NO129202B - - Google Patents

Download PDF

Info

Publication number
NO129202B
NO129202B NO34568A NO34568A NO129202B NO 129202 B NO129202 B NO 129202B NO 34568 A NO34568 A NO 34568A NO 34568 A NO34568 A NO 34568A NO 129202 B NO129202 B NO 129202B
Authority
NO
Norway
Prior art keywords
formula
acid
exo
carbon atoms
heptenyl
Prior art date
Application number
NO34568A
Other languages
Norwegian (no)
Inventor
G Just
C Simonovitch
Original Assignee
G Just
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB3588/67A external-priority patent/GB1198071A/en
Application filed by G Just filed Critical G Just
Priority to NO34568A priority Critical patent/NO129202B/no
Publication of NO129202B publication Critical patent/NO129202B/no

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Utgangsmaterialer for fremstilling av Starting materials for the manufacture of

prostaglandin F og nye analoger derav. prostaglandin F and new analogues thereof.

Foreliggende oppfinnelse angår nye utgangsmaterialer for frem- The present invention relates to new starting materials for

stilling av prostaglandin F (PGFla og PGF^.) og nye analoger derav. position of prostaglandin F (PGFla and PGF^.) and new analogues thereof.

PGF, har følgende struktur: PGF, has the following structure:

la let

PGF. a har følgende struktur: PGF. a has the following structure:

lp lp

se fotnote (3) i J. Am. Chem. Soc. 3133 (1966), og Nature, 212, 38 (1966) for drøftelse av stereokjemien for PGF1q og PGF^. see footnote (3) in J. Am. Chem. Soc. 3133 (1966), and Nature, 212, 38 (1966) for discussion of the stereochemistry of PGF1q and PGF^.

I formlene I og II, såvel som i formlene i det følgende, indi-kerer stiplede linjebindinger til cyclopentanringen hydrogen eller andre subst ituenter i oc-konf iguras jon, dvs. under cyclopentanringens plan. Sterkt opptrukne linjebindinger til cyclopentanringen indi-kerer hydrogen eller andre subst ituent er i (3-konf iguras jon, dvs. over cyclopentanringens plan. In formulas I and II, as well as in the formulas below, dashed line bonds to the cyclopentane ring indicate hydrogen or other substituents in the oc configuration, i.e. below the plane of the cyclopentane ring. Strongly drawn line bonds to the cyclopentane ring indicate hydrogen or other substituents are in the (3-configuration), i.e. above the plane of the cyclopentane ring.

PGF, og PGF,0 er derivater av prostansyre som har følgende la lp PGF, and PGF,0 are derivatives of prostanic acid which have the following la lp

struktur og atomnummerering: structure and atomic numbering:

Et systematisk navn for prostansyre er 7-[ (2|3-octyl)-cyclopent-la-yl ]-heptansyre. A systematic name for prostanic acid is 7-[(2|3-octyl)-cyclopent-la-yl]-heptanoic acid.

Forbindelser i likhet med formelen III, men med carboxylav-s lut tet sidekjede bundet til cyclopent an i {3-konf iguras jon betegnes som isoprostansyrer, og har følgende formel: Compounds similar to formula III, but with a carboxyl-terminated side chain bound to cyclopentane in the {3-configuration, are designated as isoprostanic acids, and have the following formula:

Et systematisk navn for iso-prostansyre er 7-[ (2(3-octyl) -cyclopent-lp-yl]-heptansyre. A systematic name for iso-prostanoic acid is 7-[(2(3-octyl)-cyclopent-lp-yl]-heptanoic acid.

Prostaglandin F og analogene derav som fremstilles fra de nye utgangsmaterialene ifolge oppfinnelsen, kan representeres av formelen: Prostaglandin F and its analogues, which are produced from the new starting materials according to the invention, can be represented by the formula:

hvor /'O er et generisk uttrykk som betegner en a- eller (3-konfigurasjon for den vedhengte gruppe, R-^ er hydrogen, alkyl med 1-8 carbonatomer, cycloalkyl med 3-10 carbonatomer, aralkyl med 7-10 carbonatomer, fenyl som eventuelt er substituert med 1-3 kloratomer eller med alkyl med 1 - k carbonatomer, er hydrogen eller alkyl med 1 - 8 carbonatomer, R^ og R^ er hydrogen eller alkyl med 1 - h carbonatomer, og n er 1 - 8, og utgangsmaterialene er karakterisert ved at de har formelen: where /'O is a generic expression denoting an a- or (3-configuration for the attached group, R-^ is hydrogen, alkyl with 1-8 carbon atoms, cycloalkyl with 3-10 carbon atoms, aralkyl with 7-10 carbon atoms, phenyl which is optionally substituted with 1-3 chlorine atoms or with alkyl with 1-k carbon atoms, is hydrogen or alkyl with 1-8 carbon atoms, R^ and R^ are hydrogen or alkyl with 1-h carbon atoms, and n is 1-8 , and the starting materials are characterized by having the formula:

hvor symbolene har samme betydning som ovenfor. where the symbols have the same meaning as above.

De foretrukne materialer ifolge oppfinnelsen er karakterisert ved exo-konfigurasjon med hensyn på den enverdige gruppe bundet til cyclopropanringen, at gruppen On^^OOR-^ er bundet i oc-konf iguras jon, at gruppen -CR1+=CR2R2 er i cis-konf iguras jon, at R-^ er hydrogen eller alkyl med 1 - h carbonatomer, fortrinnsvis methyl, R2 er pentyl, R^ og R^ er hydrogen, og n er 6. Grunnen til at forbindelsene med denne definisjon av R-p R2, R^> R^°6 n °g oc-konf iguras jon av gruppen The preferred materials according to the invention are characterized by exo-configuration with respect to the monovalent group bound to the cyclopropane ring, that the group On^^OOR-^ is bound in oc-configuration, that the group -CR1+=CR2R2 is in cis-configuration ion, that R-^ is hydrogen or alkyl with 1 - h carbon atoms, preferably methyl, R2 is pentyl, R^ and R^ are hydrogen, and n is 6. The reason why the compounds with this definition of R-p R2, R^> R^°6 n °g oc-conf iguration of the group

~CnH2nC00Rl fore'trekkes) er at dette gir den viktige sluttforbindelse PGF-^a og dennes alkylestere, mens exo-konf iguras jon og cis-konfigurasjon gir hoyere utbytte av sluttforbindelsen med formel V enn når forbindelser med formel VI har endo-konfi.g uras jon og/eller trans- ~CnH2nC00Rl is preferred) is that this gives the important final compound PGF-^a and its alkyl esters, while exo-configuration and cis-configuration give higher yields of the final compound of formula V than when compounds of formula VI have endo-configuration. g uras ion and/or trans-

konfigurasjon. configuration.

Formel V representerer PGFla når n er 6, R2 er pentyl, R-^ Formula V represents PGF 1a when n is 6, R 2 is pentyl, R 2 is

R^ og R^ er hydrogen, og bindingen av begge hydroxygrupper og -CnH2n-COOR.^ til cyclopentanringen er i oc-konf iguras jon (prikket linje). R^ and R^ are hydrogen, and the bond of both hydroxy groups and -CnH2n-COOR.^ to the cyclopentane ring is in the oc configuration (dotted line).

Formel V representerer PGF^ når n er 6, R^ er pentyl, R^, R^ og R^ er hydrogen, hydroxygruppen ved siden av -cnH2n~C00Rl er bundet til cyclopentanringen i (3-kon f iguras jon, og den annen hydroxygruppe og -cnH2n~C00Rl beSSe er bundet til cyclopentanringen i oc-konf iguras jon. Formula V represents PGF^ when n is 6, R^ is pentyl, R^, R^ and R^ are hydrogen, the hydroxy group adjacent to -cnH2n~C00R1 is attached to the cyclopentane ring in the (3-con f iguration, and the other hydroxy group and -cnH2n~C00Rl beSSe is bound to the cyclopentane ring in oc-conf iguration ion.

Alle forbindelser som omfattes av formel V har -CH=CRlfCR2R^OH sidekjeden bundet i p-konfigurasjon med en trans C=C binding, som vist i formelen. All compounds covered by formula V have the -CH=CRlfCR2R^OH side chain bound in p-configuration with a trans C=C bond, as shown in the formula.

Forbindelsene med formel V er beskrevet nærmere i norsk patent nr. 127.862, som beskytter en ny og fordelaktig fremgangsmåte ved fremstilling av analoger av prostaglandin F av formel V, fra foreliggende nye utgangsmaterialer som gjor fremgangsmåten gjennomforbar. I det nevnte patent beskrives også fremstillingen aY utgangsmaterialene fra hvilke foreliggende utgangsmaterialer fremstilles. The compounds of formula V are described in more detail in Norwegian patent no. 127,862, which protects a new and advantageous process for the production of analogues of prostaglandin F of formula V, from existing new starting materials that make the process feasible. The aforementioned patent also describes the preparation and the starting materials from which the present starting materials are produced.

