NO130723B - - Google Patents

Download PDF

Info

Publication number
NO130723B
NO130723B NO712A NO271A NO130723B NO 130723 B NO130723 B NO 130723B NO 712 A NO712 A NO 712A NO 271 A NO271 A NO 271A NO 130723 B NO130723 B NO 130723B
Authority
NO
Norway
Prior art keywords
alkali
sulphite
solution
aqueous
acid
Prior art date
Application number
NO712A
Other languages
Norwegian (no)
Other versions
NO130723C (en
Inventor
Kozo Fukuba
Reiji Matsuda
Syozo Fujioka
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of NO130723B publication Critical patent/NO130723B/no
Publication of NO130723C publication Critical patent/NO130723C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/48Sulfur dioxide; Sulfurous acid
    • C01B17/50Preparation of sulfur dioxide
    • C01B17/60Isolation of sulfur dioxide from gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

Fremgangsmåte for å hindre oksydasjon av Method for preventing oxidation of

alkalisulfitt og/eller alkalibisulfitt til alkali sulfite and/or alkali bisulfite to

alkalisulfat. alkali sulfate.

Behandlingen av en SO^-holdig gass med en vandig alkalisulfitt- The treatment of a SO^-containing gas with an aqueous alkali sulphite-

losning er en operasjon som nå til dags foretas meget ofte. For eksempel vaskes ofte en SO^-holdig gass som skriver seg fra forbrenning av svovel, svovelholdige mineraler, svovelholdig brensel eller lignende med en vandig alkalilosning for fremstilling av alkalisulfitt.Ennvidere vaskes for eksempel en SO^-holdig avgass med en vandig losning av alkalisulfitt for gjenvinning eller fjerning av SO,.,. Ved disse behandlinger inneholder den SO^-holdige gass som behandles, vanligvis oksygen som bevirker oksydasjon av alkalisulfitt og/eller alkalibisulfitt til alkalisulfat. Det således dannede alkalisulfat anses som en uonsket forurensning i den vandige på grunn Unloading is an operation which nowadays is carried out very often. For example, an SO^-containing gas resulting from the combustion of sulphur, sulphur-containing minerals, sulfur-containing fuel or the like is often washed with an aqueous alkali solution to produce alkali sulphite. for recovery or removal of SO,.,. In these treatments, the SO^-containing gas which is treated usually contains oxygen which causes oxidation of alkali sulphite and/or alkali bisulphite to alkali sulphate. The alkali sulphate thus formed is considered an unwanted pollutant in the aqueous ground

av at det er unyttig i nevnte behandlinger og også lager vanskeligheter ved utvinning av SO^ fra den resulterende losning ved oppvarmning eller behandling med MgO, ZnO eller lignende. Fjerning av det forurensende alkalisulfat fra den vandige alkalisulfittlosning blir således nodvehdig for utvinningsoperasjonen av S02. of the fact that it is useless in said treatments and also creates difficulties in the recovery of SO^ from the resulting solution by heating or treatment with MgO, ZnO or the like. Removal of the contaminating alkali sulphate from the aqueous alkali sulphite solution thus becomes necessary for the extraction operation of SO2.

Eksempelvis kan reaksjonen ved behandling av en SO^-holdig gass med en vandig natriumsulfittlosning uttrykkes ved folgende reaksj onsligning: For example, the reaction when treating a SO^-containing gas with an aqueous sodium sulphite solution can be expressed by the following reaction equation:

Den SO^-holdige gass som underkastes en slik behandling inneholder vanligvis 0,05 til 15 volumprosent SO^ og 1 til 20 volumprosent 0^. Oksygenet reagerer med det ovenfor, fremstilte natriumsulfitt i nærvær av et katalytisk stoff eller lys.under dannelse av Na2S01+ som vist ved folgende reaksjonsligning: The SO 2 -containing gas subjected to such treatment usually contains 0.05 to 15 volume percent SO 2 and 1 to 20 volume percent 0 2 . The oxygen reacts with the sodium sulphite produced above in the presence of a catalytic substance or light, forming Na2S01+ as shown by the following reaction equation:

Det således dannede Na2S0L(_ kan ikke lenger frigi SO^ ved oppvarmning. Med andre ord kan ikke Na2S0^ omdannes til natriumsulfitt ved en enkel prosess som oppvarmning og blir derfor unyttig ved behandling med en SOg-holdig gass. The Na2S0L(_) thus formed can no longer release SO^ upon heating. In other words, Na2S0^ cannot be converted into sodium sulphite by a simple process such as heating and therefore becomes useless when treated with a SOg-containing gas.

