NO130473B - - Google Patents

Download PDF

Info

Publication number
NO130473B
NO130473B NO121870A NO121870A NO130473B NO 130473 B NO130473 B NO 130473B NO 121870 A NO121870 A NO 121870A NO 121870 A NO121870 A NO 121870A NO 130473 B NO130473 B NO 130473B
Authority
NO
Norway
Prior art keywords
reaction
chlorine
carbon tetrachloride
residues
distillation
Prior art date
Application number
NO121870A
Other languages
Norwegian (no)
Other versions
NO130473C (en
Inventor
H Krekeler
W Riemenschneider
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of NO130473B publication Critical patent/NO130473B/no
Publication of NO130473C publication Critical patent/NO130473C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Fremgangsmåte til fremstilling åv Procedure for the production of

karbontetraklorid av tjæreaktige stoffer. carbon tetrachloride of tarry substances.

Det er kj-ent å omdanne aromatiske eller alifatiske hydro-karboner med klor ved forhøyet temperatur til karbontetraklorid.-Oppfinnelsen vedrører en fremgangsmåte til fremstilling It is known to convert aromatic or aliphatic hydrocarbons with chlorine at an elevated temperature to carbon tetrachloride. - The invention relates to a method for producing

av karbontetraklorid, idet fremgangsmåten er karakterisert ved at man omsetter stenkullr eller brunkulltjære eller .herav ved destillasjon fremstilte produkter og residuer eller residuer fra jordolje- . destillasjon med klor ved temperaturer mellom-500 og 700<Q>C og trykk mellom 100 og 300 ato. of carbon tetrachloride, as the method is characterized by converting hard coal or lignite tar or products produced from these by distillation and residues or residues from petroleum. distillation with chlorine at temperatures between -500 and 700<Q>C and pressure between 100 and 300 ato.

Stenkull- eller brunkulltjære likeledes som jordolje-destillasjonsresiduene er som sådanne bare vanskelig anvendbare, de må for en teknisk" utnyttelse ved omstendelige operasjoner spaltes i renstoffene/og de derved dannede residuer som bek, bitumen eller asfalt tjente tidligere fremfor alt som klebemiddel og til gatebelegg. Den nye fremgangsmåten byr i forhold til dette på den mulighet herav Coal tar or lignite tar, as well as the petroleum distillation residues, are as such only difficult to use, they have to be split into the cleaning substances for a technical "utilization" in complex operations/and the resulting residues such as pitch, bitumen or asphalt previously served above all as an adhesive and for street paving In relation to this, the new procedure offers the possibility of this

å fremstille et verdifullt produkt som karbontetraklorid, hvis mange-sidige anvendbarhet f.eks. som oppløsningsmidler eller som organisk mellomprodukt er kjent. to produce a valuable product such as carbon tetrachloride, whose many-sided applicability e.g. as solvents or as an organic intermediate are known.

Reaksjonen er forsåvidt overraskende, 'som det tidligere bare var kjent at karbon i form av kull resp. koks kunne omdannes ved meget høyere temperaturer, nemlig over 1100°C, fortrinnsvis til 1500°C, The reaction is certainly surprising, 'as it was previously only known that carbon in the form of coal or coke could be converted at much higher temperatures, namely above 1100°C, preferably to 1500°C,

i karbontetraklorid. in carbon tetrachloride.

Også derved var omsetningene ennå meget små således at Thereby, too, turnover was still very small, so that

man måtte tilsette svovel eller svovelholdige forbindelser. Også i disse tilfeller måtte det dessuten anvendes temperaturer over 1000°C, idet praktisk talt bare en lysbueoppvarmning kom på tale og dessuten var sluttproduktene sterkt svovelholdige. Det var derfor ikke å vente at f.eks. stenkulltjærebek eller lignende meget sterkt kullstoff-holdige residuumprodukter kunne omdannes meget kvantitativt i karbontetraklorid ved arbeidstemperaturer som ligger flere 100° lavere enn ved den hittil kjente fremgangsmåte. one had to add sulfur or sulfur-containing compounds. In these cases, too, temperatures above 1000°C had to be used, as practically only an arc heating came into question and, furthermore, the end products were highly sulphurous. It was therefore not to be expected that e.g. coal tar pitch or similar highly carbon-containing residue products could be converted very quantitatively into carbon tetrachloride at working temperatures that are several 100° lower than with the hitherto known method.

