NO129847B - - Google Patents

Download PDF

Info

Publication number
NO129847B
NO129847B NO04223/69A NO422369A NO129847B NO 129847 B NO129847 B NO 129847B NO 04223/69 A NO04223/69 A NO 04223/69A NO 422369 A NO422369 A NO 422369A NO 129847 B NO129847 B NO 129847B
Authority
NO
Norway
Prior art keywords
alloy
aluminum
mixture
additive
weight percent
Prior art date
Application number
NO04223/69A
Other languages
Norwegian (no)
Inventor
E Brichard
Original Assignee
Glaverbel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB49435/69A external-priority patent/GB1292156A/en
Application filed by Glaverbel filed Critical Glaverbel
Publication of NO129847B publication Critical patent/NO129847B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • F27D1/06Composite bricks or blocks, e.g. panels, modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/10Monolithic linings; Supports therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Glass Compositions (AREA)

Description

Legeringstilsetningsblanding. Alloy additive mixture.

Denne oppfinnelse angår en modifika-sjon av den ferrolegeringstilsetningsblan-ding som er beskrevet i patent nr. 100 295, og spesielt en forbedret legeringsblanding for innføring av aluminium i lavlegerte jern- eller stålsmelter. This invention relates to a modification of the ferroalloy additive mixture described in patent no. 100 295, and in particular to an improved alloy mixture for introducing aluminum into low-alloy iron or steel melts.

Patent nr. 100 295 beskriver en legeringstilsetningsblanding som består av et aggregat av fra 88—99,5 vektprosent findelt legeringstilsetning og 0,5—12 vektprosent findelt abietinsyre. Den der beskrevne legeringstilsetning inneholder elektrolytisk mangan, eller krom eller en ferrotitan, en ferromangan, eller ferrokromlegering. Det legerende metall kan forefinnes i dets ele-mentære form eller som en bestanddel i en legering eller ferrolegering, og kan ha et høyt kullstoffinnhold eller et lavt kullstoffinnhold. Patent No. 100 295 describes an alloy additive mixture which consists of an aggregate of from 88-99.5 weight percent finely divided alloy additive and 0.5-12 weight percent finely divided abietic acid. The alloying addition described therein contains electrolytic manganese, or chromium or a ferrotitanium, a ferromanganese, or ferrochromium alloy. The alloying metal can be present in its elemental form or as a component in an alloy or ferroalloy, and can have a high carbon content or a low carbon content.

Hittil oppsto det et problem når reaktive metaller som f. eks. aluminium, ble satt til flytende metall. For å kompensere tap av aluminium som skyldes luftoksydasjon måtte det tilsettes mengder som er større enn de som kreves for å desoksydere eller legere med stålet. Denne praksis med førte at det ble dannet en meget stor mengde aluminiumoksyd hvilket øket sannsyn-ligheten for at det ville inntre inneslut-ninger i sluttproduktet og medførte en betydelig nedsettelse av utnyttelsen av legerende aluminium. Luftoksydasjon av aluminium ble øket betydelig fordi aluminiumet på grunn av sin lave vekt fløt på over-flaten av det smeltede metall. Enn videre varierer forholdene i tappestrømanen meget fra charge til charge, hvilket gjør det vanskelig å overholde den nødvendige nøy-aktige regulering av restaluminiuminnhol-det i produktet. Until now, a problem arose when reactive metals such as e.g. aluminium, was added to liquid metal. To compensate for loss of aluminum due to air oxidation, quantities greater than those required to deoxidize or alloy with the steel had to be added. This practice led to the formation of a very large amount of aluminum oxide, which increased the likelihood that inclusions would occur in the final product and led to a significant reduction in the utilization of alloying aluminium. Air oxidation of aluminum was significantly increased because the aluminum, due to its low weight, floated on the surface of the molten metal. Furthermore, the conditions in the tapping stream vary greatly from charge to charge, which makes it difficult to comply with the necessary precise regulation of the residual aluminum content in the product.

Et formål med den foreliggende oppfinnelse er å unngå de ovennevnte vanske-ligheter og å skaffe legeringstilsetnings-blandinger for jern- eller stålsmelter som er effektive og økonomiske i bruk for de fleste lavlegerte stål som har teknisk interesse. An object of the present invention is to avoid the above-mentioned difficulties and to provide alloying addition mixtures for iron or steel smelters which are effective and economical in use for most low-alloy steels of technical interest.