For å hindre oksydasjonen av alkalisulfitt til alkalisulfat har To prevent the oxidation of alkali sulphite to alkali sulphate has

det tidligere vært foreslått innblanding av forskjellige antioksydasjonsmidler i den vandige alkalisulfittlosning. Eksempelvis er tilsetning av hydrokinon, kinolin, glycin, katekol it has previously been proposed to mix different antioxidants into the aqueous alkali sulphite solution. Examples include the addition of hydroquinone, quinoline, glycine, catechol

og lignende foreslått i litteraturen (kfr. "Ing.Eng.Chem",, and similar proposed in the literature (cf. "Ing.Eng.Chem",,

27.588 (1935), belgisk patent nr. 706.¥f9, japansk patentskrift nr. 20162/1970, o.s.v.) Imidlertid reduseres virkningen av disse antioksydasjonsmidler meget når metallioner som Fe-, Cu- og Co-ioner er tilstede i en vandig losning av alkalisulfitt ved en 27,588 (1935), Belgian Patent No. 706.¥f9, Japanese Patent Document No. 20162/1970, etc.) However, the effectiveness of these antioxidants is greatly reduced when metal ions such as Fe, Cu, and Co ions are present in an aqueous solution of alkali sulphite at a

konsentrasjon hoyere enn ca. 50 deler pr. million. Uheldigvis er disse metallioner nesten alltid tilstede i SO^-holdige gasser som vanligvis behandles, og når slike gasser behandles med en vandig alkalisulfittlosning, bringes de inn i den resulterende losning. Forurensning, spesielt med Fe-ion, er uungåelig på concentration higher than approx. 50 parts per million. Unfortunately, these metal ions are almost always present in SO 2 -containing gases that are usually treated, and when such gases are treated with an aqueous alkali sulfite solution, they are carried into the resulting solution. Contamination, especially with Fe ion, is inevitable on

grunn av at den kan komme fra selve behandlingsapparaturen og også fra brenselsaske. because it can come from the treatment equipment itself and also from fuel ash.

Det er nå funnet at ved behandling av en SO^-holdig gass med en vandig alkalisulfitt- eller bisulfittlosning, er nærvær av visse chelatdannende midler som antioksydasjonsmiddel ganske effektivt når det gjelder å hindre omdannelsen til alkalisulfat endog i nærvær av forurensende metallioner. It has now been found that when treating an SO^-containing gas with an aqueous alkali sulphite or bisulphite solution, the presence of certain chelating agents as antioxidants is quite effective in preventing the conversion to alkali sulphate even in the presence of contaminating metal ions.

Den foreliggende oppfinnelse vedrorer således en fremgangsmåte The present invention thus relates to a method

for å hindre oksydasjon av alkalisulfitt og/eller alkalibisulfitt til alkalisulfat ved behandling av vandige losninger av alkalisulfitt og/eller alkalisulfitt med gasser som inneholder SO^ og oksygen, ved tilsetning av et antioksydasjonsmiddel til to prevent oxidation of alkali sulphite and/or alkali bisulphite to alkali sulphate by treating aqueous solutions of alkali sulphite and/or alkali sulphite with gases containing SO^ and oxygen, by adding an antioxidant to

