JPH05164888A - Gas turbine power generating set - Google Patents

Gas turbine power generating set

Info

Publication number
JPH05164888A
JPH05164888A JP3330615A JP33061591A JPH05164888A JP H05164888 A JPH05164888 A JP H05164888A JP 3330615 A JP3330615 A JP 3330615A JP 33061591 A JP33061591 A JP 33061591A JP H05164888 A JPH05164888 A JP H05164888A
Authority
JP
Japan
Prior art keywords
gas
primary
helium
turbine
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3330615A
Other languages
Japanese (ja)
Inventor
Masaaki Nemoto
政明 根本
Tetsuo Yuhara
哲夫 湯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3330615A priority Critical patent/JPH05164888A/en
Publication of JPH05164888A publication Critical patent/JPH05164888A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enable a system to be safely operated with no plant suspended in operation even if seals fail at the boundary between a primary system and a secondary system or even if pipes are cracked, and also make the whole of a plant compact in a gas turbine power generating system using a high temperature gas-cooled reactor as a heat source. CONSTITUTION:A gas turbine 8 is a direct cycle turbine where helium is used as working medium for not only a primary system but also a secondary system, and two compressors 3 and 7 circulating helium through both the primary system and the secondary system are driven by the gas turbine 8 in the primary system. Furthermore, a turbine/compressor is supported by helium gas bearings 10. In addition, a cooler 6 in the secondary system is formed into a triple pipe structure, and buffer helium gas is sealed in the middle between helium gas and cooling water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温ガス冷却炉、石炭
ガス化炉、太陽光等を熱源とする直接サイクルガスター
ビン発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct cycle gas turbine power generator using a high temperature gas cooling furnace, a coal gasification furnace, sunlight or the like as a heat source.

【0002】[0002]

【従来の技術】図3は高温ガス冷却炉を熱源とした従来
のガスタービン発電装置の一例を示すフロー線図であ
る。高温ガス冷却炉01の核熱をヘリウムガスにより吸
収し、ブロァ03を介して蒸気発生器02に送り込む。
そして利用系中の水を加熱し、高温高圧蒸気を作る。こ
の蒸気を用いて出力タービン04および発電機05によ
り核熱を電力に変換する。さらに、仕事をした後タービ
ンから出た蒸気は、復水器06で水にし、ポンプ07で
再び蒸気発生器02に戻す。このように、二次系中の作
動媒体である水を循環させる。一方、ポンプ07の出口
から、一部の循環水を抽出し、水車08を駆動して、こ
れに直結する前記ブロァ03を回し、一次系中の冷却媒
体であるヘリウムガスを循環させる。なお、ブロァ03
と水車08間には、一次系冷却媒体であるヘリウムガス
と二次系作動媒体である水を分離するため、ヘリウムバ
ッファガスシール装置09が設けられている。
2. Description of the Related Art FIG. 3 is a flow diagram showing an example of a conventional gas turbine power generator using a high temperature gas cooling furnace as a heat source. The nuclear heat of the high temperature gas cooling furnace 01 is absorbed by helium gas and sent to the steam generator 02 via the blower 03.
Then, the water in the utilization system is heated to produce high temperature and high pressure steam. Using this steam, nuclear heat is converted into electric power by the output turbine 04 and the generator 05. Further, the steam discharged from the turbine after working is turned into water by the condenser 06 and returned to the steam generator 02 by the pump 07 again. In this way, water, which is the working medium in the secondary system, is circulated. On the other hand, a part of the circulating water is extracted from the outlet of the pump 07, the water turbine 08 is driven, and the blower 03 directly connected thereto is rotated to circulate the helium gas that is the cooling medium in the primary system. In addition, blower 03
A helium buffer gas seal device 09 is provided between the water turbine and the water wheel 08 to separate the helium gas as the primary cooling medium and the water as the secondary working medium.