Hittil har PGFla av formel V hvor R1 er hydrogen og 9-hydroxygruppen står i oc-stilling, bare vært tilgjengelig i milligrams-mengder ved ekstraksjon fra visse dyrevev, særlig fra vesiculære kjertler av sau. PGF]_a°g PGFip har °gSa vært tilgjengelig i endog mindre mengder ved carbonylreduksjon av PGE-p også erholdt i små mengder fra dyrevev. Mere nylig har biosyntetiske fremgangsmåter vært utviklet for produksjon av disse naturlige prostaglandiner og også visse analoge forbindelser. Disse biosyntetiske fremgangsmåter innbefatter omsetning av 8,11,1^-eicosatriensyre med det enzymatiske system av vesiculære kjertler av sau. Hitherto, PGFla of formula V where R1 is hydrogen and the 9-hydroxy group is in the oc-position, has only been available in milligram quantities by extraction from certain animal tissues, particularly from vesicular glands of sheep. PGF]_a°g PGFip has °gSa been available in even smaller amounts by carbonyl reduction of PGE-p also obtained in small amounts from animal tissue. More recently, biosynthetic methods have been developed for the production of these natural prostaglandins and also certain analogous compounds. These biosynthetic processes involve the reaction of 8,11,1^-eicosatrienoic acid with the enzymatic system of sheep vesicular glands.

Den beste av disse tidligere fremgangsmåter er den sistnevnte, mein den er dårligere enn foreliggende fremgangsmåte fordi mengden av forbindelse som kan produseresy er begrenset av den . årlige for-syning av sauekjertler. The best of these earlier methods is the latter, although it is inferior to the present method because the amount of compound that can be produced is limited by it. annual supply of sheep glands.

Foreliggende utgangsmaterialer har gjort det mulig å fremstille PGFla og PGF^p og analoger derav ved den nye og fordelaktige fremgangsmåte ifolge norske patenter nr. 127.862 og 128.532. Fra foreliggende utgangsmaterialer kan de onskede forbindelser fremstilles rimeligere og i storre mengder enn°for. Available starting materials have made it possible to produce PGFa and PGFp and analogues thereof by the new and advantageous method according to Norwegian patents no. 127,862 and 128,532. From available starting materials, the desired compounds can be produced more cheaply and in larger quantities than before.

Reaksjons skjema A viser overforingen av foreliggende utgangsmaterialer med formel VI til de terapeutisk aktive prostaglandiner med formel V. Reaction scheme A shows the conversion of the present starting materials of formula VI to the therapeutically active prostaglandins of formula V.

Forbindelsene med formel X som utgangsmaterialer for fremstilling av sluttproduktene med formel V og utgangsmaterialene med formel XI er beskyttet i norsk patent nr. 129.201. Fremgangsmåten for direkte overforing av forbindelsene med formel X til sluttproduktene med formel V er beskyttet i norsk patent nr. 128.532. Utgangsmaterialene med formel XI er beskyttet i norsk patent nr. 128.150 og overforingen av disse utgangsmaterialer med formel XI til sluttproduktene med formel V er beskyttet i norsk patent nr. 127.862. The compounds with formula X as starting materials for the production of the final products with formula V and the starting materials with formula XI are protected in Norwegian patent no. 129,201. The procedure for direct transfer of the compounds of formula X to the final products of formula V is protected in Norwegian patent no. 128,532. The starting materials with formula XI are protected in Norwegian patent no. 128,150 and the transfer of these starting materials with formula XI to the final products with formula V is protected in Norwegian patent no. 127,862.

Foreliggende utgangsmaterialer med formel VI overfores til hydroxyforbindelsene med formel X ved reduksjon. Existing starting materials of formula VI are transferred to the hydroxy compounds of formula X by reduction.

Denne reduksjon av VI til X utfores fortrinnsvis med natrium-borhydrid, skjont et hvilket som helst reduksjonsmiddel som over-forer en ketonisk carbonylgruppe til en hydroxygruppe uten å for-andre estergruppen -C00R1 eller gruppen -CR^=CR2R2j kan anvendes. To isomere hydroxyforbindelser kan fremstilles ved denne VI til X reduksjon, a og Disse isomerer kan skilles ved kromatografiske metoder som tidligere kjent og illustrert nedenfor. This reduction of VI to X is preferably carried out with sodium borohydride, although any reducing agent which transfers a ketonic carbonyl group to a hydroxy group without changing the ester group -C00R1 or the group -CR^=CR2R2j may be used. Two isomeric hydroxy compounds can be produced by this VI to X reduction, a and These isomers can be separated by chromatographic methods as previously known and illustrated below.

Som vist i skjema A, er sluttrinnene ved fremstilling av PGF-^-typen av forbindelser av formel V vist som X til VII og XI til VII, idet igjen epoxydet XI fremstilles fra X. As shown in Scheme A, the final steps in the preparation of the PGF-^ type of compounds of formula V are shown as X to VII and XI to VII, again the epoxide XI being prepared from X.

Epoxyderingsreaksjonen X til XI utfores ved å blande olefinet X med en peroxyforbindelse som er hydrogenperoxyd eller en organisk percarboxylsyre. En hvilken som helst av isomerene eller blandinger derav representert av formelen X kan anvendes som reaktanter. En organisk percarboxylsyre foretrekkes for disse overforinger. Eksempler på nyttige organiske percarboxylsyrer til dette formål er per-måursyre, pereddiksyre, perlaurinsyre, percamfersyre, perbenzoesyre, m-klorperbenzoesyre og lignende. Perlaurinsyre er særlig foretrukket. The epoxidation reaction X to XI is carried out by mixing the olefin X with a peroxy compound which is hydrogen peroxide or an organic percarboxylic acid. Any of the isomers or mixtures thereof represented by formula X may be used as reactants. An organic percarboxylic acid is preferred for these conversions. Examples of useful organic percarboxylic acids for this purpose are permauric acid, peracetic acid, perlauric acid, percamphoric acid, perbenzoic acid, m-chloroperbenzoic acid and the like. Perlauric acid is particularly preferred.

Peroxydasjonen utfores fortrinnsvis ved å blande et olefin av formel X med ca. 1 ekvivalent av persyren eller hydrogenperoxyd, fortrinnsvis i et fortynningsmiddel, f.eks. kloroform. Reaksjonen for-loper vanligvis hurtig, og oxydet av formel XI isoleres ved konvensjonelle metoder, f.eks. fordampning av reaksjonsfortynningsmidlet og fjernelse av syren svarende til persyren hvis en slik anvendes. Det er vanligvis unodvendig å rense oxydet for det anvendes i neste trinn. Denne epoxydasjon kan utfores enten på esteren eller den frie syre av olefinreaktanten. The peroxidation is preferably carried out by mixing an olefin of formula X with approx. 1 equivalent of peracid or hydrogen peroxide, preferably in a diluent, e.g. chloroform. The reaction usually proceeds rapidly, and the oxide of formula XI is isolated by conventional methods, e.g. evaporation of the reaction diluent and removal of the acid corresponding to the peracid if one is used. It is usually unnecessary to purify the oxide before it is used in the next step. This epoxidation can be carried out either on the ester or the free acid of the olefin reactant.

Stereokjemien av sluttproduktene av formel V vil avhenge del-vis av stereokjemien av reaktantene av formel VI, X og XI. Det vil sees at i hver overforing til et sluttprodukt åpnes en cyclopropan-ring. Uansett stereokjemien av reaktanten vil hydroxygruppen i den umettede sidekjede ha begge av de mulige konfigurasjoner, og derfor vil enhver overforing gi minst to isomerer i den henseende. The stereochemistry of the final products of formula V will depend in part on the stereochemistry of the reactants of formula VI, X and XI. It will be seen that in each conversion to an end product a cyclopropane ring is opened. Regardless of the stereochemistry of the reactant, the hydroxy group in the unsaturated side chain will have both of the possible configurations, and therefore any transfer will give at least two isomers in that respect.

Under henvisning igjen til den umettede hydroxysidekjede i V, vil C=C alltid være trans uavhengig av cis-trans-isomerismen av VI eller X, eller av isomerismen av epoxydene XI fremstilt av disse reaktanter. Denne umettede hydroxy-sidekjede er også alltid vist bundet til cyclopentanringen i p-konfigurasjon. Referring again to the unsaturated hydroxy side chain in V, C=C will always be trans regardless of the cis-trans isomerism of VI or X, or of the isomerism of the epoxides XI produced by these reactants. This unsaturated hydroxy side chain is also always shown bound to the cyclopentane ring in p-configuration.

Hydroxygruppen ved siden av den umettede hydroxysidekjede i V vil overveiende, og av og til utelukkende^ være i cc-konf iguras jon, skjpnt en liten mengde av /3-forbindelse fåes i noen tilfelle. The hydroxy group next to the unsaturated hydroxy side chain in V will predominantly, and occasionally exclusively, be in the cc configuration, although a small amount of /3-compound is obtained in some cases.

