NO128552B - - Google Patents

Download PDF

Info

Publication number
NO128552B
NO128552B NO00165849A NO16584966A NO128552B NO 128552 B NO128552 B NO 128552B NO 00165849 A NO00165849 A NO 00165849A NO 16584966 A NO16584966 A NO 16584966A NO 128552 B NO128552 B NO 128552B
Authority
NO
Norway
Prior art keywords
turbine
steam
elements
energy
gas
Prior art date
Application number
NO00165849A
Other languages
Norwegian (no)
Inventor
N Wikdahl
Original Assignee
N Wikdahl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N Wikdahl filed Critical N Wikdahl
Publication of NO128552B publication Critical patent/NO128552B/no

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D5/00Arrangements of reactor and engine in which reactor-produced heat is converted into mechanical energy
    • G21D5/02Reactor and engine structurally combined, e.g. portable
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D5/00Arrangements of reactor and engine in which reactor-produced heat is converted into mechanical energy
    • G21D5/04Reactor and engine not structurally combined
    • G21D5/06Reactor and engine not structurally combined with engine working medium circulating through reactor core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Fremgangsmåte for å omforme kjerne-energi til mekanisk energi, samt anordning for fremgangsmåtens utførelse. Method for converting nuclear energy into mechanical energy, as well as device for carrying out the method.

Oppfinnelsen vedrorer en fremgangsmåte for å omforme kjerne-energi til mekanisk energi. Oppfinnelsen vedrorer også en anordning for utfdreise av denne fremgangsmåte. The invention relates to a method for transforming nuclear energy into mechanical energy. The invention also relates to a device for carrying out this method.

Ifolge nå vanlige metoder utvinnes i reaktoren i et atomkraft-anlegg termisk energi som ved hjelp av et fluidum gjennom rør-ledninger transporteres til apparater som befinner seg utenfor reaktoren og i disse i forste hånd omformes til mekanisk energi, som derpå vanligvis overfores til elektrisk energi. Til forskjell fra dette skjer ved metoden ifolge oppfinnelsen omformningen av kjerne-energi til mekanisk energi ved at i en turbin hvis lede- og drivelententer i det minste delvis består av reaktorbrennstoff, gjennomføres kjernereaksjoner, idet et damp- eller gassformig arbeidsmedium fores gjennom kanaler som avgrenses av lede- og drivelementene, samt at den derved frigjorte kjerneenergi opptas av arbeidsmediet og under arbeids-mediets ekspansjon som derved blir praktisk talt isoterm, om-settes i kinetisk energi som overfores til drivelementene og bevirker rotasjon av disse. According to currently common methods, thermal energy is extracted in the reactor in a nuclear power plant, which is transported by means of a fluid through pipelines to devices located outside the reactor and in these is first transformed into mechanical energy, which is then usually transferred into electrical energy . In contrast to this, in the method according to the invention, the transformation of nuclear energy into mechanical energy takes place by nuclear reactions being carried out in a turbine whose guide and drive elements at least partially consist of reactor fuel, as a steam or gaseous working medium is fed through channels that are delimited of the guide and drive elements, as well as that the nuclear energy thus released is taken up by the working medium and during the expansion of the working medium, which thereby becomes practically isothermal, is converted into kinetic energy which is transferred to the drive elements and causes their rotation.

Det fluidum som anvendes for energioverføringen bibringes på denne måte en ordnet stromning gjennom herfor tilpassede kanaler, In this way, the fluid used for the energy transfer is given an orderly flow through specially adapted channels,

i hvilke stromningstapene har kunnet holdes meget lave, samtidig som hoy stromningshastighet og dermed god energioverforing kan opprettholdes. Dessuten oppnåes en forbedret virkningsgrad i forbindelse med energiomformningen ifolge oppfinnelsen. in which the flow losses have been kept very low, while at the same time high flow speed and thus good energy transfer can be maintained. In addition, an improved degree of efficiency is achieved in connection with the energy conversion according to the invention.