【0003】[0003]

【発明が解決しようとする課題】前記従来のガスタービ
ン発電装置において、ヘリウムガスを作動媒体とする一
次系と水/蒸気を媒体とする二次系のバウンダリは、ヘ
リウムバッファガスシール装置09と蒸気発生器02の
2個所である。これ等のバウンダリにおいて、例えば次
のような故障 (1)ヘリウムバッファガスシール装置の制御系が機能
を失なう。 (2)蒸気発生器のパイプ内に亀裂が発生する。 が生じた場合には、二次系の作動媒体である水が一次系
内へ漏入するから、それを除去するためにプラントを停
止しなければならない。これはプラント稼働率の低下を
招くだけでなく、炉心を構成する黒鉛材と反応すれば、
プラント自体の復帰ができなくなる危険性がある。
In the conventional gas turbine power generator, the boundary of the primary system using helium gas as the working medium and the secondary system using water / steam as the medium is the helium buffer gas sealing device 09 and the steam. There are two parts of the generator 02. In these boundaries, for example, the following failures (1) The control system of the helium buffer gas sealing device loses its function. (2) A crack occurs in the pipe of the steam generator. In the case of occurrence of water, the working medium of the secondary system leaks into the primary system, and the plant must be shut down to remove it. Not only does this lead to a decrease in plant availability, but if it reacts with the graphite material that makes up the core,
There is a risk that the plant itself cannot be restored.

【0004】[0004]

【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、高温ガス炉を出たヘリウムガス
が、一次系ガスタービン、熱交換器の高温側流路、上記
一次系ガスタービンで駆動される一次系コンプレッサを
順次経由して、上記高温ガス炉へ戻る一次循環系と、上
記熱交換器の低温側流路を出た上記とは別のヘリウムガ
スが、出力タービン、冷却器、上記一次系ガスタービン
で駆動される二次系コンプレッサを順次経由して、上記
低温側流路へ戻る二次循環系とを具備し、上記一次系ガ
スタービンおよび上記一次系コンプレッサがヘリウムガ
ス軸受により支持されたことを特徴とするガスタービン
発電装置;ならびに上記要件に加えて、上記冷却器が作
動ガスと冷却水との間にバッファヘリウムガスを介した
三重管により構成されたことを特徴とするガスタービン
発電装置を提案するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, the present invention provides a helium gas discharged from a high temperature gas furnace for a primary system gas turbine, a high temperature side flow path of a heat exchanger, and the above primary system. A primary circulation system that returns to the high-temperature gas reactor through a primary-system compressor driven by a gas turbine in sequence, and a helium gas that is different from the helium gas that has exited the low-temperature side flow path of the heat exchanger, an output turbine, A secondary circulation system that returns to the low temperature side flow path through a cooler and a secondary compressor driven by the primary gas turbine in sequence, and the primary gas turbine and the primary compressor are helium. A gas turbine power generator characterized in that it is supported by a gas bearing; and, in addition to the above requirements, the cooler is constituted by a triple pipe with a buffer helium gas interposed between a working gas and cooling water. It proposes a gas turbine power generating apparatus characterized by the.

【0005】[0005]

【作用】本発明は、前記のように、一次系のみでなく二
次系も作動媒体としてヘリウムガスを用いる、いわゆる
直接サイクルガスタービン方式とするとともに、その一
次系と二次系の作動媒体を、一次系ガスタービンで駆動
されるコンプレッサで循環させ、かつそのタービン/コ
ンプレッサをヘリウムガス軸受によって支持するので、
従来型プラントの課題、即ち軸受ないしは二次系からの
油や水の漏洩の問題が解決される。
As described above, the present invention provides a so-called direct cycle gas turbine system in which not only the primary system but also the secondary system uses helium gas as the working medium, and the working medium of the primary system and the secondary system is , Is circulated by a compressor driven by a primary gas turbine, and the turbine / compressor is supported by a helium gas bearing,
Problems of conventional plants, that is, leakage of oil or water from bearings or secondary systems are solved.