Konfigurasjonen av gruppen -CnH2n~C00Rl 1 V' dvs' a 611611 P' vil avhenge av konfigurasjonen av den samme gruppe i reaktantene VI, X og XI, da denne konfigurasjon vanligvis ikke forandres under overforingen til V. Konfigurasjonen av hydroxygruppen bundet til cyclopentanringen i X og XI forandres heller ikke under overforingen av disse til V. The configuration of the group -CnH2n~C00Rl 1 V' i.e. a 611611 P' will depend on the configuration of the same group in the reactants VI, X and XI, as this configuration is usually not changed during the conversion to V. The configuration of the hydroxy group bound to the cyclopentane ring in X and XI are also not changed during the transfer of these to V.

Overforingen av epoxyd XI til V utfores ved å blande epoxydet med et syrereagens som er en organisk syre med pK under h. The transfer of epoxide XI to V is carried out by mixing the epoxide with an acid reagent which is an organic acid with a pK below h.

Overforingen av reaktanten og X til V forener betingelsene for X til XI med betingelsene for XI til V. Med andre ord blandes peroxyforbindelsen med syrereagenset. For denne direkte vei fra X til V foretrekkes det at peroxyforbindelsen er hydrogenperoxyd, fortrinnsvis 30 - 90^-ige vandige oppløsninger. Peroxyforbindelsene XIV kan være mellomprodukter i den direkte reaksjonsvei, skjont dette er ikke sikkert. The transfer of the reactant and X to V unites the conditions of X to XI with the conditions of XI to V. In other words, the peroxy compound is mixed with the acid reagent. For this direct route from X to V, it is preferred that the peroxy compound is hydrogen peroxide, preferably 30 - 90% aqueous solutions. The peroxy compounds XIV may be intermediates in the direct reaction pathway, although this is not certain.

Av organiske syrer med pK under h kan nevnes maursyre, klor-eddiksyre, trikloreddiksyre, fluoreddiksyre, trifluDreddiksyre, oxal-syre., maleinsyre og lignende. Særlig foretrukket er maursyre fordi den er en væske som også bekvemt kan tjene som oppløsnings- eller fortynningsmiddel ved reaksjonen. Reaktantene er lett oppløselige i maursyre, og den gir således flytende, homogene reaksjonsblandinger, som er lette å omrbre, oppvarme, avkjøle og helle, og behandle ellers. Utbyttet av det ønskede produkt er også vanligvis høyere enn når andre syrer anvendes. Of organic acids with a pK below h, mention may be made of formic acid, chloroacetic acid, trichloroacetic acid, fluoroacetic acid, trifluoroacetic acid, oxalic acid, maleic acid and the like. Particularly preferred is formic acid because it is a liquid which can also conveniently serve as a solvent or diluent in the reaction. The reactants are easily soluble in formic acid, and it thus gives liquid, homogeneous reaction mixtures, which are easy to mix, heat, cool and pour, and otherwise process. The yield of the desired product is also usually higher than when other acids are used.

Anvendelsen av et alkalimetallsalt av den organiske syre foretrekkes fordi kombinasjonen av syre og salt vanligvis forer til hoyere utbytter av det onskede produkt enn når syre anvendes alene. Grunnen til disse hoyere utbytter er ikke helt klar, men de kan skyldes en puffervirkning av alkalimetallsaltet på den sterkt sure organiske syre. The use of an alkali metal salt of the organic acid is preferred because the combination of acid and salt usually leads to higher yields of the desired product than when acid is used alone. The reason for these higher yields is not entirely clear, but they may be due to a buffering effect of the alkali metal salt on the strongly acidic organic acid.

Produktet fra syrebehandlingen er ofte en ester istedenfor den onskede hydroxyforbindelse med formel V. Disse estere overfores vanligvis lett til hydroxyforbindelsen ved alkalisk hydrolyse under milde betingelser, fortrinnsvis ved behandling med et alkalimetall-bicarbonat eller -carbonat under ca. 25°C, fortrinnsvis under ca. 10°C. The product from the acid treatment is often an ester instead of the desired hydroxy compound of formula V. These esters are usually easily transferred to the hydroxy compound by alkaline hydrolysis under mild conditions, preferably by treatment with an alkali metal bicarbonate or carbonate under approx. 25°C, preferably below approx. 10°C.

Særlig når R^ i reaktanten med formel X eller XI er hydrogen, foretrekkes det å tilsette til reaksjonsblandingen et alkalimetall-eller jordalkalimetallsalt av en slik syre, fortrinnsvis av den samme syre. Minst én ekvivalent av saltet pr. ekvivalent organisk reagens bor anvendes, fortrinnsvis 2-20 ekvivalenter eller enda mere. Særlig foretrukket for alle disse sluttoverfbringer er en blanding av maursyre og et alkalimetallformiat, f.eks. natrium-formiat. Particularly when R 1 in the reactant of formula X or XI is hydrogen, it is preferred to add to the reaction mixture an alkali metal or alkaline earth metal salt of such an acid, preferably of the same acid. At least one equivalent of the salt per equivalent organic reagent should be used, preferably 2-20 equivalents or even more. Particularly preferred for all these final transfers is a mixture of formic acid and an alkali metal formate, e.g. sodium formate.

Som nevnt ovenfor, fåes blandinger av stereoisomere produkter med formel V. Disse kan skilles i de individuelle isomerer ved kjente metoder, fortrinnsvis ved preparativ tynnskiktskromatografi. As mentioned above, mixtures of stereoisomeric products of formula V are obtained. These can be separated into the individual isomers by known methods, preferably by preparative thin-layer chromatography.

Racemiske produkter av formel V fåes selvsagt fra racemiske mellomprodukter. Hvis optisk aktive produkter med formel V bnskes, kan de frie syreformer av disse skilles ved kjente metoder. I denne henseende er det imidlertid fordelaktig å skille et mellomprodukt, fortrinnsvis reaktanten med formel X, da-disse er kjemisk og termisk mere stabile enn sluttproduktene. Racemic products of formula V are of course obtained from racemic intermediates. If optically active products of formula V are desired, the free acid forms of these can be separated by known methods. In this respect, however, it is advantageous to separate an intermediate product, preferably the reactant of formula X, as these are chemically and thermally more stable than the final products.

Utgangsmaterialene med formel VI ifolge oppfinnelsen kan fremstilles ved de i reaksjonsskjema B og C viste metoder: The starting materials with formula VI according to the invention can be prepared by the methods shown in reaction schemes B and C:

I skjemaene A - C er definisjonene av de forskjellige gener-iske symboler R^ til R-^-p konstant. R^, R^, R^ og R^ er som ovenfor angitt for formel VI. In the forms A - C, the definitions of the different generic symbols R^ to R-^-p are constant. R^, R^, R^ and R^ are as indicated above for formula VI.

R^ og R^ er vist i formel VIII, skjema B, bundet til nitrogen og er definert som alkyl med 1-8 carbonatomer, eller alkylen bundet over carbon eller oxygen for sammen med det tilknyttede nitrogen å danne en 5 - 7-leddet heterocyclisk ring. R^ and R^ are shown in Formula VIII, Scheme B, attached to nitrogen and are defined as alkyl of 1-8 carbon atoms, or the alkylene attached over carbon or oxygen to form, together with the associated nitrogen, a 5-7 membered heterocyclic ring.

Fortrinnsvis er Preferably is

usubstituert eller C-alkylsubstituert unsubstituted or C-alkyl substituted

pyrrolidino, piperidino, hexamethylenimino eller morfolino. De tilsvarende dialkylaminoreaktanter er imidlertid også anvendbare ved overforingen av reaktant VII til produktet Via. pyrrolidino, piperidino, hexamethyleneimino or morpholino. The corresponding dialkylamino reactants are, however, also usable in the conversion of reactant VII to the product Via.

Ry og Rg som er vist i skjema C, er beskyttende grupper som senere fjernes. Den kjemiske natur av R^ og Rg er ikke kritisk så-lenge som de kan erstattes med H under noytrale eller relativt mildt sure betingelser. Særlig foretrukket som beskyttende grupper R^ og Rg er 2-tetrahydropyranyl som lett fjernes under mildt sure betingelser.- Alternative beskyttende grupper er 2-tetrahydrothiopyranyl, 2-tetrahydrothienyl og trityl. Se J. Am. Chem.Soc. 7_0, *+l87 (19<>>+8); J. Am. Chem. Soc. 2it> 1239 (1952) og J. Org. Chem. 31, 2333 (1966). Når R^ og Rg forekommer i samme molekyl, kan de være like eller forskjellige. Ry and Rg shown in Scheme C are protecting groups which are later removed. The chemical nature of R^ and Rg is not critical as long as they can be replaced by H under neutral or relatively mildly acidic conditions. Particularly preferred as protective groups R^ and Rg are 2-tetrahydropyranyl, which is easily removed under mildly acidic conditions. Alternative protective groups are 2-tetrahydrothiopyranyl, 2-tetrahydrothienyl and trityl. See J. Am. Chem.Soc. 7_0, *+l87 (19<>>+8); J. Am. Chem. Soc. 2it> 1239 (1952) and J. Org. Chem. 31, 2333 (1966). When R^ and Rg occur in the same molecule, they may be the same or different.