Ved å utfore veggene i de kanaler som gassen eller damp ledes gjennom i turbinen, dvs. i forste rekke skovel-, ledeskinne- By lining the walls of the channels through which the gas or steam is led in the turbine, i.e. primarily vane, guide rail

eller munnstykkekanalene av reaktorbrennstoff, kan nemlig det nodvendige trykkfall i turbinene holdes meget lavt eftersom overforingen av energien fra atomkjernen til gassen kan foregå or the nozzle channels of reactor fuel, namely the necessary pressure drop in the turbines can be kept very low since the transfer of the energy from the nuclear core to the gas can take place

i hele kanalens lengde. Dette medforer dessuten at gassens ekspansjon i kanalene skjer praktisk talt isotermt i stedet for isentropt slik det ellers ville ha vært tilfelle. Det er derfor mulig ifolge oppfinnelsen å utnytte det innen teknikken velkjente forhold at virkningsgraden for isoterm sirkelprosess er hoyere enn virkningsgraden for en isentrop sirkelprosess. along the entire length of the channel. This also means that the expansion of the gas in the channels takes place practically isothermally instead of isentropically, as would otherwise have been the case. It is therefore possible according to the invention to utilize the well-known condition in the art that the efficiency of an isothermal circular process is higher than the efficiency of an isentropic circular process.

I det efterfolgende skal oppfinnelsen beskrives nærmere under henvisning til tegningen som i fig. 1 og 2 skjematisk viser to utforelsesformer for omformning av kjerneenergi til mekanisk energi samt fig. 3 og 4 likeledes skjematisk viser en turbin ifolge oppfinnelsen sett henholdsvis i lengde- og tverrsnitt. In what follows, the invention will be described in more detail with reference to the drawing as in fig. 1 and 2 schematically show two embodiments for converting nuclear energy into mechanical energy and fig. 3 and 4 also schematically show a turbine according to the invention seen respectively in longitudinal and cross section.

I fig. 1 betegner 1 en damp- eller gassturbin som ved hjelpIn fig. 1 denotes 1 a steam or gas turbine which by means of

av en aksel 2 er mekanisk sammenkoblet med en elektrisk generator 5. Turbinen 1 og kompressoren 3 som kan være anordnet for kom-presjon i ett. eller, flere trinn og eventuelt med kjoling mellom trinnene, danner sammen mecfr ledningene 6 og. 7 en lukket sirkula-sjonsomkrets for det for turbinens drift nodvendige damp- eller of a shaft 2 is mechanically connected with an electric generator 5. The turbine 1 and the compressor 3 which can be arranged for compression in one. or, several steps and possibly with skirting between the steps, together form the mecfr wires 6 and. 7 a closed circulation circuit for the steam required for the operation of the turbine

gassfluidum som i en varmeutveksler 8 av i og for seg kjent slag kjoles til passende tempertur for inngangen i kompressoren 3. gas fluid which in a heat exchanger 8 of a type known per se is brought to a suitable temperature for the entrance to the compressor 3.

I turbinen 1 er i det minste en del av de elementer som danner damp- eller gasskanalene, dvs. fortrinnsvis skovel- og lede-skinneelementene helt eller delvis oppbygget av reaktorbrensel, hvorved når turbinen er i drift, dampen eller gassen tilfores energi som er frigjort ved kjernereaksjon, hvoretter en mer eller mindre fullstendig direkte omformning av kjerneenergi til mekanisk energi fåes i disse. Energiomformningen blir alt etter omstendighetene som nevnt mer eller mindre fullstendige. Det kan derfor være nbdvendig å la en storre eller mindre del termisk energi avledes fra systemet i varmeutveksleren 8 som fortrinnsvis har regulerbar kapasitet. Den termiske energi som fåes ut fra denne varmeutveksler kan da anvendes eksempelvis for oppvarmingsformål, eventuelt i forbindelse med desti-lering eller kraftfrembringelse. In the turbine 1, at least part of the elements that form the steam or gas channels, i.e. preferably the vane and guide rail elements are made up entirely or partly of reactor fuel, whereby when the turbine is in operation, the steam or gas is supplied with energy that has been released by nuclear reaction, after which a more or less complete direct transformation of nuclear energy into mechanical energy is obtained in these. Depending on the circumstances, as mentioned, the energy conversion is more or less complete. It may therefore be necessary to allow a larger or smaller portion of thermal energy to be diverted from the system in the heat exchanger 8, which preferably has an adjustable capacity. The thermal energy obtained from this heat exchanger can then be used, for example, for heating purposes, possibly in connection with distillation or power generation.