den vandige losning, og det særegne ved fremgangsmåten i henhold til oppfinnelsen er at det som antioksydasjonsmiddel anvendes en forbindelse valgt fra gruppen av chelatdannende syrer bestående av etylendiamin- N,N,N',N'-tetraeddiksyre (heretter benevnt "EDTA"), nitrilotri-eddiksyre (heretter benevnt "NTA"), 1,2-diaminocykloheksan-N,N,N',N'-tetraeddiksyre (heretter benevnt "CyDTA"), N-oksyetylen-diamin-N,N,N'-trieddiksyre (heretter benevnt "HEDTA"), etylen-glykol-bis (^.-amL noe ty leter )-N,N,N' ,N' - tetraeddiksyre (heretter benevnt "GEDTA") og etylendiamin-N,N,N',N<!->tetrapropionsyre (heretter benevnt "EDTP), deres alkalisalter (f.eks. natriumsalt, kaliumsalt, ammoniumsalt) samt blandinger derav, idet'behandlingen utfores ved en temperatur på fra romtemperatur til 110°C. the aqueous solution, and the peculiarity of the method according to the invention is that a compound selected from the group of chelating acids consisting of ethylenediamine-N,N,N',N'-tetraacetic acid (hereinafter referred to as "EDTA") is used as an antioxidant. nitrilotriacetic acid (hereinafter referred to as "NTA"), 1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (hereinafter referred to as "CyDTA"), N-oxyethylenediamine-N,N,N'-triacetic acid (hereinafter referred to as "HEDTA"), ethylene-glycol-bis(^.-amL some ty leter )-N,N,N' ,N' - tetraacetic acid (hereinafter referred to as "GEDTA") and ethylenediamine-N,N,N' ,N<!->tetrapropionic acid (hereinafter referred to as "EDTP), their alkali salts (e.g. sodium salt, potassium salt, ammonium salt) as well as mixtures thereof, the treatment being carried out at a temperature of from room temperature to 110°C.

Når for eksempel en vandig losning av natriumsulfitt (d.v.s. When, for example, an aqueous solution of sodium sulphite (i.e.

Na^SO^ + NaHSO^) og som eventuelt også inneholder Fe-ion bringes Na^SO^ + NaHSO^) and which possibly also contains Fe-ion is brought

i motstromskontakt med luft ved 50°C, vil innvirkningen av forskjellige antioksydasjonsmidler i losningen på oksydasjonen av natriumsulfitt til Na2S(\ ses i sammenligning i den folgende tabell 1. in countercurrent contact with air at 50°C, the effect of different antioxidants in the solution on the oxidation of sodium sulphite to Na2S(\ will be seen in comparison in the following table 1.

Som det vil sees av tabellen ovenfor, reduseres effekten av kjente antioksydasjonsmidler som hydrokinon merkbart i nærvær av Fe-ion, mens EDTA-2Na qg NTA-3Na knapt påvirkes av Fe-ion og kan opprettholde sin effekt i vesentlig grad. As will be seen from the table above, the effect of known antioxidants such as hydroquinone is noticeably reduced in the presence of Fe-ion, while EDTA-2Na qg NTA-3Na is hardly affected by Fe-ion and can maintain its effect to a significant extent.

Det har aldri tidligere vært kjent på området at disse chelatdannende midler effektivt hindrer oksydasjonen av alkalisulfitt. Det er således verdt å legge merke til at de ikke bare stopper den oksydasjonsakselererende virkning av metallioner, men også It has never previously been known in the field that these chelating agents effectively prevent the oxidation of alkali sulphite. It is thus worth noting that they not only stop the oxidation-accelerating effect of metal ions, but also

reduserer selve oksydasjonshastigheten av alkalisulfitt med oksygen. reduces the actual oxidation rate of alkali sulphite with oxygen.

I forsokene, hvis resultater er vist i tabell 1, ble det brukt In the experiments, the results of which are shown in Table 1, it was used

luft med et oksygeninnhold på 21 volumprosent. Da oksydasjonshastigheten ved behandlingen av en alkalisulfittlosning generelt er funnet å synke med minskingen av oksygenets partialtrykk og da en avgass eller en utgangsgass for fremstilling av svovelsyre vanligvis inneholder 2 til 12 volumprosent oksygen, kan dannelsen av et alkalisulfat ved behandlingen av en slik gass i henhold til oppfinnelsen bli så liten at man kan se bort fra den. air with an oxygen content of 21% by volume. As the rate of oxidation in the treatment of an alkali sulphite solution is generally found to decrease with the decrease in the partial pressure of oxygen and as an off-gas or an outlet gas for the production of sulfuric acid usually contains 2 to 12 volume percent oxygen, the formation of an alkali sulphate in the treatment of such a gas according to the invention becomes so small that one can disregard it.