R^ er vist i skjema C. Gruppen R^ is shown in form C. The group

i formel XXII er en cyclisk acetalgruppe. R^ kan være en hvilken som helst beskyttende alkylengruppe som er lett fjernbar under relativt mildt sure betingelser. Ved denne fjernelse overfores til en aldehydgruppe -CHO, antagelig ved å erstatte R^ med to hydrogenatomer, ett til hvert oxygen, fulgt av tap av vann. Særlig foretrukne alkylengrupper er ethylen, usubstituert eller substituert med en eller to alkyl-grupper med 1 - h carbonatomer. in formula XXII is a cyclic acetal group. R 1 can be any alkylene protecting group which is readily removable under relatively mildly acidic conditions. In this removal is transferred to an aldehyde group -CHO, presumably by replacing R^ with two hydrogen atoms, one for each oxygen, followed by loss of water. Particularly preferred alkylene groups are ethylene, unsubstituted or substituted with one or two alkyl groups with 1 - h carbon atoms.

R-^Q er vist i formel Via på skjema B. R-^q har samme betydning som R^ unntatt at R^Q ikke kan være hydrogen. Formel Via representerer således alltid en ester. Det foretrekkes for letthet ved dan-nelse og påfolgende reaksjon at R-^q er alkyl med 1 - h- carbonatomer. Imidlertid kan forbindelser med formel Via hvor R, „ er en av de andre grupper innen definisjonen av R10» fremstilles og er nyttige som reak- R-^Q is shown in formula Via on scheme B. R-^q has the same meaning as R^ except that R^Q cannot be hydrogen. Formula Via thus always represents an ester. It is preferred for ease of formation and subsequent reaction that R--q is alkyl with 1-h- carbon atoms. However, compounds of formula Via where R, "is one of the other groups within the definition of R10" can be prepared and are useful as reac-

tanter som vist i skjema B. aunts as shown in form B.

I skjema A og B, er CnH2n alkylen med 1-8 carbonatomer. I ^kjerna C er imidlertid CnH2n begrenset til alkylen med 2-8 carbonatomer. In schemes A and B, CnH2n is the alkylene of 1-8 carbon atoms. In ^nucleus C, however, CnH2n is limited to the alkylene with 2-8 carbon atoms.

Skjema B og C angir fremgangsmåter og mellomproduktreaktanter som er nyttige ved fremstilling av reaktant VI eller visse av isomerene derav. Det vil sees at reaktant VI fremstilt i henhold til skjema C må ha CnH2n med minst 2 carbonatomer. Schemes B and C indicate methods and intermediate reactants useful in the preparation of reactant VI or certain of its isomers. It will be seen that reactant VI prepared according to scheme C must have CnH2n with at least 2 carbon atoms.

Fremstillingen av forbindelsene VIII, XX og XXII er beskrevet nærmere i norsk patent nr. 127 862. The production of compounds VIII, XX and XXII is described in more detail in Norwegian patent no. 127 862.

Som det fremgår av skjema A, B og C forblir cyclopropanringen og stereokjemien av bindingen av den enverdige gruppe til cyclopropanringen intakt og uforandret helt til den endelige overforing til sluttproduktene V. For denne endelige åpning av cyclopropanringen foretrekkes det at konfigurasjonen av den enverdige gruppe er exo, skjont endo-isomeren også kan overfores til de onskede slutt-produkter som vist i skjema A. Der er således tre alternativer, å fore blandingen av endo- og exo-isomerer frem til sluttproduktene V, skille endo- og exo-isomerene av VI eller på et forutgående mellomproduktstadium, med fordel ved gass- eller tynnskiktskromatografi, eller isomerisere den mindre foretrukne endo-isomer av VI til den foretrukne exo-isomer av VI, eller å utfore denne isomerisering på .et eller annet forutgående mellomproduktstadium. Av disse alternativer er det siste det foretrukne, idet isomeriseringen utfores straks cyclopropanringen er dannet. As can be seen from Schemes A, B and C, the cyclopropane ring and the stereochemistry of the attachment of the monovalent group to the cyclopropane ring remain intact and unchanged until the final transfer to the final products V. For this final opening of the cyclopropane ring, it is preferred that the configuration of the monovalent group is exo , although the endo-isomer can also be transferred to the desired end-products as shown in scheme A. There are thus three alternatives, leading the mixture of endo- and exo-isomers to the end products V, separating the endo- and exo-isomers of VI or at a prior intermediate stage, advantageously by gas or thin layer chromatography, or isomerizing the less preferred endo isomer of VI to the preferred exo isomer of VI, or performing this isomerization at some prior intermediate stage. Of these alternatives, the latter is the preferred one, as the isomerization is carried out as soon as the cyclopropane ring is formed.

Skjema B, viser, fremstilling av forbindelsen Via fra VIII. Dette er en alkyleringsprosess hvorved gruppen -cnH2n~C00R10 *nn" fores i bicyclo-ringsystemet ved siden av carbonylgruppen. To isomerer er mulige for dette alkyleringsprodukt Via, a eller 6. Begge isomerer fåes ved alkyleringsprosessene beskrevet i det efterfolgende. En hvilken som helst av de tidligere kjente alkyleringsmetoder kan anvendes ved denne alkylering. Scheme B shows preparation of the compound Via from VIII. This is an alkylation process whereby the group -cnH2n~C00R10 *nn" is inserted into the bicyclo ring system next to the carbonyl group. Two isomers are possible for this alkylation product Via, a or 6. Both isomers are obtained by the alkylation processes described below. Any of the previously known alkylation methods can be used for this alkylation.

En nyttig alkyleringsmetode foregår over et enamin-mellomprodukt VII. Dette enamin fremstilles ved å blande olefin-ketonet med formel VIII med et sekundært amin av formel A useful alkylation method takes place via an enamine intermediate VII. This enamine is prepared by mixing the olefin ketone of formula VIII with a secondary amine of formula

-w -w

hvor R^ og R^ er alkyl eller alkylen bundet sammen over where R^ and R^ are alkyl or the alkylene linked together above

carbon eller oxygen slik at de sammen med nitrogenatomet danner en 5 - 7-leddet heterocyclisk ring. Eksempler på egnede aminer er diethylamin, dipropylamin, dibutylamin, dihexylamin, dioctylamin, dicyclohexylamin, methylcyclohexylamin, pyrrolidin, 2-methylpyrro-lidin, piperidin, ^--methylpiperidin, morfolin, hexamethylenamin og lignende. carbon or oxygen so that together with the nitrogen atom they form a 5 - 7-membered heterocyclic ring. Examples of suitable amines are diethylamine, dipropylamine, dibutylamine, dihexylamine, dioctylamine, dicyclohexylamine, methylcyclohexylamine, pyrrolidine, 2-methylpyrrolidine, piperidine, β-methylpiperidine, morpholine, hexamethyleneamine and the like.

Enaminet av formel VII fremstilles ved å oppvarme en blanding The enamine of formula VII is prepared by heating a mixture

av olefin-ketonet av formel VIII med et overskudd av aminet, fortrinnsvis i nærvær av en sterk syrekatalysator, som en organisk sul-fonsyre, for eksempel p-toluensulfonsyre, eller en uorganisk syre, of the olefin ketone of formula VIII with an excess of the amine, preferably in the presence of a strong acid catalyst, such as an organic sulphonic acid, for example p-toluenesulphonic acid, or an inorganic acid,

for eksempel svovelsyre. Det er også fordelaktig å utfore denne reaksjon i nærvær av et med vann ublandbart fortynningsmiddel, for eksempel benzen eller toluen, og å fjerne vann ved azeotropisk des-tillasjon eftersom det dannes under reaksjonen. Efter at vanndannels-en er opphbrt, isoleres så enaminet ved konvensjonelle metoder. for example sulfuric acid. It is also advantageous to carry out this reaction in the presence of a water-immiscible diluent, for example benzene or toluene, and to remove water by azeotropic distillation since it is formed during the reaction. After the water formation has stopped, the enamine is then isolated by conventional methods.

Enaminet av formel VII omsettes så med en halogenester, X-CnH2r- COOR^q til det onskede produkt av formel Via. Denne reaksjon av enaminet utfores ved vanlige metoder. Se "Advances in Organ-ic Chemistry", Interscience Publishers, New York, N.Y.,Vol. h, pp. 25-^7 (1963) og henvisninger angitt deri. I tillegg til halogen kan X i X-^H^-COOR-^ også være tosylat, mesylat og lignende. Det foretrekkes særlig at X er brom eller jod. Dimethylsulfoxyd er særlig nyttig som fortynningsmiddel i reaksjonen av enaminet med halogen-esteren. The enamine of formula VII is then reacted with a halogen ester, X-CnH2r-COOR^q to the desired product of formula Via. This reaction of the enamine is carried out by conventional methods. See "Advances in Organic Chemistry", Interscience Publishers, New York, N.Y., Vol. h, pp. 25-7 (1963) and references therein. In addition to halogen, X in X-^H^-COOR-^ can also be tosylate, mesylate and the like. It is particularly preferred that X is bromine or iodine. Dimethylsulfoxide is particularly useful as a diluent in the reaction of the enamine with the halogen ester.