De anvendte utgangsmaterialer for. foreliggende fremgangsmåte er elementært klor og stenkull- eller brunkulltjære og herav ved destillasjon fremstilte produkter som naftalenolje, tjæreolje, antracenolje, antracenresiduer og residuer som tjærebek. Tjæren kan være av forskjellig opprinnelse, f.eks. fra koksfremstillingen fra stenkull, fra brunkull eller fra trekull. Likeledes er residuene fra jordoljedestillasjonen anvendbare. Slike residuer er i littera-turen og i handelen f.eks. kjent under navn som bitumen, asfalt og jordvoks. De anvendte utgangsmaterialer ved fremgangsmåten ifølge oppfinnelsen er slike tjæredestillasjonsprodukter som ved normaltrykk koker over 100°C. Fortrinnsvis anvendes imidlertid slike som' koker over 215°C, f.eks. naftalen, fenantren,'fluorantren, pyren, acenafty-len, fluoren,' crysen, antracen, karbazol og metylnaftalen. Til de ovennevnte residuer hører også udestillerbåre deler, som f.eks. ved spaltning ved destillasjonen dannede krakkeprodukter og også koksak-tige stoffer. Vanligvis dreier det seg derved om en rekke forbindelser som i en summarisk elementæranalyse inneholder mindre enn ett hydro-genatom pr. karbbnatom. The used starting materials for. the present method is elemental chlorine and hard coal or lignite tar and products produced from this by distillation such as naphthalene oil, tar oil, anthracene oil, anthracene residues and residues such as tar pitch. The tar can be of different origin, e.g. from the production of coke from hard coal, from lignite or from charcoal. Likewise, the residues from the petroleum distillation are usable. Such residues are in the literature and in the trade, e.g. known under names such as bitumen, asphalt and earth wax. The starting materials used in the method according to the invention are tar distillation products which boil above 100°C at normal pressure. Preferably, however, those that boil above 215°C are used, e.g. naphthalene, phenanthrene, 'fluoranthrene, pyrene, acenaphthylene, fluorene,' crysene, anthracene, carbazole and methylnaphthalene. The above-mentioned residues also include non-distillable parts, such as e.g. by decomposition during the distillation formed crack products and also coke-like substances. This usually involves a number of compounds which, in a summary elemental analysis, contain less than one hydrogen atom per carb anatomy.

Alt etter tjærens forbehandling kan det også være inne-holdt betraktelige mengder alifatiske eller cykloalifatiske forbindelser i de anvendte produkter. Alle 'ovennevnte forbindelser kan anvendes i ønskelige blandingsforhold for reaksjonen ifølge oppfinnelsen. Depending on the pre-treatment of the tar, considerable amounts of aliphatic or cycloaliphatic compounds may also be contained in the products used. All the above-mentioned compounds can be used in desirable mixing ratios for the reaction according to the invention.

Reaksjonen utføres i et trykk-kar, som f.eks. er utformet som rørreaktor og kan inneholde en nikkelforing. Reaksjonen er ved de fleste anvendte produkter eksoterm, allikevel kan det eventuelt være nødvendig å oppvarme reaktoren på en eller annen måte. Spesielt foretrukket er derved en elektrisk manteloppvarmning av rørreaktoren. The reaction is carried out in a pressure vessel, such as is designed as a tube reactor and may contain a nickel lining. The reaction is exothermic with most of the products used, although it may be necessary to heat the reactor in one way or another. Electric jacket heating of the tube reactor is therefore particularly preferred.