I den ferirolegerende tilsetningsblan-ding som er beskrevet i patent nr. 100 295 kan aluminium opptil 5 % være en bestanddel av legeringsblandingen som skal tilsettes metallbadene. In the ferroalloying additive mixture described in patent no. 100 295, aluminum up to 5% can be a component of the alloy mixture to be added to the metal baths.

Tilsetningen av legeringsblandingen medfører avkjøling av badet, men denne avkjøling er ikke skadelig når det gjelder legeringstilsetninger på under 2 vektprosent, hvilket er det område som eir av størst interesse ved tilsetning i tappeøsene. Dette til forskjell fra den tidligere praksis hvor man innførte store mengder av legerings-metall i ovnen før denne ble tappet. The addition of the alloy mixture results in cooling of the bath, but this cooling is not harmful in the case of alloy additions of less than 2% by weight, which is the area of greatest interest when added to the ladles. This differs from the previous practice where large amounts of alloy metal were introduced into the furnace before it was drained.

En viktig anvendelse av aluminium er når aluminiumet inkorporeres i en smelte i form av en legerende komponent i mengder fra 5 % opptil 98 %. Minst ett annet legerende stoff, foruten aluminium, kan være tilstede når aluminluminnholdet ut-gjør fra 20 til 70 % av tilsetningsblandingen. An important application of aluminum is when the aluminum is incorporated into a melt in the form of an alloying component in amounts from 5% up to 98%. At least one other alloying substance, besides aluminium, may be present when the aluminum alloy content is from 20 to 70% of the additive mixture.

En annen viktig anvendelse av aluminium er undertiden ønskelig for at det i den samlede legeringstilsetning skal forefinnes en aluminiummengde som er til-strekkelig til å bevirke desoksydasjon av smeiten. Et eksempel herpå er fremstilling av stål som skal anvendes for dyptrekking. Anvendt i denne forbindelse blir det tilsatt ca. 2,3 kg aluminium pr. tonn stål for desoxsydasjonsformål. Den mengde som som kreves er avhengig av kullstoffinnhol-det i smeiten, som 1 sin tur regulerer sur-stoffinnholdet i stålet. Another important use of aluminum is sometimes desirable so that there is an amount of aluminum in the overall alloy addition that is sufficient to cause deoxidation of the smelt. An example of this is the production of steel to be used for deep drawing. Used in this connection, approx. 2.3 kg of aluminum per tonnes of steel for deoxsydation purposes. The quantity required depends on the carbon content in the forge, which in turn regulates the oxygen content in the steel.

En tredje viktig bruk av aluminium fremkommer når det skal tilsettes sterkt reaktive metaller, som titan og zirkonium. Eksempelvis reagerer en del av titanet med oksygen under dannelse av Ti02, som er et meget ildfast stoff, som nedsetter opp-løsningshastigheten i det gjenværende Ti. For å unngå denne tilstand og for å for-bedre oppløsningshastigheten er det ønskelig å inkorporere flussmaterialer, som CaF^, og aluminium som danner Al,0.j, i tilsetningsblandingen i henhold til oppfinnelsen. A third important use of aluminum arises when highly reactive metals, such as titanium and zirconium, are to be added. For example, part of the titanium reacts with oxygen to form Ti02, which is a very refractory substance, which reduces the rate of dissolution in the remaining Ti. In order to avoid this condition and to improve the dissolution rate, it is desirable to incorporate fluxing materials, such as CaF 2 , and aluminum which forms Al 2 O 2 , in the additive mixture according to the invention.

De ovenfor nevnte tre anvendelser av aluminium er bare omtalt som eksempler. De utelukker ikke hverandre gjensidig og kan kombineres etter ønske. Aluminium kan være tilsatt som en legerende bestanddel f. eks., og kan også være tilstede i ekstra mengder for desoksydasjonsformål. The three applications of aluminum mentioned above are only mentioned as examples. They are not mutually exclusive and can be combined as desired. Aluminum may be added as an alloying component, for example, and may also be present in extra amounts for deoxidation purposes.

Bindemiddelet som anvendes i lege-ringstilsetnlngsblandingen i henhold til oppfinnelsen på kjent måte er abietinsyre (C2(lH.,nO.,). Utviklingen av de gassformige reaksjonsprodukter bevirker en ønskelig omrøring av badet, og befordrer oppløsning og jevn fordeling av legeringen. The binder used in the alloy addition mixture according to the invention in a known manner is abietic acid (C2(lH.,nO.,). The development of the gaseous reaction products causes a desirable stirring of the bath, and promotes dissolution and uniform distribution of the alloy.