Som alkalisulfitt brukes natriumsulfitt, kaliumsulfitt, ammoniumsulfitt o.s.v. I en vandig losning kan disse være tilstede sammen med det tilsvarende alkalihydrogensulfitt (f.eks. natriumhydrogensulfitt, kaliumhydrogensulfitt, ammoniumhydrogen-sulf itt). Konsentrasjonen av alkalisulfitt (og det tilsvarende alkalihydrogensulfitt) varierer i avhengighet av arten og kan være fra 20 til 35 vektprosent i tilfelle av natriumsulfitt (d.v.s. Sodium sulphite, potassium sulphite, ammonium sulphite etc. are used as alkali sulphite. In an aqueous solution, these may be present together with the corresponding alkali hydrogen sulphite (e.g. sodium hydrogen sulphite, potassium hydrogen sulphite, ammonium hydrogen sulphite). The concentration of alkali sulphite (and the corresponding alkali hydrogen sulphite) varies depending on the species and can be from 20 to 35 percent by weight in the case of sodium sulphite (i.e.

Na2S0^ + NaHSO^), fra 30 til 65 vektprosent i tilfelle av kaliumsulfitt (d.v.s. K^SO^ + KHSO^) og fra 20 til 50 Na2S0^ + NaHSO^), from 30 to 65 percent by weight in the case of potassium sulphite (i.e. K^SO^ + KHSO^) and from 20 to 50

vektprosent i tilfelle av ammoniumsulf itt (d.v.s. (M1+)2S0^ + NH^HSO^). percent by weight in the case of ammonium sulphite (i.e. (M1+)2S0^ + NH^HSO^).

Konsentrasjonen av antioksydasjonsmidlet i den vandige alkalisulfittlosning varierer i avhengighet av metallionekonsentra-sjonen i absorpsjonslosningen og vil vanligvis være fra 50 til 2.000 deler pr. million, basert på vekten av den vandige sulfitt-eller bisulfittlosning. The concentration of the antioxidant in the aqueous alkali sulphite solution varies depending on the metal ion concentration in the absorption solution and will usually be from 50 to 2,000 parts per litre. million, based on the weight of the aqueous sulphite or bisulphite solution.

Behandlingen av en S02~holdig gass med den vandige alkalisulfittlosning inneholdende antioksydasjonsmidlet i henhold til oppfinnelsen utfores som nevnt ved en temperatur på fra romtemperatur til 110°C. The treatment of a SO2-containing gas with the aqueous alkali sulphite solution containing the antioxidant according to the invention is carried out as mentioned at a temperature of from room temperature to 110°C.

Som ovenfor illustrert, er foreliggende oppfinnelse effektiv når As illustrated above, the present invention is effective when

det gjelder å hindre oksydasjon av alkalisulfitt ved bruk av de nevnte chelatdannende midler. Dermed kan operasjonen for fjerning av alkalisulfat som krevet i vanlige prosesser, utelates. it is necessary to prevent oxidation of alkali sulphite by using the aforementioned chelating agents. Thus, the operation for removing alkali sulphate, which is required in normal processes, can be omitted.

Praktiske og foretrukne utforelsesformer for den foreliggende oppfinnelse er vist i de folgende eksempler hvori de angitte prosenter er vektprosenter. Practical and preferred embodiments of the present invention are shown in the following examples in which the stated percentages are percentages by weight.

Eksempel 1. Example 1.

Til en vandig losning i det vesentlige bestående av Ah-, 6% To an aqueous solution essentially consisting of Ah-, 6%

Na2S03, 16,9$ NaHSO^, 0, 2% NagSO^ og 68,3$ vann og inneholdende Na2S03, 16.9$ NaHSO^, 0.2% NagSO^ and 68.3$ water and containing

100 deler per million (ppm) Fe<++>ble det tilsatt 1.300 ppm EDTA-2Na 100 parts per million (ppm) Fe<++>1,300 ppm EDTA-2Na was added

og den resulterende losning ble bragt i motstromskontakt med luft and the resulting solution was countercurrently contacted with air

ved 50°0- Dannelsen pr. time av NagSO^ ble målt til 0,052%/time som at 50°0- The formation per hour of NagSO^ was measured at 0.052%/hour as

svarte til 30$ av det som ville ha vært i tilfelle av bruk av den samme vandige losning som ovenfor, men uten EDTA-2Na. corresponded to 30$ of what would have been the case of using the same aqueous solution as above, but without EDTA-2Na.

Eksempel 2. Example 2.