Alkyleringsreaksjonen VIII til VIa kan også utfores direkte The alkylation reaction VIII to VIa can also be carried out directly

med den samme halogenester som anvendes ved enaminmetoden. En hvilken som helst av de vanlige alkyleringsbaser, for eksempel alkalimetall-hydrider, alkalimetallamider og alkalimetallalkoxyder, kan anvendes til denne alkylering. Alkalimetallalkoxyder foretrekkes, særlig de tertiære alkoxyder. Natrium og kalium er foretrukne alkalimetaller. Særlig foretrukket er kalium-t-butoxyd. Foretrukne fortynningsmidler for denne direkte alkylering er tetrahydrofuran og 1,2-dimethoxy-alkan. Ellers er fremgangsmåter for å fremstille og isolere det onskede produkt av formel Via tidligere kjent. with the same halogen ester used in the enamine method. Any of the usual alkylating bases, for example alkali metal hydrides, alkali metal amides and alkali metal alkoxides, can be used for this alkylation. Alkali metal alkoxides are preferred, especially the tertiary alkoxides. Sodium and potassium are preferred alkali metals. Particularly preferred is potassium t-butoxide. Preferred diluents for this direct alkylation are tetrahydrofuran and 1,2-dimethoxyalkane. Otherwise, methods for preparing and isolating the desired product of formula Via are previously known.

De to isomere produkter av formel Via, a og 6, som fåes ved begge alkylerlngsmetoder, dvs. direkte eller over enaminet, kan skilles ved kromatografiske metoder som er tidligere kjent og be-lyst med eksempler i det efterfolgende. The two isomeric products of formula Via, a and 6, which are obtained by both alkylation methods, i.e. directly or via the enamine, can be separated by chromatographic methods which are previously known and illustrated with examples in the following.

Produktet av formel Via er en ester, og kan hydrolyseres eller forsåpes ved kjente metoder til produktet av formel Via hvor R-, er hydrogen. Det foretrekkes for å lette alkyleringen at R1Q i Via er alkyl med 1 - h carbonatomer, og at når R^ skal være forskjellig fra hydrogen eller alkyl med 1 - k carbonatomer, at forbindelsen med foijmel VI fremstilles ved forestring av forbindelsen med formel VI hvor R-^ er hydrogen. The product of formula Via is an ester, and can be hydrolyzed or saponified by known methods to the product of formula Via where R- is hydrogen. It is preferred to facilitate the alkylation that R1Q in Via is alkyl with 1 - h carbon atoms, and that when R^ is to be different from hydrogen or alkyl with 1 - k carbon atoms, that the compound of formula VI is prepared by esterification of the compound of formula VI where R 1 is hydrogen.

Forbindelsen ifolge oppfinnelsen med formel VI hvor The compound according to the invention of formula VI where

-CnH2n-C00R-^ er i oc-stilling, kan også fremstilles ved den vei som er vist i skjema C. I skjema C utfores oxydasjon av XIX til VIb og XXI til VIb fortrinnsvis med Jones-reagenset, skjont et hvilket som helst oxyda-sjonsmiddel som ikke forandrer resten av molekylet, særlig gruppen -CR^C^R^) kan anvendes. Hvis oxydasjonsmidlet er tilstrekkelig surt, kan beskyttende grupper R^, Rg og R^ fjernes i samme prosess, hvilket gjor det mulig å gå direkte fra XX eller XXII til VIb. -CnH2n-C00R-^ is in the oc position, can also be prepared by the route shown in scheme C. In scheme C, oxidation of XIX to VIb and XXI to VIb is carried out preferably with the Jones reagent, although any oxida -ion agent which does not change the rest of the molecule, especially the group -CR^C^R^) can be used. If the oxidizing agent is sufficiently acidic, protecting groups R^, Rg, and R^ can be removed in the same process, making it possible to go directly from XX or XXII to VIb.

Oppfinnelsen vil forståes bedre av folgende eksempler: Infrarbde spektra ble bestemt på ufortynnede væskeprbver, og er betegnet som ^ i cm<->"'". Kjernemagnetisk resonansspektra er basert på tetramethylsilan som indre standard. Deuterokloroform ble anvendt som opplbsningsmiddel, og spektrene er angitt som S (kjemiske "shifts") i deler pr. million (dpm). The invention will be better understood from the following examples: Infrared spectra were determined on undiluted liquid samples, and are denoted as ^ in cm<->"'". Nuclear magnetic resonance spectra are based on tetramethylsilane as an internal standard. Deuterochloroform was used as solvent, and the spectra are indicated as S (chemical "shifts") in parts per million (dpm).

Eksempel 1 Example 1

Fremstilling av utgangsmateriale Production of starting material

Morfolino-enamin av 6-exo-(l-heptenyl)-bicyclo-[3.1.0]hexan-3-on Morpholino-enamine of 6-exo-(1-heptenyl)-bicyclo-[3.1.0]hexan-3-one

( VII, R2 = pentyl, R^ og R^ = H) (VII, R2 = pentyl, R^ and R^ = H)

En blanding av 100 mg 6-exo-(1-heptenyl)-bicyclo-[3.1.0]hexan-3-on, 2 ml morfolin og noen få krystaller p-toluensulfonsyre i 0,5 ml benzen ble kokt under tilbakelbp under nitrogen i ca. 17 timer idet vann ble fjernet med en felle. Ved utlbpet av denne tid ble blandingen avkjblt og vasket med mettet, vandig natriumbicarbonat. Benzenskiktet ble så fraskilt , tbrret over natriumsulfat og inndampet, hvilket ga et kvantitativt utbytte av morfolino-enaminet av 6-(l-heptenyl)-bicyclo-[3.1.0]hexan-3-on; v" 3100, 3075, 3050, 3025, 1625, 1120 og 732 cm ~\ Dette enamin ble anvendt uten rensning i neste trinn. A mixture of 100 mg of 6-exo-(1-heptenyl)-bicyclo-[3.1.0]hexan-3-one, 2 ml of morpholine and a few crystals of p-toluenesulfonic acid in 0.5 ml of benzene was refluxed under nitrogen for about. 17 hours as water was removed with a trap. At the end of this time, the mixture was cooled and washed with saturated aqueous sodium bicarbonate. The benzene layer was then separated, triturated over sodium sulfate and evaporated, giving a quantitative yield of the morpholino-enamine of 6-(1-heptenyl)-bicyclo-[3.1.0]hexan-3-one; v" 3100, 3075, 3050, 3025, 1625, 1120 and 732 cm ~\ This enamine was used without purification in the next step.

Ved å folge ovenstående fremgangsmåte, men ved å anvende pyrrolidin og piperidin hver for seg istedenfor morfolin, fikk man de tilsvarende pyrrolidino- og piperidino-enaminer. By following the above procedure, but using pyrrolidine and piperidine separately instead of morpholine, the corresponding pyrrolidino- and piperidino-enamines were obtained.

Ved å folge ovenstående fremgangsmåte, men ved å anvende hver for seg istedenfor 6-(1-heptenyl)-bicyclo-[3.1.0]hexan-3-on, det tilsvarende 6-exo-(cis-l-heptenyl)-bicyclo[3.1.0]hexan-3-on og 6-exo-(trans+l-heptenyl)-bicyclo[3.1.0]hexan-3-on, fikk man de tilsvarende morfolino-enaminer. By following the above procedure, but using separately instead of 6-(1-heptenyl)-bicyclo-[3.1.0]hexan-3-one, the corresponding 6-exo-(cis-1-heptenyl)-bicyclo [3.1.0]hexan-3-one and 6-exo-(trans+1-heptenyl)-bicyclo[3.1.0]hexan-3-one, the corresponding morpholino-enamines were obtained.

Fremstilling av sluttprodukt Production of final product

Ethyl- 6- exo-( 1- heptenyl)- 3- oxobicyclor 3. 1. Ol- hexan- 2- heptanoat ( Via) Ethyl- 6- exo-(1- heptenyl)- 3- oxobicyclor 3. 1. Ol- hexane- 2- heptanoate ( Via)

Det erholdte enamin ble opplost i 2 ml torr benzen, og 130 mg ethyl-7-jodheptanoat i 10 ml benzen ble tilsatt ved 25°C i lopet av 30 minutter. Blandingen ble så oppvarmet under tilbakeipp i <*>+0 timer under nitrogen, avkjolt^. blandet med <!>+0 ml vann og omrort i 2 timer. Skiktene ble skilt, og vannskiktet ble ekstrahert 3 ganger med benzen. Benzenekstraktene ble forenet og vasket med iskold 3$-ig saltsyre og derpå med vann inntil nbytrale. Benzenopplosningen ble torret over magnesiumsulfat og inndampet, hvilket ga 220 mg ethyl-6-exo-(1-heptenyl)-3-oxobicyclo[3.1.0]hexan-2-heptanoat; \) 3200, 3050, 3025, 1750, 1680, 1182 og 732 cm<-1.> Tynnskiktskromatografi viste en hoved-flekk ved R^ 0,62 (silicagel utviklet med kloroform) og en mindre flekk ved Rf 0,68. The enamine obtained was dissolved in 2 ml of dry benzene, and 130 mg of ethyl 7-iodoheptanoate in 10 ml of benzene was added at 25°C over the course of 30 minutes. The mixture was then heated under reflux for <*>+0 hours under nitrogen, cooled^. mixed with <!>+0 ml of water and stirred for 2 hours. The layers were separated and the aqueous layer was extracted 3 times with benzene. The benzene extracts were combined and washed with ice-cold 3% hydrochloric acid and then with water until nbytral. The benzene solution was dried over magnesium sulfate and evaporated to give 220 mg of ethyl 6-exo-(1-heptenyl)-3-oxobicyclo[3.1.0]hexane-2-heptanoate; \) 3200, 3050, 3025, 1750, 1680, 1182 and 732 cm<-1> Thin layer chromatography showed a major spot at Rf 0.62 (silica gel developed with chloroform) and a minor spot at Rf 0.68.