Temperaturen i reaktoren skal ligge mellom 500 og 700°C. De angitte temperaturer refererer seg til den indre temperatur i reaktoren og til de varmeste steder av reaktoren. Eventuelt er det gunstig å la reaksjonskomponentene strømme gjennom en forreaksjonssone før de transporteres inn i den varmere hovedreaksjonssone. Forreaksjonssonen skal ha en temperatur mellom 50 og 500°C, fortrinnsvis mellom 100 og 300°C. Denne type reaksjonsføring har den fordel ved eksoterme prosesser å muliggjøre en langsom klorering av de anvendte produkter. Videre kan man fylle f orreaks j onssonen med en høytkokende., sterkt gjennomklorert organisk væske, hvori deretter klorets begyn-nelsesreaksjon med de anvendte produkter finner sted. Som slike væsker kommer det fortrinnsvis på tale heksaklorbenzen eller heksakloretan. The temperature in the reactor must be between 500 and 700°C. The indicated temperatures refer to the internal temperature in the reactor and to the hottest parts of the reactor. Optionally, it is advantageous to allow the reaction components to flow through a pre-reaction zone before they are transported into the hotter main reaction zone. The pre-reaction zone must have a temperature between 50 and 500°C, preferably between 100 and 300°C. This type of reaction has the advantage, in the case of exothermic processes, of enabling a slow chlorination of the products used. Furthermore, the pre-reaction zone can be filled with a high-boiling, heavily chlorinated organic liquid, in which the chlorine's initial reaction with the products used then takes place. Such liquids are preferably hexachlorobenzene or hexachloroethane.

Reaksjonskomponentenes inndosering i reaktoren foretas fortrinnsvis i flytende form ved hjelp av pumper. Klor er under svakt fortrykk lett å flytendegjøre og å pumpe inn i denne form. The dosing of the reaction components into the reactor is preferably carried out in liquid form by means of pumps. Under low pressure, chlorine is easy to liquefy and to pump into this form.

De tjære- resp. beklignende residuer må foroppvarmes for at de skal foreligge i flytende eller halvflytende form og kunne transporteres ved hjelp av pumper. The tar- or pitch-like residues must be preheated so that they are in liquid or semi-liquid form and can be transported using pumps.

Reaksjonstrykket frembringes ved hjelp av pumper og skal utgjøre 100 og 300 ato. The reaction pressure is generated by means of pumps and must amount to 100 and 300 ato.

Reaksjonen kan utføres kontinuerlig eller diskontinuerlig. Ved den kontinuerlige arbeidsmåte holdes trykket i reaktoren ved kontinuerlig pumping av anvendt produkt ved hjelp av en avspennings-ventil. De dannede reaksjonsprodukter som i det vesentlige består av karbontetraklorid, klor og noe hydrogenklorid, adskilles destilla-tivt etter kjente fremgangsmåter. Kloret kan føres i kretsløp. The reaction can be carried out continuously or discontinuously. In the continuous mode of operation, the pressure in the reactor is maintained by continuous pumping of the used product by means of a relief valve. The formed reaction products, which essentially consist of carbon tetrachloride, chlorine and some hydrogen chloride, are separated by distillation according to known methods. The chlorine can be fed in a circuit.

Man anvender kloret hensiktsmessig i overskudd som fortrinnsvis kan ligge i området mellom 40 og H00 vekt% av de anvendte utgangsmaterialers mengde. De anvendte utgangsmaterialers omsetning til karbontetraklorid ligger alt etter anvendt fraksjon og anvendt trykk, temperatur og produksjonsmengde mellom 70 og 99%- De til Chlorine is appropriately used in excess, which can preferably be in the range between 40 and 100% by weight of the quantity of starting materials used. The conversion of the used starting materials to carbon tetrachloride is between 70 and 99%, depending on the fraction used and the applied pressure, temperature and production quantity.

100 manglende prosenter består omtrent i alle tilfeller av heksaklorbenzen eller heksakloretan. Begge produkter er ikke å anse som bi- 100 missing percent consists in almost all cases of hexachlorobenzene or hexachloroethane. Both products are not to be considered as

produkter, men som mellomprodukter, fordi de igjen kan anvendes i reaksjonskretsløpet og derved omdannes til karbontetraklorid. Herav fremgår at utbyttene praktisk talt er kvantitative når man overholder en kontinuerlig produksjon med biproduktkretsløp. products, but as intermediate products, because they can again be used in the reaction cycle and thereby converted into carbon tetrachloride. From this it appears that the yields are practically quantitative when one observes a continuous production with a by-product cycle.

Det dannede karbontetraklorid fremkommer ved fremgangsmåten ifølge oppfinnelsen allerede meget rent. Por å bringe det til et innhold på mindre enn 100 ppm av forurensninger, er det tilstrekke-lig med en enkelt destillasjon for å befri fra mindre mengder bi-produkter. The carbon tetrachloride formed by the method according to the invention is already very pure. In order to bring it to a content of less than 100 ppm of impurities, a single distillation is sufficient to free from minor amounts of by-products.