【0006】さらに、二次系内の冷却器は、作動ヘリウ
ムガスと冷却水の間にバッファヘリウムガスを介した三
重管構造とすることにより、パイプに亀裂が発生した場
合でも、冷却水の炉心内への直接漏入を防止できる。
Further, the cooler in the secondary system has a triple pipe structure in which the buffer helium gas is interposed between the working helium gas and the cooling water, so that the core of the cooling water can be maintained even if cracks occur in the pipe. Direct leakage into the inside can be prevented.

【0007】[0007]

【実施例】図1は本発明の一実施例を示すフロー線図で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a flow chart showing an embodiment of the present invention.

【0008】本実施例は、高温ガス炉1を含み放射性ヘ
リウムガスが循環する一次系と、通常のヘリウムガスが
循環する二次系から成る。それ等のバウンダリは、バッ
ファガスシール9と熱交換器2である。
This embodiment comprises a primary system including the high temperature gas furnace 1 in which radioactive helium gas is circulated and a secondary system in which normal helium gas is circulated. Those boundaries are the buffer gas seal 9 and the heat exchanger 2.

【0009】一次系コンプレッサ3で圧縮されたヘリウ
ムガスは、高温ガス炉1で加熱されて高エンタルピを得
る。そしてそのガスは、ガスタービン8に送り込まれ、
そこでエンタルピ落差により仕事をする。高温ガス炉1
では、高温・高圧のヘリウムガス(750〜850℃、
60〜80ata )が作動媒体として用いられる。また、
ガスタービン8の設計圧力比は2〜3である。その結
果、ガスタービン8出口のガス温度は400〜500℃
となる。
The helium gas compressed by the primary compressor 3 is heated in the high temperature gas furnace 1 to obtain high enthalpy. Then, the gas is sent to the gas turbine 8,
Therefore I work by the enthalpy head. HTGR 1
Then, high temperature and high pressure helium gas (750-850 ° C,
60-80ata) is used as the working medium. Also,
The design pressure ratio of the gas turbine 8 is 2-3. As a result, the gas temperature at the outlet of the gas turbine 8 is 400 to 500 ° C.
Becomes

【0010】ガスタービン8を出た高温の排出ガスは、
熱交換器2に入り、二次系のヘリウムガスを加熱する。
熱を受け渡して低温・低圧(200〜250℃、20〜
30ata )になった一次系のヘリウムガスは、循環して
一次系コンプレッサ3に戻り、再び加圧されてサイクル
を1回りする。タービン8は一次系コンプレッサ3およ
び二次系コンプレッサ7と直結しており、したがってタ
ービン8の仕事はこれ等コンプレッサ3,7におけるヘ
リウムガスの昇圧に使われる。
The hot exhaust gas leaving the gas turbine 8 is
Entering the heat exchanger 2, the secondary system helium gas is heated.
Transfers heat to low temperature and low pressure (200 to 250 ℃, 20 to 20
The primary system helium gas which has become 30ata) circulates and returns to the primary system compressor 3 and is pressurized again to make one cycle of the cycle. The turbine 8 is directly connected to the primary compressor 3 and the secondary compressor 7, so that the work of the turbine 8 is used for boosting the helium gas in these compressors 3, 7.

【0011】二次系コンプレッサ7で圧縮されたヘリウ
ムガスは、熱交換器2に入り、先述したように、一次系
のガスタービン出口高温ガス(400〜500℃)によ
って加熱され、高エンタルピ状態となる。その後、出力
タービン4で仕事をし、それに直結する発電機5により
エネルギを電力に変換する。出力タービン5で仕事を終
えた低圧の排ガスは、200〜250℃の温度を持って
いるので、さらに冷却器6に送って冷却水により常温近
辺に冷却し、再びコンプレッサ7に戻してサイクルを循
環する。
The helium gas compressed by the secondary compressor 7 enters the heat exchanger 2 and, as described above, is heated by the primary system gas turbine outlet high temperature gas (400 to 500 ° C.) to be in a high enthalpy state. Become. After that, the work is performed by the output turbine 4, and the energy is converted into electric power by the generator 5 directly connected to the output turbine 4. Since the low-pressure exhaust gas that has finished its work in the output turbine 5 has a temperature of 200 to 250 ° C., it is further sent to the cooler 6 and cooled to near room temperature by cooling water, and then returned to the compressor 7 again to circulate the cycle. To do.