Eksempel 2 Example 2

Methyl- 6- exo-( 1- heptenyl)- 3- oxobicyclor 3. 1. Olhexan- 2- heptanoat ( Via) Methyl- 6- exo-(1- heptenyl)- 3- oxobicyclor 3. 1. Olhexan- 2- heptanoate ( Via)

Til en opplosning av 110 mg av enaminet erholdt i henhold til eksempel 1, i 30 ml vannfri dimethylsulfoxyd ble tilsatt på en gang 500 mg methyl-7-jodheptanoat. Blandingen ble omrort under nitrogen i k timer ved 65 - 75°C Efter avkjbling ble 30 ml vann tilsatt, og blandingen ble omrort i h timer ved ca. 25°C. Efter videre fortyn-ning med 300 ml vann ble blandingen ekstrahert med h porsjoner di-ethylether. De forenede etherekstrakter ble vasket med vann, torret og inndampet under nedsatt trykk, hvilket ga 338 mg av en mbrk pasta inneholdende det onskede methyl-6-exo-(l-heptenyl)-3-oxobicyclo- To a solution of 110 mg of the enamine obtained according to Example 1, in 30 ml of anhydrous dimethyl sulfoxide, 500 mg of methyl 7-iodoheptanoate was added at once. The mixture was stirred under nitrogen for k hours at 65 - 75°C. After cooling, 30 ml of water was added, and the mixture was stirred for h hours at approx. 25°C. After further dilution with 300 ml of water, the mixture was extracted with h portions of diethyl ether. The combined ether extracts were washed with water, dried and evaporated under reduced pressure to give 338 mg of a mbrk paste containing the desired methyl-6-exo-(1-heptenyl)-3-oxobicyclo-

[3-1.0]hexan-2-heptanoat pluss noen utgangsmaterialer. [3-1.0]hexane-2-heptanoate plus some starting materials.

Denne pasta ble anvendt uten rensning ved fremstilling av de onskede terapeutisk aktive forbindelser med formel V. This paste was used without purification in the preparation of the desired therapeutically active compounds of formula V.

Ved å folge fremgangsmåten i eksempel 2 ble hver av de andre enaminer nevnt i eksempel 1 omsatt hver for seg med ethyl-7-jod-heptanoat, hvilket ga de tilsvarende alkylerte ketoner Via, dvs. By following the procedure in example 2, each of the other enamines mentioned in example 1 was reacted separately with ethyl 7-iodoheptanoate, which gave the corresponding alkylated ketones Via, i.e.

<R>10' <C>n<H>2n er hexamethylen, og -CR^=CR2R^ er cis-1-hepte'nyl, trans-1-heptenyl, 1-methyl-l-heptenyl, 1-ethyl-l-heptenyl, 1-propyl-l-heptenyl-l-isopropyl-l-heptenyl, vinyl og 1-butenyl. <R>10' <C>n<H>2n is hexamethylene, and -CR^=CR2R^ is cis-1-heptenyl, trans-1-heptenyl, 1-methyl-1-heptenyl, 1-ethyl- 1-heptenyl, 1-propyl-1-heptenyl-1-isopropyl-1-heptenyl, vinyl and 1-butenyl.

Ved likeledes å folge fremgangsmåten i eksempel 2, men ved By likewise following the procedure in example 2, but by

hver for seg istedenfor ethyl-7-jodheptanoat å anvende ethyljodacetat, ethyl-V-jodbutyrat, ethyl-<>>+-jodpentanoat og ethyl-9-jodnonanoat, fikk man de tilsvarende alkylerte ketoner Via, dvs. R^q er ethyl, -CR=CR2R^ er 1-heptenyl, og CnR~2n er methylen, tetramethylen, 1-methyltetramethylen og octamethylen. separately instead of ethyl 7-iodoheptanoate using ethyl iodoacetate, ethyl V-iodobutyrate, ethyl <>>+-iodopentanoate and ethyl 9-iodononanoate, the corresponding alkylated ketones Via were obtained, i.e. R^q is ethyl, -CR=CR2R^ is 1-heptenyl, and CnR~2n is methylene, tetramethylene, 1-methyltetramethylene and octamethylene.

Eksempel Example

Ethyl-6-exo-(l-heptenyl)-3-oxobicyclo[3.1.0]-hexan-2- Ethyl-6-exo-(1-heptenyl)-3-oxobicyclo[3.1.0]-hexane-2-

heptanoat (Villa) og 6-exo-(l-heptenyl)-3-oxobicyclo[3.1.0]-hexan- 2- heptansyre ( VI, R-^ = H) heptanoate (Villa) and 6-exo-(1-heptenyl)-3-oxobicyclo[3.1.0]-hexane-2-heptanoic acid (VI, R-^ = H)

Kalium-t-butoxyd ble fremstilt ved å opplose 21,72 mg kalium i Potassium t-butoxide was prepared by dissolving 21.72 mg of potassium in

5 ml t-butanol og fordampe opplosningsmidlet under nitrogen. Kalium-t-butoxyd-residuet ble suspendert i 10 ml benzen, og 100 mg 6-exo-(l^heptenyl)-bicyclo[3«1.0]hexan-3-on ble tilsatt hurtig til suspen-sjonen under omroring. Blandingen ble oppvarmet under tilbakelop i 30'minutter, derpå ble 13'+ mg ethyl-7-bromheptanoat tilsatt dråpe-vis (gjennom en sproyte) i lopet av 30 minutter. Oppvarmningen ble fortsatt i 6,5 timer. Derpå ble opplbsningen avkjolt, og isvann ble tilsatt, fulgt av en drå-pe konsentrert saltsyre. Det vandige og det organiske skikt ble skilt, og vannskiktet ble ekstrahert forst med diéthylether og derpå med ethylacetat. De organiske ekstrakter ble forenet, torret med vannfritt natriumsulfat og inndampet, hvilket ga 190 mg ethyl-6-exo-(1-heptenyl)-3-oxobicyclo[3.1.0]hexan-2-heptanoat. 5 ml of t-butanol and evaporate the solvent under nitrogen. The potassium t-butoxide residue was suspended in 10 ml of benzene, and 100 mg of 6-exo-(1-heptenyl)-bicyclo[3-1.0]hexan-3-one was added rapidly to the suspension with stirring. The mixture was heated under reflux for 30 minutes, then 13+ mg of ethyl 7-bromoheptanoate was added dropwise (through a syringe) over the course of 30 minutes. The heating was continued for 6.5 hours. The solution was then cooled, and ice water was added, followed by a drop of concentrated hydrochloric acid. The aqueous and organic layers were separated, and the aqueous layer was extracted first with diethyl ether and then with ethyl acetate. The organic extracts were combined, dried over anhydrous sodium sulfate and evaporated to give 190 mg of ethyl 6-exo-(1-heptenyl)-3-oxobicyclo[3.1.0]hexane-2-heptanoate.

Det således erholdte heptanoat ble suspendert i 7 ml 2,5^-ig vandig natriumcarbonatopplosning og omrort ved 120°C badtemperatur i 3,5 timer. Derpå ble blandingen avkjolt, fortynnet med 10 ml vann og ekstrahert 3 ganger med diéthylether. Vannskiktet ble avkjolt og syret, og ble derpå ekstrahert efter hverandre med kloroform og ethylacetat. De forenede organiske ekstrakter ble torret over vannfritt natriumsulfat og inndampet til et residuum som ble kromatografert på 5 g silicagel og eluert med benzen. Inndampning av elu-atene ga en 6-exo-( 1-heptenyl) -3-oxobicyclo[ 3<. 1. 0]hexan-2-heptansyre, ^ 3050, 3025, 1750, 1715, 1625, 1170 og 735 cm"<1>, A maks. 213 nm (ethanol). The thus obtained heptanoate was suspended in 7 ml of 2.5 µg aqueous sodium carbonate solution and stirred at 120°C bath temperature for 3.5 hours. The mixture was then cooled, diluted with 10 ml of water and extracted 3 times with diethyl ether. The aqueous layer was cooled and acidified, and was then extracted successively with chloroform and ethyl acetate. The combined organic extracts were dried over anhydrous sodium sulfate and evaporated to a residue which was chromatographed on 5 g of silica gel and eluted with benzene. Evaporation of the eluates gave a 6-exo-(1-heptenyl)-3-oxobicyclo[ 3<. 1. O]hexane-2-heptanoic acid, λ 3050, 3025, 1750, 1715, 1625, 1170 and 735 cm"<1>, A max. 213 nm (ethanol).