Eksempel 1. Example 1.

I et sammenskrubart nikkelrør av 1 cm indre diameter og In a screwable nickel tube of 1 cm inner diameter and

50 cm indre lengde innfylles: Fill in 50 cm inner length:

10 g klor, 10 g of chlorine,

1 g av et bek-residuum fra stenkulltjæredestilleringen, som ifølge elementær-analyse inneholder 9^% karbon og H, 29% hydrogen. Det molare forhold H : C utgjør 0,5^7 : 1. Produktet har et myk-ningspunkt på l6l°C og inneholder 53,1% koks. 1 g of a pitch residue from the coal tar distillation, which according to elemental analysis contains 9^% carbon and H, 29% hydrogen. The molar ratio H : C amounts to 0.5^7 : 1. The product has a softening point of 161°C and contains 53.1% coke.

Nikkelrøret oppvarmes en time ved 600°C. Det indre The nickel tube is heated for one hour at 600°C. The interior

trykk utgjør derved ca. 120 ato. Etter avkjøling og avdampning av overskytende klor og det dannede klorhydrogen får man: 5,5 g karbontetraklorid og et lysegrått fast produkt som består av 0,3 g heksaklorbenzen og 0,01 g heksakloretan. Av det anvendte produkt er det altså dannet en blanding som består av pressure thereby amounts to approx. 120 ato. After cooling and evaporation of excess chlorine and the hydrogen chloride formed, you get: 5.5 g of carbon tetrachloride and a light gray solid product consisting of 0.3 g of hexachlorobenzene and 0.01 g of hexachloroethane. From the product used, a mixture is thus formed which consists of

9^, 7% karbontetraklorid, 9^, 7% carbon tetrachloride,

5, 1% heksaklorbenzen, 5.1% hexachlorobenzene,

0,2% heksakloretan. 0.2% hexachloroethane.

Eksempel 2. Example 2.

For omsetningen anvendes et loddrett stående reaksjons-rør som består av edelstål for et nominelt trykk på 1.600 ato og en nikkelforing. Det har en lengde på 3.300 mm, en ytre diameter på 89 mm og en innvendig vidde på 40 mm. Ved forskjellig oppvarmning oppdeles reaksjonsrøret i en for- og hovedreaksjonssone. Den undre elektriske manteloppvarmning som omslutter reaksjonsrøret over en lengde på 1.100 mm, oppvarmes til maksimalt 250°C. Temperaturen måles med et indre termoelement. Denne strekning som omfatter 1,4 liter danner forreaksjonssonen. Den øvre elektriske manteloppvarmning innstilles således at reaktorens indre temperatur, målt i et forskyv-bart termoelement, utgjør 600°C. Denne strekning som omfatter 2,7 liter er hovedreaksjonssonen. På dette volum beregnes romtidsutbyttet. Reaksjonskomponentene klor og de organiske forbindelser innpumpes For the reaction, a vertical standing reaction tube is used which consists of stainless steel for a nominal pressure of 1,600 ato and a nickel lining. It has a length of 3,300 mm, an outer diameter of 89 mm and an inner width of 40 mm. With different heating, the reaction tube is divided into a preliminary and main reaction zone. The lower electric jacket heating, which surrounds the reaction tube over a length of 1,100 mm, is heated to a maximum of 250°C. The temperature is measured with an internal thermocouple. This section comprising 1.4 liters forms the pre-reaction zone. The upper electric mantle heating is set so that the reactor's internal temperature, measured in a displaceable thermocouple, amounts to 600°C. This stretch comprising 2.7 liters is the main reaction zone. The space-time yield is calculated on this volume. The reaction components chlorine and the organic compounds are pumped in