Tilsetningsblandingen i henhold til oppfinnelsen kan bli pakket løst i passende beholder for å lette håndtering såvel under forsendelse som lagring eller ved tilsetningen til en stålsmelte. For dette formål blir hver enkelt av tilsetningsbestanddelene først findelt så de passerer gjennom maske-åpninger på 6,35 mm eller mindre. Et mere ønskelig område for partikkelstørrelsen er et hvor legeringsmaterialet er i stand til å passere gjennom en 20 maskers sikt (0,833 mm åpninger), og holdes tilbake på en 200 maskers sikt (0,074 mm åpninger), og den foretrukne størrelse er omvendt proporsjo-nal med den spesifikke vekt av den legerende bestanddel. Bestanddelene blir der-etter blandet godt og bundet sammen der-ved at blandingen opphetes ved lav temperatur i en beholder. Opphetningen fore-går så lenge at bindemiddelet smelter og binder partiklene sammen, slik at man etter avkjøling har en sammenbundet masse. The additive mixture according to the invention can be packed loosely in a suitable container to facilitate handling both during shipment and storage or when added to a steel melt. For this purpose, each of the additive ingredients is first finely divided so that they pass through mesh openings of 6.35 mm or less. A more desirable range for the particle size is one where the alloy material is capable of passing through a 20 mesh screen (0.833 mm apertures) and is retained on a 200 mesh screen (0.074 mm apertures), and the preferred size is inversely proportional with the specific gravity of the alloying component. The ingredients are then mixed well and bound together by heating the mixture at a low temperature in a container. The heating takes place for so long that the binder melts and binds the particles together, so that after cooling you have a cohesive mass.

De følgende eksempler illustrerer oppfinnelsen. Alle de der nevne prosenter er vektprosenter hvis intet annet er sagt. The following examples illustrate the invention. All the percentages mentioned there are percentages by weight unless otherwise stated.

Eksempel 1: Example 1:

Ferromangan av middels kullstoffinnhold ble findelt så det passerte gjennom en 20 maskers sikt (0,833 mm åpninger) og aluminium ble findelt så det passerte gjennom en 5 maskers sikt (3,96 mm åpninger). Det ble dannet en blanding av 61 % ferromangan, 34 % aluminium, 3 % CaF2 og 2 % treharpiks. Bestanddelene ble bundet sammen ved opphetning av blandingen, i en passende beholder ved lav temperatur, slik at man etter avkjøling fikk en sammenbundet masse. Denne blanding ble der-etter anvendt som tilsttnlng i forsøk i liten skala. Den følgende tabell angir den store forbedring i utnyttelsen av aluminium og mangan over den utnyttelse som ble opp-nådd i tidligere teknisk praksis. Ferromanganese of medium carbon content was comminuted to pass through a 20 mesh screen (0.833 mm apertures) and aluminum was comminuted to pass through a 5 mesh screen (3.96 mm apertures). A mixture of 61% ferromanganese, 34% aluminium, 3% CaF2 and 2% wood resin was formed. The components were bound together by heating the mixture, in a suitable container at a low temperature, so that after cooling a bound mass was obtained. This mixture was then used as an additive in small-scale experiments. The following table indicates the great improvement in the utilization of aluminum and manganese over the utilization achieved in previous technical practice.

Eksempel 2: Example 2:

Ferromangan med middels kullstoffinnhold blie findelt så det passerte gjennom en 20 maskers sikt (0,833 mm åpninger) og aluminium ble findelt så det passerte gjennom en 5 maskers sikt (3,96 mm åpninger). Det ble fremstilt en blanding av 73 % ferromangan, 25 % aluminium og 2 % treharpiks. Bestanddelene ble bundet sammen ved å opphete blandingen i en passende beholder ved lav temperatur, slik at det etter avkjøling erholdtes en sammenbundet masse. Denne blanding ble der-etter anvendt som tilsetning ved forsøk i liten skala. Den følgende tabell angir den forbedrede utnyttelse av aluminium og mangan. Medium carbon ferromanganese was finely divided to pass through a 20 mesh sieve (0.833 mm openings) and aluminum was finely divided to pass through a 5 mesh sieve (3.96 mm openings). A mixture of 73% ferromanganese, 25% aluminum and 2% wood resin was produced. The components were bound together by heating the mixture in a suitable container at a low temperature, so that after cooling a bound mass was obtained. This mixture was then used as an additive in small-scale experiments. The following table indicates the improved utilization of aluminum and manganese.