Til en vandig losning i det vesentlige bestående av 7. 2% To an aqueous solution consisting essentially of 7.2%

K2S0^, 5V$KHS0^ og 38,8$ vann og inneholdende 200 ppm Fe<++>ble det tilsatt 250 ppm EDTA-2Na og den resulterende losning ble bra gt i kontakt med luft som i eksempel 1. Dannelsen pr., time av K^SO^ ble målt til 0.02$/time hvilket svarte til 35"$ av det som ville ha vært i tilfelle av bruk av den samme vandige losning som ovenfor, men uten EDTA-2Na. K2S0^, 5V$KHS0^ and 38.8$ water and containing 200 ppm Fe<++>, 250 ppm EDTA-2Na was added and the resulting solution was brought into contact with air as in example 1. The formation per hour of K^SO^ was measured at 0.02$/hour which corresponded to 35"$ of what would have been in the case of using the same aqueous solution as above, but without EDTA-2Na.

Eksempel 3. Example 3.

Til en vandig losning som i eksempel 1 inneholdende 200 ppm Fe <++ >bie det tilsatt 500 ppm NTA-3Na og den resulterende losning ble bragt i kontakt med luft som i eksempel 1. Dannelsen pr. time av NagSO^ ble målt til 0.086$/time hvilket svarte til 50$ av det som ville ha vært tilfelle av bruk av den samme vandige losning som ovenfor, men uten NTA-3Na. To an aqueous solution as in example 1 containing 200 ppm Fe<++ >bee, 500 ppm NTA-3Na was added and the resulting solution was brought into contact with air as in example 1. The formation per hour of NagSO^ was measured at 0.086$/hour which corresponded to 50$ of what would have been the case using the same aqueous solution as above, but without NTA-3Na.

Eksempel h . Example h.

Til en vandig losning som i eksempel 1 inneholdende 100 ppm Fe<++ >ble det tilsatt 350 ppm av et antioksydasjonsmiddel som angitt i tabell 2, og den resulterende losning ble bragt i kontakt med luft som i eksempel 1. To an aqueous solution as in Example 1 containing 100 ppm Fe<++>, 350 ppm of an antioxidant as indicated in Table 2 was added, and the resulting solution was brought into contact with air as in Example 1.

Oksydasjonsforholdet er vist i tabell 2. The oxidation ratio is shown in Table 2.

Claims (2)

1. Fremgangsmåte for å hindre oksydasjon av alkalisulfitt og/eller alkalibisulfitt til alkalisulfat ved behandling av vandige lbsninger av alkalisulfitt og/eller alkalibisulfitt med gasser som inneholder SO^ og oksygen, ved tilsetning av et antioksydasjonsmiddel til den vandige losning, karakterisert ved at det som antioksydasjonsmiddel anvendes en forbindelse valgt fra gruppen av chelatdannende syrer bestående av etylendiamin-N,N,N',N'-tetraeddiksyre, nitrilotri-eddiksyre, 1 ,2-diaminocykloheksan-N,N,N',N' -tetraeddiksyre, N-oksyetyletylendiamin-N,N,N'-trieddiksyre, etylen-glykol-bis (B-aminoetyleter)-N,N,N*,N'-tetraeddiksyre og etylen-diamin-N,N,N',N'-tetrapropionsyre, deres alkalisalter og blandinger derav, idet behandlingen utfores ved en temperatur på fra romtemperatur til 110°C.1. Method for preventing oxidation of alkali sulphite and/or alkali bisulphite to alkali sulphate by treating aqueous solutions of alkali sulphite and/or alkali bisulphite with gases containing SO^ and oxygen, by adding an antioxidant to the aqueous solution, characterized in that a compound selected from the group of chelating acids consisting of ethylenediamine-N,N,N',N'-tetraacetic acid, nitrilotriacetic acid, 1,2-diaminocyclohexane-N,N,N',N' is used as antioxidant -tetraacetic acid, N-oxyethylethylenediamine-N,N,N'-triacetic acid, ethylene-glycol-bis (B-aminoethyl ether)-N,N,N*,N'-tetraacetic acid and ethylene-diamine-N,N,N', N'-tetrapropionic acid, their alkali salts and mixtures thereof, the treatment being carried out at a temperature of from room temperature to 110°C. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at antioksydasjonsmidlet anvendes i en konsentrasjon på fra 50 til 2.000 deler pr. million, basert på vekten av den vandige sulfitt- eller bisulfitt-losning.2. Procedure as stated in claim 1, characterized in that the antioxidant is used in a concentration of from 50 to 2,000 parts per million, based on the weight of the aqueous sulphite or bisulphite solution.
NO712A 1970-09-22 1971-01-04 NO130723C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45083172A JPS4940357B1 (en) 1970-09-22 1970-09-22