ved værelsestemperatur ved reaktorens nedre ende i flytende form ved hjelp av stempelpumpe. Reaksjonsblandingen uttas ved reaktorens hode og avkjøles i en med nikkel utforet kjøler til ca. 250°C..Ved kjølerens ende befinner det seg avspenningsventilen med hvis hjelp det ønskede trykk holdes i reaktoren. De avspente gasser avkjøles i første rekke ved hjelp av en trykkløs forutskiller, som er utformet som tomt fat av ca. 10 liters innhold uten spesiell avkjøling. I dette kar utskilles praktisk talt alt heksaklorbenzen. Reaksjons-gassen avkjøles deretter i en kjøleslange til ca. -75°C, idet det kondenseres karbontetraklorid og klor. Det ikke kondenserte hydrogenklorid måles med et gassur og analyseres på eventuelt medrevet klor. at room temperature at the lower end of the reactor in liquid form by means of a piston pump. The reaction mixture is withdrawn at the head of the reactor and cooled in a nickel-lined cooler to approx. 250°C..At the end of the cooler is the relief valve with the help of which the desired pressure is maintained in the reactor. The de-stressed gases are cooled primarily by means of a pressureless pre-separator, which is designed as an empty barrel of approx. 10 liter content without special cooling. In this vessel practically all hexachlorobenzene is excreted. The reaction gas is then cooled in a cooling hose to approx. -75°C, carbon tetrachloride and chlorine being condensed. The non-condensed hydrogen chloride is measured with a gas meter and analyzed for any entrained chlorine.

I denne reaktor innpumpes pr. time: Into this reactor is pumped per hour:

12,2 kg klor 12.2 kg of chlorine

1,04 kg av et bek-residuum av stenkulltjæredestillasjon som ifølge elementæranalyse inneholder 94,1% karbon og 5,86% hydrogen. Det molare forhold H : C utgjør 0,747 : 1. Produktet har et myk-ningspunkt på 120°C. 1.04 kg of a pitch residue from coal tar distillation which, according to elemental analysis, contains 94.1% carbon and 5.86% hydrogen. The molar ratio H:C amounts to 0.747:1. The product has a softening point of 120°C.

Porrådskar, ledninger og pumper må derfor oppvarmes Porous vessels, lines and pumps must therefore be heated

med 130°C varm olje, for at bekresiduet forblir flytende. Trykket holdes i reaktoren ved 250 til 300 ato. with 130°C hot oil, so that the cup residue remains liquid. The pressure in the reactor is maintained at 250 to 300 ato.

Man får pr. time: You get per hour:

6,9 kg karbontetraklorid, 6.9 kg of carbon tetrachloride,

0,154 kg heksaklorbenzen, 0.154 kg of hexachlorobenzene,

0,011 kg heksakloretan. 0.011 kg of hexachloroethane.

Det anvendte produkt er altså omsatt til The product used is thus converted to

97, 6% i karbontetraklorid, 97.6% in carbon tetrachloride,

2,2% i heksaklorbenzen, 2.2% in hexachlorobenzene,

0,2% i heksakloretan. 0.2% in hexachloroethane.

Etter en produksjonstid på 100 timer ble det oppnådd samme mengder av reaksjonsprodukter. Romtidsutbyttene utgjør altså 2.560 g karbontetraklorid pr. liter reaksjonsrom pr. time. After a production time of 100 hours, the same amount of reaction products was obtained. The space-time yield thus amounts to 2,560 g of carbon tetrachloride per liters of reaction space per hour.

Claims (2)

1. -Fremgangsmåte til fremstilling av karbontetraklorid, karakterisert ved at man omsetter stenkull- eller brunkulltjære eller herav ved destillasjon fremstilte produkter og residuer eller residuer fra jordoljedestillasjon med klor ved temperaturer mellom 500 og 700°C og trykk mellom 100' og 300 ato.1. -Procedure for the production of carbon tetrachloride, characterized by converting hard coal or lignite tar or products produced from these by distillation and residues or residues from petroleum distillation with chlorine at temperatures between 500 and 700°C and pressure between 100' and 300 ato. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at det som utgangsmateriale anvendes slike stoffer eller stoff-blandinger hvis summariske elementæranalyse gir mindre enn 1 hydrogen-atom pr. karbonatom.2. Method according to claim 1, characterized in that such substances or substance mixtures are used as starting material whose summary elemental analysis gives less than 1 hydrogen atom per carbon atom.
NO121870A 1969-04-24 1970-04-02 NO130473C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19691920848 DE1920848C3 (en) 1969-04-24 1969-04-24 Process for the production of carbon tetrachloride from tarry raw materials

Publications (2)