Eksempel h Example h

Methyl-6-exo-(1-heptenyl)-3-oxobicyclo[3.1.0]-hexan-2-heptanoat Methyl 6-exo-(1-heptenyl)-3-oxobicyclo[3.1.0]-hexane-2-heptanoate

( Via) (via)

Til en opplosning av h ekvivalenter kalium-t-butoxyd i 15 ml 1,2-dimethoxyethan ble tilsatt 100 mg 6-exo-(1-heptenyl)-bicyclo-[3«1«0]hexan-3-on. En opplosning av 6 ekvivalenter methyl-7-jodheptanoat i 2 ml torr 1,2-dimethoxyethan ble injisert med en sproyte (nitrogenatmosfære). Blandingen ble kokt under tilbakelbp og omrort, idet reaksjonens forlop ble fulgt ved å underkaste prover av reaksjonsblandingen tynnskiktskromatografi. Den onskede forbindelse Via begynte å dannes efter 6 timer og nådde et maksimum ved ca. To a solution of h equivalents of potassium t-butoxide in 15 ml of 1,2-dimethoxyethane was added 100 mg of 6-exo-(1-heptenyl)-bicyclo-[3«1«0]hexan-3-one. A solution of 6 equivalents of methyl 7-iodoheptanoate in 2 ml of dry 1,2-dimethoxyethane was injected with a syringe (nitrogen atmosphere). The mixture was refluxed and stirred, the progress of the reaction being followed by subjecting samples of the reaction mixture to thin layer chromatography. The desired compound Via started to form after 6 hours and reached a maximum at approx.

25 timer, på hvilket tidspunkt reaksjonsblandingen ble avkjolt, fortynnet med isvann, syret med fortynnet saltsyre og ekstrahert med diéthylether. Diethyletherekstraktet ble torret og inndampet til en olje. Oljen ble kromatografert på 3,5 g aluminiumoxyd (aktivitet II - III). Utgangs-jodesteren ble eluert med hexan-benzen (3:1). Videre eluering med benzen ga det onskede methyl-6-exo-(1-heptenyl)-3-oxo-bicyclo[3.1.0]hexan-2-heptanoat pluss noe av ketonreaktanten. Denne blanding ble anvendt uten ytterligere separasjon ved fremstilling av de terapeutisk aktive forbindelser med formel V. 25 hours, at which time the reaction mixture was cooled, diluted with ice water, acidified with dilute hydrochloric acid and extracted with diethyl ether. The diethyl ether extract was dried and evaporated to an oil. The oil was chromatographed on 3.5 g of aluminum oxide (activity II - III). The starting iodoester was eluted with hexane-benzene (3:1). Further elution with benzene gave the desired methyl 6-exo-(1-heptenyl)-3-oxo-bicyclo[3.1.0]hexane-2-heptanoate plus some of the ketone reactant. This mixture was used without further separation in the preparation of the therapeutically active compounds of formula V.

Eksempel 5 Example 5

Methyl-6-exo-(trans-1-heptenyl)-3-oxo-bicyclo[3.1.0]hexan-2-heptanoat ( Via) Methyl 6-exo-(trans-1-heptenyl)-3-oxo-bicyclo[3.1.0]hexane-2-heptanoate ( Via

En blanding av 5?00 g 6-exo-(trans-l-heptenyl)-bicyclo[3.1.0] hexan-3-on, 21,0 g methyljodheptanoat, og 500 ml tetrahydrofuran ble omrort og avkjolt ved +5°C under en nitrogenatmosfære. En opplosning av 3»80 g kalium-t-butoxyd ill tetrahydrofuran ble tilsatt under omroring ved +5 C i lopet av 60 minutter. Efter at tilsetningen var avsluttet og reaksjonsblandingen begynte å bli brun og avsette et hvitt bunnfall av kaliumjodid, ble 50 ml 5%- ig saltsyre tilsatt. Blandingen ble så konsentrert ved nedsatt trykk ( h0°C bad) til 350 ml, fortynnet med 200 ml vann og ekstrahert med 3 x 200 ml ethylacetat. De forenede ekstrakter ble vasket forst med 150 ml 5#-ig vandig natriumthiosulfat og derpå med vandig natriumkloridopplosning, og ble så torret med vannfritt magnesiumsulfat. Inndampning under nedsatt trykk ga en olje fra hvilken uomsatt jodester og uomsatt keton ble avdrevet ved <!>+0-70 micron trykk. Den gjenværende olje ble kroma-tbgrafert med 1 kg silicagel. Efter eluering med 5 1 isomere hexaner, 5,1 av en blanding av isomere hexaner og ethylacetat (97,5:2,5)5 og 5 1 av en blanding av isomere hexaner og ethylacetat (95:5), ga videre eluering med 3 1 av det tredje elueringsmiddel ved inndampning 1,23 g av den a-isomere av methyl-6-exo-(trans-l-heptenyl)-3-oxo-bicyclo[3.1.0]hexan-2-heptanoat. Efter eluering med nok en liter av det tredje elueringsmiddel, ga videre eluering med 5 1 av samme elueringsmiddel ved fordampning 0,813 g av 3-isomeren av methyl-6-exo-(trans-l-heptenyl)-3-oxobicyclo[3.1.0]hexan-2-heptanoat. A mixture of 5.00 g of 6-exo-(trans-1-heptenyl)-bicyclo[3.1.0] hexan-3-one, 21.0 g of methyl iodoheptanoate, and 500 ml of tetrahydrofuran was stirred and cooled at +5°C under a nitrogen atmosphere. A solution of 3.80 g of potassium t-butoxydyl tetrahydrofuran was added with stirring at +5 C over the course of 60 minutes. After the addition was finished and the reaction mixture began to turn brown and deposit a white precipitate of potassium iodide, 50 ml of 5% hydrochloric acid was added. The mixture was then concentrated under reduced pressure (h0°C bath) to 350 ml, diluted with 200 ml of water and extracted with 3 x 200 ml of ethyl acetate. The combined extracts were washed first with 150 ml of 5% aqueous sodium thiosulfate and then with aqueous sodium chloride solution, and were then dried with anhydrous magnesium sulfate. Evaporation under reduced pressure gave an oil from which unreacted iodoester and unreacted ketone were driven off at <!>+0-70 micron pressure. The remaining oil was chromatographed with 1 kg of silica gel. After elution with 5 1 of isomeric hexanes, 5.1 of a mixture of isomeric hexanes and ethyl acetate (97.5:2.5)5 and 5 1 of a mixture of isomeric hexanes and ethyl acetate (95:5), further elution with 3 1 of the third eluent by evaporation 1.23 g of the α-isomer of methyl 6-exo-(trans-1-heptenyl)-3-oxo-bicyclo[3.1.0]hexane-2-heptanoate. After elution with another liter of the third eluent, further elution with 5 l of the same eluent by evaporation gave 0.813 g of the 3-isomer of methyl-6-exo-(trans-1-heptenyl)-3-oxobicyclo[3.1.0 ]hexane-2-heptanoate.

Ved å folge fremgangsmåten i ovenstående eksempel, men ved å anvende 8,00 g 6-exo-(cis-l-heptenyl)-bicyclo[3.1.0]hexan-3-on istedenfor trans-ketonet, og tilsvarende stbrre mengder av fortynningsmidler og andre reaktanter, fikk man 15,1$ utbytte av oc-isomeren av methyl-6-exo-(cis-l-heptenyl)-3-oxobicyclo[3.1.0]hexan-2-heptanoat og 17, 7% utbytte av p-isomeren av methyl-6-exo-(cis-l-heptenyl)-3-oxobicyclo[3.1.0]hexan-2-heptanoat. By following the procedure in the above example, but by using 8.00 g of 6-exo-(cis-1-heptenyl)-bicyclo[3.1.0]hexan-3-one instead of the trans-ketone, and correspondingly larger quantities of diluents and other reactants, a 15.1% yield of the oc-isomer of methyl-6-exo-(cis-l-heptenyl)-3-oxobicyclo[3.1.0]hexane-2-heptanoate was obtained and a 17.7% yield of The p-isomer of methyl 6-exo-(cis-1-heptenyl)-3-oxobicyclo[3.1.0]hexane-2-heptanoate.

Eksempel 6 Example 6

Forbindelse VIb ( CnH" 2n=hexamethylen, og R^ =H, R2=pentyl). Compound VIb (CnH" 2n=hexamethylene, and R^ =H, R2=pentyl).