Den mekaniske energi som utvinnes i turbinen 1 anvendes for via akslene 2 og 4 å drive dels kompressoren 3 og dels den elektriske generator 5. The mechanical energy extracted in the turbine 1 is used to drive the compressor 3 and the electric generator 5 via the shafts 2 and 4.

For regulering av reaktorkapasiteten samt for ved starten å oppnå kritikalitet bor i det minste en del av brenselselementene være lett innforbare i og uttagbare fra sine stillinger. Dette gjelder i forste hånd de brenselselementer som er beregnet på ikke å rotere under drift, men kan eventuelt også være onskelig eller nodvendig for de roterbart anordnede brenselselementer. Det bor i denne forbindelse nevnes at anordningen foruten de brenselselementer som inngår i turbinen, eventuelt kan inneholde en reaktordel på vanlig måte anordnede brenselselementer i storre eller mindre grad. In order to regulate the reactor capacity and to achieve criticality at the start, at least part of the fuel elements must be easily inserted into and removed from their positions. This primarily applies to the fuel elements which are intended not to rotate during operation, but may also be desirable or necessary for the rotatably arranged fuel elements. In this connection, it should be mentioned that the device, in addition to the fuel elements included in the turbine, may possibly contain a reactor part arranged in the usual way to a greater or lesser extent.

For lettere å kunne regulere reaktorkapasiteten resp. oppnå kritikalitet kan man anvende en radialturbin av dobbelrotortype som i prinsippet er av konvensjonell utforelse, men har de to rotorhalvdeler innbyrdes aksialforskjovne. I fig..2 som skjematisk viser, en anordning av dette slag, betegner 11 turbinen som er utfort som en radialturbin. Hver turbinhalvdel er ved en aksel 12 mekanisk forbundet med en kompressor 13 som ved en aksel 14 igjen er mekanisk koblet til en elektrisk generator 15. Turbinen 11 og kompressorene 13 danner gjennom ledningene 16 og 17 to parallelle sirkulasjonskretser for det under turbinens drift sirkulerende damp- eller gassformede fluidum. Disse sirkulasjonskretser inneholder fortrinnsvis også en varmeutveksler 18. In order to more easily regulate the reactor capacity or to achieve criticality, a double-rotor type radial turbine can be used which is in principle of a conventional design, but has the two rotor halves axially offset from each other. In Fig. 2, which schematically shows a device of this kind, 11 designates the turbine which is designed as a radial turbine. Each turbine half is mechanically connected by a shaft 12 to a compressor 13, which by a shaft 14 is again mechanically connected to an electric generator 15. The turbine 11 and the compressors 13 form, through the lines 16 and 17, two parallel circulation circuits for the steam circulating during the operation of the turbine or gaseous fluids. These circulation circuits preferably also contain a heat exchanger 18.

I radialturbin av det angitte slag kan såvel skovlene somIn a radial turbine of the specified type, both the blades and

de ring- og skiveelementer som bærer disse være helt eller delvis utfort av anriket uran eller fisjonerbart reaktorbrensel. Alternativt kan en indre av sådanne skovler og andre elementer bestående sone inneholde sådant brensel, idet tilsvarende deler i en ytre sone inneholder eller består av såkalt fertilt materiale, dvs. uran 238 eller torium. På tilsvarende måte kan i en aksialturbin skovel- og ledeskinneelementer i en nærmere turbinens innlopsside beliggende sone være oppbygget av eller inneholde fisjonerbart reaktorbrensel, idet tilsvarende deler i en nærmere turbinens utlopsside beliggende sone er oppbygget av eller inneholder fertilt materiale. the ring and disc elements that carry these are wholly or partially made of enriched uranium or fissionable reactor fuel. Alternatively, an inner zone consisting of such vanes and other elements can contain such fuel, as corresponding parts in an outer zone contain or consist of so-called fertile material, i.e. uranium 238 or thorium. Similarly, in an axial turbine, blade and guide rail elements in a zone located closer to the turbine's inlet side can be made up of or contain fissionable reactor fuel, as corresponding parts in a zone located closer to the turbine's outlet side are made up of or contain fertile material.