Publications (2)

Publication Number Publication Date
NO130723B true NO130723B (en) 1974-10-21
NO130723C NO130723C (en) 1975-01-29

Family

ID=13794843

Family Applications (1)

Application Number Title Priority Date Filing Date
NO712A NO130723C (en) 1970-09-22 1971-01-04

Country Status (15)

Country Link
JP (1) JPS4940357B1 (en)
AT (1) AT300848B (en)
BE (1) BE761355A (en)
BR (1) BR7100135D0 (en)
CA (1) CA969739A (en)
CH (1) CH547230A (en)
DE (1) DE2100268C3 (en)
ES (1) ES387077A1 (en)
FR (1) FR2105753A5 (en)
GB (1) GB1301621A (en)
IE (1) IE34845B1 (en)
NL (1) NL7100047A (en)
NO (1) NO130723C (en)
SE (1) SE373297B (en)
ZA (1) ZA708739B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789530A (en) * 1987-12-09 1988-12-06 Phillips Petroleum Company Absorption of hydrogen sulfide with an alkali metal ethylenediaminetetraacetate and/or alkali metal nitrilotriacetate
DE3925424A1 (en) * 1989-08-01 1991-02-07 Basf Ag METHOD FOR REDUCING THE OXIDATION SPEED OF SULPHATE SOLUTIONS

Also Published As

Publication number Publication date
IE34845L (en) 1972-03-22
GB1301621A (en) 1973-01-04
DE2100268C3 (en) 1974-11-14
FR2105753A5 (en) 1972-04-28
NL7100047A (en) 1972-03-24
DE2100268B2 (en) 1974-02-28
JPS4940357B1 (en) 1974-11-01
ZA708739B (en) 1971-10-27
NO130723C (en) 1975-01-29
ES387077A1 (en) 1979-05-01
AT300848B (en) 1972-08-10
CA969739A (en) 1975-06-24
DE2100268A1 (en) 1972-03-23
BR7100135D0 (en) 1973-05-03
BE761355A (en) 1971-07-08
IE34845B1 (en) 1975-09-03
CH547230A (en) 1974-03-29
SE373297B (en) 1975-02-03

Similar Documents

Publication Publication Date Title
US1271899A (en) Method of recovering sulfur dioxid from furnace-gases.
US2675297A (en) Solution phase process of convert
US4133650A (en) Removing sulfur dioxide from exhaust air
US4107271A (en) Wet-treatment of exhaust gases
US4634582A (en) Sulfur dioxide removal process
US10046272B2 (en) Process and system for removing sulfur dioxide from flue gas
NO130723B (en)
US4834959A (en) Process for selectively removing sulfur dioxide
US3305307A (en) Production of solid alkali metal sulfites
ES2211782T3 (en) PROCEDURE FOR PURIFYING WATER TAMPON SOLUTIONS.
US2082006A (en) Process for removing and recovering sulphur dioxide from waste gases
US3804757A (en) Process for treating waste water from industrial processes
US4164543A (en) Process for regenerating brines containing sodium sulfites and sulfates
AU696509B2 (en) Process for removing SO2 from gases which contain it, with direct production of elemental sulfur
US1708287A (en) Method of recovering iodine
US4370239A (en) Bisulfite sponge process
US3431072A (en) Process for recovery and use of sulfur dioxide
US4174383A (en) Process for purifying a sulfur dioxide containing gas with production of elemental sulfur
CN112939028B (en) Preparation method of sodium sulfite
US1795120A (en) Process for the simultaneous absorption of ammonia and hydrogen sulfide from industrial gases
US4256712A (en) Regenerable process for SO2 removal employing gelatinous aluminum hydroxide as absorbent
USRE21631E (en) Process for removing and recover
FR2513140A1 (en) PROCESS FOR THE REMOVAL OF SULFUR OXIDES FROM FUMES
US1888886A (en) Treatment of caustic solutions for the production of solutions and of solid caustic soda of a high degree of purity
JPH09248421A (en) Treatment method for desulfurization wastewater