Publication Number Publication Date
NO130473B true NO130473B (en) 1974-09-09
NO130473C NO130473C (en) 1974-12-18

Family

ID=5732187

Family Applications (1)

Application Number Title Priority Date Filing Date
NO121870A NO130473C (en) 1969-04-24 1970-04-02

Country Status (16)

Country Link
AT (1) AT299903B (en)
BE (1) BE749527A (en)
BG (1) BG17953A3 (en)
CA (1) CA953739A (en)
CH (1) CH530355A (en)
CS (1) CS151014B2 (en)
DE (1) DE1920848C3 (en)
ES (1) ES378910A1 (en)
FR (1) FR2039452B1 (en)
GB (1) GB1267297A (en)
HU (1) HU162255B (en)
NL (1) NL7005341A (en)
NO (1) NO130473C (en)
PL (1) PL81230B1 (en)
RO (1) RO62016A (en)
YU (1) YU33036B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2854491A (en) * 1955-01-04 1958-09-30 Columbia Southern Chem Corp Chlorinolysis of cyclic organic compounds

Also Published As

Publication number Publication date
PL81230B1 (en) 1975-08-30
FR2039452A1 (en) 1971-01-15
GB1267297A (en) 1972-03-15
YU103770A (en) 1975-08-31
BE749527A (en) 1970-10-26
CH530355A (en) 1972-11-15
NO130473C (en) 1974-12-18
NL7005341A (en) 1970-10-27
RO62016A (en) 1977-03-15
DE1920848A1 (en) 1970-11-19
BG17953A3 (en) 1974-03-05
DE1920848B2 (en) 1973-03-08
ES378910A1 (en) 1972-08-01
YU33036B (en) 1976-03-31
HU162255B (en) 1973-01-29
DE1920848C3 (en) 1973-10-04
FR2039452B1 (en) 1974-05-03
CA953739A (en) 1974-08-27
AT299903B (en) 1972-07-10
CS151014B2 (en) 1973-09-17

Similar Documents

Publication Publication Date Title
US2013030A (en) Production of organic fluorine compounds
US2062743A (en) Production of fluorine-containing carbon compounds
US2005706A (en) Organic fluorine compound
NO130641B (en)
NO172178B (en) PROCEDURE FOR THE PREPARATION OF 1,2,2,2-TETRAFLUORETHYL-DIFLUORMETHYLETS AND ISOFLURAN
NO130473B (en)
US1967244A (en) Production of organic fluorine compounds
NO157135B (en) PROCEDURE FOR THERMAL DECOMPOSITION OF 1,2-DICHLORETHANE.
US2572913A (en) Manufacture of fluorochloromethanes
US2658928A (en) Method of making fluorocarbon chlorides and bromides by thermal chlorination and bromination of fluorocarbon hydrides
US2005712A (en) Organic fluorine compounds and process for the production thereof
JPS6157528A (en) Haloalkane pyrolytic dehydrochlorination and initiator therefor
US2729687A (en) Process for brominating halogenated methanes
NO152844B (en) PROCEDURE FOR THE PREPARATION OF THIENOPYRIDINE DERIVATIVES
SU351363A1 (en) METHOD OF OBTAINING FOUR-CHLORIDE CARBON
Datta et al. HALOGENATION. XVII. THE ACTION OF HALOGENS ON THE GRIGNARD REAGENT AND THE REPLACEMENT OF HALOGEN ATOMS BY ONE ANOTHER.
US2305821A (en) Process for producing carbon tetrachloride
NO150637B (en) PROCEDURE FOR CLEANING PREVENT THE RECYCLING OF UNREATED 1,2-DICHLORETHANE FROM THE VINYL CHLORIDE PREPARATION BY 1,2-DICHLORETHANE PREPARATION
US1878262A (en) Process of treating hydrocarbons with alpha chlorinated hydrocarbon in the presence of alpha metallic halide
Nikul’shin et al. Synthesis of Polychlorofluoroarenes from Polyfluoroarenethiols, SOCl 2 and SO 2 Cl 2
McBee et al. High-Pressure Chlorination of Paraffins
SU162826A1 (en)
SU450395A3 (en) Method for producing halogen derivatives of methane
US2741634A (en) Manufacture of fluorochloroacetyl halide
US2518122A (en) Manufacture of halogenated hyrocarbon oils