Det nodvendige fluidum for reaktordriften kan med fordel utgjores av tungtvann i damp- eller gassform. Det er derved mulig å gjore nytte av dette fluidums relativt lave neutron-innbremsning og derav folgende reduksjon av fra neutroninn-bremsningen stammende forringelse i neutronutskiftet. The necessary fluid for reactor operation can advantageously be made up of heavy water in steam or gas form. It is thereby possible to take advantage of this fluid's relatively low neutron retardation and the consequent reduction of the deterioration in the neutron exchange stemming from the neutron retardation.

Fig. 3 er et lengdesnitt etter linjen III-III i fig. 4 som igjen er et tverrsnitt etter linjen IV-IV i fig. 3. Anordningen ifolge disse figurer er forsynt med en radialturbin av dobbelrotortype, hvis to rotorhalvdeler 19, 20 bæres av aksler 21, 22 som går gjennom i rotorhuset 23, anordnede tetninger 24, 25 samt bæres av lagre 26, 27 og er anordnet for mekanisk å kobles sammen eksempelvis med hver sin på fig. 3 og 4 ikke viste kompressor og elektriske generator på den måte som er angitt for anordningene 12, 13, 14 og 15 i fig. 2. Hver rotorhalvdel er forsynt med et antall kransformig anordnede skovler 28, 29 som griper inn i hverandre på en sådan måte at skovlene i den ene av rotorhalvdelene 19, 20 utgjor ledeskinnene for den andre rotorhalvdel og omvendt. Damp- eller gassfluidet ledes inn gjennom akslene 21, 22 i sentralt anordnede tilforselskanaler og strommer radielt utad gjennom de av skovlene 28, 29 dannede kanaler samt avledes gjennom en ved husets 23 omkrets beliggende avlopsåpning 30der i likhet med tilforselskanalen er forbundet med de i fig. 3 og 4 ikke viste lukkede sirkulasjonskretser for damp-eller gassfluidet, i hvilket også på den måte som fremgår av fig. 2, kompressorene 13 og varmeutveksleren 18 er innkoblet. Den ene rotorhalvdel 19 samt tilhorende aksel 21 er ved hjelp av en motor 31 og mellom denne og akslen anordnede bevegelses-overforingsanordninger 32 aksialforskyvbar på en sådan måte at de to rotorhalvdelers skovelkranser 28, 29 helt eller delvis kan fores ut av inngrep med hverandre, hvorved fåes en regulering av den effektmengde som tas ut. Skovlene og eventuelt også ovrige deler av rotorhalvdelene og huset 32, består i storre eller mindre utstrekning av reaktorbrensel som derved på i og for seg kjent måte fortrinnsvis skålformet omsluttes av et for den mekaniske holdfasthet eventuelt nodvendig materiale som f.eks. titan, beryl e.l. Det er innlysende at også rotor-halvdelen 20og tilhorende aksel 22 kan være aksialforskyvbar på ovenfor delene 19 og 20 beskreven måte. Fig. 3 is a longitudinal section along the line III-III in fig. 4 which is again a cross-section along the line IV-IV in fig. 3. The device according to these figures is provided with a radial turbine of double rotor type, whose two rotor halves 19, 20 are carried by shafts 21, 22 which pass through the rotor housing 23, arranged seals 24, 25 and are carried by bearings 26, 27 and are arranged for mechanical to be connected together, for example, with each in fig. 3 and 4 did not show the compressor and electric generator in the manner indicated for the devices 12, 13, 14 and 15 in fig. 2. Each rotor half is provided with a number of crown-shaped vanes 28, 29 which engage each other in such a way that the vanes in one of the rotor halves 19, 20 form the guide rails for the other rotor half and vice versa. The steam or gas fluid is led in through the shafts 21, 22 into centrally arranged supply channels and flows radially outwards through the channels formed by the vanes 28, 29 and is diverted through a drainage opening 30 located at the perimeter of the housing 23 which, like the supply channel, is connected to those in fig. 3 and 4 did not show closed circulation circuits for the steam or gas fluid, in which also in the manner shown in fig. 2, the compressors 13 and the heat exchanger 18 are switched on. The one rotor half part 19 and associated shaft 21 are axially displaceable by means of a motor 31 and movement transfer devices 32 arranged between this and the shaft in such a way that the vane rims 28, 29 of the two rotor halves can be completely or partially moved out of engagement with each other, whereby a regulation of the amount of power that is taken out is obtained. The blades and possibly also other parts of the rotor halves and the housing 32 consist to a greater or lesser extent of reactor fuel which is thereby, in a manner known per se, preferably cup-shaped, surrounded by a material possibly necessary for mechanical strength such as e.g. titanium, beryl etc. It is obvious that the rotor half part 20 and associated shaft 22 can also be axially displaceable in the manner described above for parts 19 and 20.

