heating using the Joule effect.

Claims (4)

1. Fremgangsmåte for fremstilling av porost, elektrisk ledende keramisk material ved sintring av et utgangsmaterial bestående av diborid av titan, zirkonium, hafnium eller wolfram, fortrinnvis blandet med disilisid av titan, zirkonium, hafnium eller wolfram, karakterisert ved at en viss mengde av nevnte utgangsmaterial i form av fint pulver oppdeles i to deler, hvorav den ene, som utgjor 20-80% av den totale mengde, utsettes for en for-sintring under trykk og ved en temperatur i området 1000-2000°C, og deretter knuses til granuler som blandes med den annen del av pulvermengden, hvorpå blandingen eltes sammen med "1-6% fluorid av et metall fra gruppe Ia eller Ib i det periodiske system og det hele vibreres for sintringen, som utfores i en form ved en temperatur i ormådet 1000-1500°C uten overtrykk og i inert atmosfære, f.eks. av argon.1. Process for the production of porous iron, electrically conductive ceramic material by sintering a starting material consisting of diboride of titanium, zirconium, hafnium or tungsten, preferably mixed with disilicide of titanium, zirconium, hafnium or tungsten, characterized in that a certain amount of said starting material in the form of fine powder is divided into two parts, one of which, which constitutes 20-80% of the total amount, is subjected to pre-sintering under pressure and at a temperature in the range of 1000- 2000°C, and then crushed into granules which are mixed with the second part of the powder quantity, after which the mixture is kneaded together with "1-6% fluoride of a metal from group Ia or Ib in the periodic table and the whole is vibrated for sintering, which is carried out in a mold at a temperature in the order of 1000-1500°C without overpressure and in an inert atmosphere, e.g. of argon. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at nevnte diborid og disilisid er salter av samme metall.2. Method as stated in claim 1, characterized in that said diboride and disilicide are salts of the same metal. 3. Fremgangsmåte som angitt i krav 1 eller 2, karakterisert ved at prosentandelen av disilisid i blandingen av fint diborid- og disilisid-pulver er mindre enn 20%.3. Method as stated in claim 1 or 2, characterized in that the percentage of disilicide in the mixture of fine diboride and disilicide powder is less than 20%. 4. Fremgangsmåte son angitt i krav 1-3, karakterisert ved at det anvendte fluorid er litium-fluorid.4. Method as stated in claims 1-3, characterized in that the fluoride used is lithium fluoride.
NO469872A 1971-12-22 1972-12-20 NO133193C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7146212A FR2186960A5 (en) 1971-12-22 1971-12-22

Publications (2)

Publication Number Publication Date
NO133193B true NO133193B (en) 1975-12-15
NO133193C NO133193C (en) 1976-03-24

Family

ID=9087904

Family Applications (1)

Application Number Title Priority Date Filing Date
NO469872A NO133193C (en) 1971-12-22 1972-12-20

Country Status (11)

Country Link
JP (3) JPS5542583B2 (en)
AU (1) AU466721B2 (en)
CA (1) CA1023139A (en)
CH (1) CH574374A5 (en)
DE (1) DE2261523A1 (en)
FR (1) FR2186960A5 (en)
GB (1) GB1414178A (en)
IT (1) IT972582B (en)
NO (1) NO133193C (en)
SE (1) SE375754B (en)
SU (2) SU571180A3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2262437B1 (en) * 1974-02-21 1983-06-24 Activite Atom Avance
JPS59184611U (en) * 1983-05-27 1984-12-08 日立工機株式会社 Electric cutter dust suction device
JPS6342801A (en) * 1986-08-08 1988-02-24 日立工機株式会社 Portable dust-collecting circular saw

Also Published As

Publication number Publication date
AU466721B2 (en) 1974-06-20
SU674664A3 (en) 1979-07-15
JPS4870905A (en) 1973-09-26
JPS4870904A (en) 1973-09-26
SU571180A3 (en) 1977-08-30
AU5030172A (en) 1974-06-20
CA1023139A (en) 1977-12-27
FR2186960A5 (en) 1974-01-11
DE2261523A1 (en) 1973-06-28
JPS5542583B2 (en) 1980-10-31
SE375754B (en) 1975-04-28
NO133193C (en) 1976-03-24
JPS4870894A (en) 1973-09-26
IT972582B (en) 1974-05-31
JPS5549032B2 (en) 1980-12-09
CH574374A5 (en) 1976-04-15
GB1414178A (en) 1975-11-19

Similar Documents

Publication Publication Date Title
CN105272254B (en) A kind of preparation method of pantograph carbon slide material
CN107445639A (en) A kind of preparation method of carbon/carbon porous body
US3194855A (en) Method of vibratorily extruding graphite
JP2001515008A (en) Carbon-carbon fiber composition material
EP1123908A4 (en) High-temperature strength and heat-resistant composite material "refsic"
US2480475A (en) Refractory
US2526805A (en) Method of forming uranium carbon alloys
US3252827A (en) Refractory carbide bodies and method of making them
US3036017A (en) Heat resistant and oxidation proof materials
NO133193B (en)
US4017426A (en) Highly porous conductive ceramics and a method for the preparation of same
CN104911384B (en) Low-temperature preparation method of tungsten-based infusible carbide composite
CN104973864B (en) A kind of preparation method and niobium oxide planar targets of niobium oxide planar targets
US4420539A (en) Process for producing antifriction materials
NO143151B (en) PROCEDURE FOR THE MANUFACTURE OF CERAMIC INSULATION MATERIAL
RU2377223C1 (en) Method to produce composite carbon materials
Kenawy Synthesis and characterization of aluminum borate ceramic whiskers
JP2002285258A (en) Metal-ceramic composite material and production method therefor
US3409451A (en) Refractory composites and method of making the same
US1794300A (en) Hard metal composition
US2230267A (en) Bonded carbon composition
US3348917A (en) Glass containing dissolved carbon, methods of making and using, and obtaining graphite
WO2018076987A1 (en) Tungsten-copper alloy and preparation method therefor
JPH05270812A (en) Sinterable carbon powder and production thereof
RU2716234C1 (en) Method of making electric contact and composite electric contact