Analyse av de stålprøver som ble fremstilt i henhold til! den foreliggende oppfinnelse viste at antallet av oksydinneslut-ninger i disse prøver lå ved den nedre ende Analysis of the steel samples that were produced according to! the present invention showed that the number of oxide inclusions in these samples was at the lower end

av det område som opptrer i ingots som of the area that appears in ingots which

fremstiltes ved normal teknisk praksis. was produced by normal technical practice.

Claims (3)

1. Legeringstilsetningsblanding for inn-føring av metall eller legering i en stålsmelte, omfattende et aggregat med fra 88—99,5 vektprosent findelt legeringstilsetning og fra 0,5—12 vektprosent abietinsyre, karakterisert ved at lege-ringstilsetningen inneholder fra 5 til 98 vektprosent aluminium.1. Alloy additive mixture for introducing metal or alloy into a steel melt, comprising an aggregate with from 88-99.5 weight percent finely divided alloy additive and from 0.5-12 weight percent abietic acid, characterized in that the alloy additive contains from 5 to 98 weight percent aluminum. 2. Legeringstilsetning ifølge påstand 1, karakterisert ved at den innehol!-der fra 20—70 vektprosent aluminium og minst en annen legeringstilsetning. 2. Alloy addition according to claim 1, characterized in that it contains from 20-70 weight percent aluminum and at least one other alloy addition. 3. Legeringstilsetning ifølge påstand 2, karakterisert ved at den til legeringen tilsatte annen komponent er elektrolytisk mangan, krom eller en ferrolegering, fortrinnsvis ferromangan eller ferro-krom.3. Alloy addition according to claim 2, characterized in that the other component added to the alloy is electrolytic manganese, chromium or a ferroalloy, preferably ferromanganese or ferro-chromium.
NO04223/69A 1968-10-30 1969-10-24 NO129847B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU57193 1968-10-30
GB49435/69A GB1292156A (en) 1968-10-30 1969-10-08 Furnace and float tanks walls and parts thereof

Publications (1)

Publication Number Publication Date
NO129847B true NO129847B (en) 1974-06-04

Family

ID=26266480

Family Applications (1)

Application Number Title Priority Date Filing Date
NO04223/69A NO129847B (en) 1968-10-30 1969-10-24

Country Status (9)

Country Link
CA (1) CA937406A (en)
CS (1) CS170520B2 (en)
ES (2) ES372960A1 (en)
FI (1) FI51170C (en)
IL (1) IL33250A (en)
NO (1) NO129847B (en)
RO (1) RO56465A (en)
SE (1) SE373934B (en)
TR (1) TR18029A (en)

Also Published As

Publication number Publication date
TR18029A (en) 1978-08-12
ES372960A1 (en) 1972-03-01
IL33250A0 (en) 1969-12-31
FI51170C (en) 1976-11-10
IL33250A (en) 1973-06-29
ES397801A1 (en) 1975-06-01
SE373934B (en) 1975-02-17
FI51170B (en) 1976-08-02
CS170520B2 (en) 1976-08-27
CA937406A (en) 1973-11-27
RO56465A (en) 1974-07-01

Similar Documents

Publication Publication Date Title
US3941588A (en) Compositions for alloying metal
US3898076A (en) Sealing and briquetting finely divided material with vinyl copolymer and wax
US2705196A (en) Process for de-oxidizing a molten metal
US2221781A (en) Addition agent and its use in the treatment of iron and steel
US2935397A (en) Alloy addition agent
US4097269A (en) Process of desulfurizing liquid melts
CN1995407A (en) Trace carbon Al-Mn-Fe alloy and its preparing process
NO129847B (en)
US2819956A (en) Addition agent for and method of treating steel
US2805145A (en) Exothermic metallurgical composition and method of introducing same into ferrous alloy
US3328164A (en) Prealloy for the treatment of iron and steel melts
US3459540A (en) Production of clean fine grain steels
NO126153B (en)
US2888342A (en) Process of making a bonded exothermic composition
US1945260A (en) Composition of matter and process of treating molten metals
US2086756A (en) Method of making open hearth steel and flux employed in such method
US2367630A (en) Metallurgy
CN105779820B (en) The production method of low impurity content ferrotianium
CH492789A (en) Process for the production of ferro-titanium alloys
US3350242A (en) Method of producing a suitable product for nitriding and alloying steel
JPH01162717A (en) Nitrogen-containing additive for molten steel and treatment of molten steel
US2342102A (en) Metal refining process
US3356493A (en) Alloys for nitriding steel and method of nitriding steel
US4353865A (en) Boron containing, iron-manganese-zirconium master-alloy
US3360364A (en) Process for producing nodular graphite in a metal