Claims (6)

1. Fremgangsmåte for å omforme kjerneenergi til mekanisk energi, karakterisert ved at i en turbin hvis lede- og drivelementer i det minste delvis består av reaktorbrennstof f,- gjennomfores kjernereaksjoner, idet et damp- eller gassformig arbeidsmedium fores gjennom kanaler som avgrenses av lede- og drivelementene, samt at den derved frigjorte kjerneenergi opptas av arbeidsmediet og under arbeids-mediets ekspansjon som derved blir praktisk talt isoterm, om-settes i kinetisk energi som overfores til drivelementene og bevirker rotasjon av disse.1. Procedure for transforming nuclear energy into mechanical energy, characterized by the fact that in a turbine whose guiding and driving elements at least partially consist of reactor fuel f, nuclear reactions are conducted, with a steam or gaseous working medium being fed through channels delimited by conducting and the drive elements, as well as that the thereby released core energy is taken up by the working medium and during the expansion of the working medium, which thereby becomes practically isothermal, is converted into kinetic energy which is transferred to the drive elements and causes their rotation. 2.F remgangsmåte som angitt i krav 1, karakterisert ved at det for drift av turbinen anvendes tungtvann i damp- eller gassform.2. Method as specified in claim 1, characterized in that heavy water in steam or gas form is used for operation of the turbine. 3.A nordning for utovelse av fremgangsmåten ifolge et av kravene 1-2, karakterisert ved en med en reaktorsone (1, 11) forsynt damp- eller gassturbin, fortrinnsvis en radialturbin av Ljungstrom-typen, i hvilken i det minste en del av turbinelementene som danner damp- eller gasskanalene, i særdeleshet skovlene som danner lede- og drivelementene, inneholder eller består av reaktorbrennstoff og dermed tilhorer reaktorsonen.3.A system for practicing the method according to one of claims 1-2, characterized by a steam or gas turbine provided with a reactor zone (1, 11), preferably a radial turbine of the Ljungstrom type, in which at least part of the turbine elements which form the steam or gas channels, in particular the vanes which form the guide and drive elements, contain or consist of reactor fuel and thus belong to the reactor zone. 4.A nordning som angitt i krav 3, hvorved turbinen utgjores av en radialturbin av Ljungstrom-typen, karakterisert ved at turbinens rotorhalvdeler er innbyrdes forskyvbare.4.A arrangement as specified in claim 3, whereby the turbine is made up of a radial turbine of the Ljungstrom type, characterized in that the turbine's rotor halves are mutually displaceable. 5.A nordning som angitt i krav 3 eller 4, karakterisert ved at bare en del av de turbinelementene som danner damp- eller gasskanalene, fortrinnsvis de nærmere turbinens innlopsside beliggende skovl- og ledeskinnelementer er oppbygget av eller inneholder anriket eller annet fisjonert reaktorbrensel.5.A arrangement as stated in claim 3 or 4, characterized in that only part of the turbine elements that form the steam or gas ducts, preferably the vane and guide rail elements located closer to the turbine's inlet side, are made up of or contain enriched or other fissioned reactor fuel. 6.A nordning som angitt i krav 5, karakterisert ved at de nærmere turbinens utlopsside beliggende ^skovl-og ledeskinneelementer inneholder eller er oppbygget av fertilt materiale.6.A northing as specified in claim 5, characterized in that the vane and guide rail elements located closer to the turbine's outlet side contain or are made up of fertile material.
NO00165849A 1965-12-09 1966-12-02 NO128552B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE15955/65A SE308932B (en) 1965-12-09 1965-12-09