En opplosning av 3^ mg exo-cis-trans-isomerblanding av forbindelsen XIX (hvor CnH2n = hexamethylen, R^ og R^=H, R2=pentyl) i k ml aceton ble avkjolt til 0°C og 0,2 ml Jones-reagens i 1 ml aceton ble tilsatt hurtig. Blandingen ble omrort ved 0°C i 10 minutter. Isopropylalkohol ble så tilsatt fulgt av isvann. Ekstraksjon med diéthylether og inndampning av ekstraktet ga 7 mg exo-cis-trans-forbindelse VIb (<C>nH2n=hexamethylen, R^ og Ri+=H, R2=pentyl). Denne forbindelse hadde samme infrarode spektrum og R^ som forbindelse VIb fremstilt i henhold til eksempel 7. A solution of 3^ mg of exo-cis-trans isomer mixture of compound XIX (where CnH2n = hexamethylene, R^ and R^=H, R2=pentyl) in k ml of acetone was cooled to 0°C and 0.2 ml of Jones- reagent in 1 ml of acetone was added rapidly. The mixture was stirred at 0°C for 10 minutes. Isopropyl alcohol was then added followed by ice water. Extraction with diethyl ether and evaporation of the extract gave 7 mg of exo-cis-trans compound VIb (<C>nH2n=hexamethylene, R^ and Ri+=H, R2=pentyl). This compound had the same infrared spectrum and R^ as compound VIb prepared according to example 7.

! Ved å folge ovenstående fremgangsmåte ble også den samme exo-cis-trans-forbindelse VIb fremstilt ved Jones-oxydasjon av forbindelse XXI (hvor CnH"2n=hexamethylen, R^ og R^H, R2=pentyl). ! Following the above procedure, the same exo-cis-trans compound VIb was also prepared by Jones oxidation of compound XXI (where CnH"2n=hexamethylene, R^ and R^H, R2=pentyl).

Eksempel 7 Example 7

6- exo-( 1- heptenyl)- 3- oxobicyclor 3. 1. 0" 1hexan- 2- heptansyre ( VI). 6- exo-(1- heptenyl)- 3- oxobicyclor 3. 1. 0" 1 hexane- 2- heptanoic acid ( VI).

10 mg 6-exo-(1-heptenyl)-3-hydroxybicyclo[3.1.0]hexan-2-heptansyre ble opplost i 5 ml aceton og avkjolt til -5°C. Et lite overskudd av Jones-reagens fortynnet 1:1 med aceton ble tilsatt. , Blandingen ble omrort i 5 minutter- ved -5°C og derpå ble overskudd av Jones-reagens odelagt med isopropylalkohol. Vann ble tilsatt og blandingen ekstrahert med diéthylether. Ekstraktet ble vasket med vann, torret og inndampet hvilket ga 7 mg 6-exo-(1-heptenyl)-3-oxobicyclo[3.1.0]hexan-2-heptansyre. I.R. 3100, 3070, 30<>>+5, 17^5, 1700, 1620 cm<-1>. 10 mg of 6-exo-(1-heptenyl)-3-hydroxybicyclo[3.1.0]hexane-2-heptanoic acid was dissolved in 5 ml of acetone and cooled to -5°C. A small excess of Jones reagent diluted 1:1 with acetone was added. , The mixture was stirred for 5 minutes at -5°C and then excess Jones reagent was denatured with isopropyl alcohol. Water was added and the mixture extracted with diethyl ether. The extract was washed with water, dried and evaporated to give 7 mg of 6-exo-(1-heptenyl)-3-oxobicyclo[3.1.0]hexane-2-heptanoic acid. I.R. 3100, 3070, 30<>>+5, 17^5, 1700, 1620 cm<-1>.

Claims (2)

1. Utgangsmaterialer for fremstilling av prostaglandin F og analoger derav av den generelle formel: hvor ro betegner en a- eller en B-konfigurasjon for den tilknyttede gruppe, R-j^ er hydrogen, alkyl med 1-8 carbonatomer, cycloalkyl med 3-10 carbonatomer, aralkyl med 7-10 carbonatomer eller fenyl som eventuelt er substituert med 1-3 kloratomer eller med alkyl med 1 - k carbonatomer, R2 er hydrogen eller alkyl med 1-8 carbonatomer, R^ og R^ er hydrogen eller alkyl med 1 - k carbonatomer, pg n er 1-8, karakterisert ved at de har formelen: hvor symbolene er som ovenfor angitt.1. Starting materials for the production of prostaglandin F and analogues thereof of the general formula: where ro denotes an a- or a B-configuration for the associated group, R-j^ is hydrogen, alkyl with 1-8 carbon atoms, cycloalkyl with 3-10 carbon atoms, aralkyl with 7-10 carbon atoms or phenyl which is optionally substituted with 1- 3 chlorine atoms or with alkyl of 1-k carbon atoms, R2 is hydrogen or alkyl of 1-8 carbon atoms, R^ and R^ are hydrogen or alkyl of 1-k carbon atoms, pg n is 1-8, characterized in that they have the formula : where the symbols are as indicated above. 2. Materiale ifolge krav 1, karakterisert ved exo-konfigurasjon med hensyn på den enverdige gruppe bundet til cyclopropanringen, at gruppen -CnH2n"C00Rl er bundet 1 «-konfigurasjon, at gruppen -CR^CP^R^ er i cis-konf iguras jon, og R-^ er hydrogen eller lavere alkyl med 1 - h carbonatomer, R2 er pentyl, R^ og R^ er hydrogen, og n er 6.2. Material according to claim 1, characterized by exo-configuration with regard to the monovalent group bound to the cyclopropane ring, that the group -CnH2n"C00Rl is bound in 1 "-configuration, that the group -CR^CP^R^ is in cis-configuration, and R-^ is hydrogen or lower alkyl of 1 - 1 carbon atoms, R2 is pentyl, R^ and R^ are hydrogen, and n is 6.
NO34568A 1966-08-09 1968-01-27 NO129202B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO34568A NO129202B (en) 1966-08-09 1968-01-27

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB3555066 1966-08-09
GB3588/67A GB1198071A (en) 1966-08-09 1967-01-24 Improvements in or relating to Prostaglandin Analogues and the Manufacture thereof
NO67169291A NO127862B (en) 1966-08-09 1967-08-08
NO34568A NO129202B (en) 1966-08-09 1968-01-27

Publications (1)

Publication Number Publication Date
NO129202B true NO129202B (en) 1974-03-11

Family

ID=27447306

Family Applications (1)

Application Number Title Priority Date Filing Date
NO34568A NO129202B (en) 1966-08-09 1968-01-27

Country Status (1)

Country Link
NO (1) NO129202B (en)

Similar Documents

Publication Publication Date Title
US4487945A (en) Preparation of 2-exo-Hydroxy-7-oxabicyclo[2.2.1]heptanes
Newton et al. Steric control in prostaglandin synthesis involving bicyclic and tricyclic intermediates
Aristoff et al. Total synthesis of a novel antiulcer agent via a modification of the intramolecular Wadsworth-Emmons-Wittig reaction
Bloodworth et al. Oxymetallation. Part 24. Preparation of cyclic peroxides by cycloperoxymercuriation of unsaturated hydroperoxides.
Schiehser et al. Total synthesis of (.+-.)-9-pupukeanone
NO127862B (en)
US4851585A (en) Vitamin E intermediates
EP0081892B1 (en) Process for the preparation of bicycloheptane derivatives, and novel bicycloheptane derivatives
US4182716A (en) Method of making 5,6-dihydro-2-methyl-N-phenyl-1,4-oxathiin-3-carboxamide
NO129202B (en)
Goldsmith et al. Preparation and rearrangement of trichothecane-like compounds. Synthesis of aplysin and filiformin
EP0359305B1 (en) Cyclopentane derivatives
Ikeda et al. Regio-and stereo-chemical aspects of [2+ 2] photocycloaddition between 1-benzoylindoles and olefins
US3513176A (en) 6,7-epoxy-1-nonen-3-yl-acetoacetates
Ali et al. The Use of Bicyclo [3.2. 0] heptanones as Versatile Synthons in Organic Chemistry
EP0015653B1 (en) Aldol compounds, their production and their use in the preparation of methanoprostacyclin
Bloodworth et al. Prostaglandin endoperoxide model compounds. Part 2. Stereospecific synthesis of isomeric 5-bromo-2, 3-dioxabicyclo [2.2. 1] heptanes and 2-bromo-6, 7-dioxabicyclo [3.2. 1] octanes
US3907831A (en) Process for preparing lactones
DK143199B (en) RACEMIC OR OPTICALLY ACTIVE 2-OXABICYCLO (3,3,0) OCTANES FOR USING INTERMEDIATES IN THE PROCESSING OF PROSTAGLAND RELATIONS AND PROCEDURES FOR THE PRODUCTION THEREOF
US3576880A (en) 5(2,6,6-trimethyl - 1 - hydroxy-cyclohex-2-enyl) -3 methyl-penta-2,4-dien-1-al derivatives
EP0822191A1 (en) Preparation of intermediates for norlabdane oxide
US5821375A (en) Preparation of norlabdane oxide
US3534060A (en) Bicyclo(5.1.0)octane derivatives
Lahousse et al. Indenone chemistry. 5. Use of indenones in the synthesis of indeno [1, 2-d] pyridazine derivatives and the diazagibbane skeleton
US5153344A (en) Vitamin E intermediates and a process for their manufacture and conversion into vitamin E