Publications (1)

Publication Number Publication Date
NO128552B true NO128552B (en) 1973-12-03

Family

ID=20301498

Family Applications (1)

Application Number Title Priority Date Filing Date
NO00165849A NO128552B (en) 1965-12-09 1966-12-02

Country Status (13)

Country Link
AT (1) AT280444B (en)
BE (1) BE690968A (en)
CH (1) CH477744A (en)
DE (1) DE1589077B2 (en)
ES (1) ES334217A1 (en)
FI (1) FI45058C (en)
FR (1) FR1503375A (en)
GB (1) GB1149070A (en)
IL (1) IL26973A (en)
IS (1) IS753B6 (en)
NL (1) NL139614B (en)
NO (1) NO128552B (en)
SE (1) SE308932B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107801A (en) * 1981-12-09 1983-06-27 Suke Ishii Engine

Also Published As

Publication number Publication date
SE308932B (en) 1969-03-03
DE1589077A1 (en) 1970-07-09
BE690968A (en) 1967-05-16
GB1149070A (en) 1969-04-16
NL139614B (en) 1973-08-15
CH477744A (en) 1969-08-31
AT280444B (en) 1970-04-10
NL6617306A (en) 1967-06-12
IS1614A7 (en) 1967-06-10
FI45058B (en) 1971-11-30
FI45058C (en) 1972-03-10
FR1503375A (en) 1967-11-24
ES334217A1 (en) 1971-01-01
IL26973A (en) 1970-10-30
DE1589077B2 (en) 1971-07-15
IS753B6 (en) 1970-11-20

Similar Documents

Publication Publication Date Title
JP6781166B2 (en) Regenerative thermodynamic power cycle system and how to operate it
RU2351766C2 (en) Steam turbine and method of its operation
RU2308103C2 (en) Method and device for electrical energy generation from heat released by core of at least one high-temperature nuclear reactor
EP2151547B1 (en) Steam turbine and steam turbine plant system
US4043130A (en) Turbine generator cycle for provision of heat to an external heat load
NO165849B (en) DWP.
JPS58140408A (en) Cooler for steam turbine
JP2017527728A (en) Gas turbine generator cooling
CN104481620A (en) Organic working medium radial inflow turbine power generation device
US7147427B1 (en) Utilization of spillover steam from a high pressure steam turbine as sealing steam
US10228125B2 (en) System for generating electrical power from low temperature steam
US4537032A (en) Parallel-stage modular Rankine cycle turbine with improved control
US3444038A (en) Nuclear power station with carbon dioxide cooling system
Laskowski et al. Optimization of the cooling water mass flow rate under variable load of a power unit
NO128552B (en)
RU2253917C2 (en) Mode of exploiting of an atomic steam-turbine plant and an installation for executing it
US3961866A (en) Geothermal energy system heat exchanger and control apparatus
RU2324119C1 (en) Stand-alone heating systems and hot water supply for self-contained buildings and turbines
US3861147A (en) Sealed single rotor turbine
JP4488787B2 (en) Steam turbine plant and method for cooling intermediate pressure turbine thereof
JPH05164888A (en) Gas turbine power generating set
US3748229A (en) Circulating system for a nuclear pressure vessel
US3045895A (en) Gas circulatory means
KR102087054B1 (en) GjENERATOR WITH ONE-BODY TYPE ROTOR-TURBINE AND GENERATING CYCLE SYSTEM INCLUDING THE SAME
US3719557A (en) Circulating system for a nuclear reactor