【0012】一次系内のガスタービン8と二次系内のコ
ンプレッサ7の間には、両者を分け隔てるために、バッ
ファガスシール装置9を設ける。即ち、放射性のある一
次ヘリウムガスと通常の二次ヘリウムガスがこの部分で
混合するが、この混合ガスをヘリウムガス純化設備(図
示せず)に送り込み、清浄なヘリウムガムにした後で再
び元の系へ戻すことにより、常に二次系のヘリウムガス
を放射性のない作動ガスに保つことができる。
A buffer gas seal device 9 is provided between the gas turbine 8 in the primary system and the compressor 7 in the secondary system to separate the two. That is, radioactive primary helium gas and normal secondary helium gas are mixed in this part, but this mixed gas is sent to a helium gas purification facility (not shown) to make clean helium gum, and then the original helium gas is reused. By returning to the system, the helium gas of the secondary system can be always maintained as a working gas having no radioactive.

【0013】このタービン/コンプレッサ回転体はヘリ
ウムガスを潤滑剤としたガス軸受10で支える。小型の
場合には動圧ガス軸受(面圧で0.2kg/cm2 以下)、
大型の場合にはコンプレッサ3で昇圧したヘリウムガス
の一部を給気とした静圧ガス軸受を採用する。
The turbine / compressor rotor is supported by a gas bearing 10 using helium gas as a lubricant. In case of small size, dynamic pressure gas bearing (contact pressure is 0.2 kg / cm 2 or less),
In the case of a large size, a static pressure gas bearing in which a part of the helium gas boosted by the compressor 3 is supplied is adopted.

【0014】図2は冷却器6を構成する伝熱管の横断面
図である。この伝熱管は、同心状の3本のパイプ61,
62,63で形成されている。内側の管61の内部を高
温の二次系ヘリウムガスが流れ、中間の管62と外側の
管63に囲まれた環状断面部を冷却水が通る。内側の管
61と中間の管62で囲まれた環状断面部にはバッファ
ヘリウムガスを封入する。したがって、万一内側の管6
1あるいは中間の管62に亀裂が生じても、冷却水はバ
ッファガス中に入るだけで、二次系ヘリウムガス中へ漏
入することは避けられる。
FIG. 2 is a transverse sectional view of a heat transfer tube which constitutes the cooler 6. This heat transfer tube is composed of three concentric pipes 61,
It is formed of 62 and 63. The high temperature secondary helium gas flows inside the inner pipe 61, and the cooling water passes through the annular cross section surrounded by the middle pipe 62 and the outer pipe 63. Buffer helium gas is enclosed in an annular cross section surrounded by the inner pipe 61 and the intermediate pipe 62. Therefore, in the unlikely event that the inner pipe 6
Even if the one or the middle pipe 62 is cracked, the cooling water only enters the buffer gas, and the leakage of the cooling water into the secondary helium gas can be avoided.

【0015】[0015]

【発明の効果】本発明によれば、高効率でしかも安全性
に富む高温ガス冷却炉の利用形態となる。また、直接サ
イクルガスタービンとしたため、プラント全体をコンパ
クト化でき、経済的にも有利となる。
EFFECTS OF THE INVENTION According to the present invention, a high-temperature gas-cooled furnace having a high efficiency and a high safety can be used. Further, since the direct cycle gas turbine is used, the entire plant can be made compact, which is economically advantageous.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例に係る直接サイクルガ
スタービン発電装置のフロー線図である。
FIG. 1 is a flow diagram of a direct cycle gas turbine power generator according to an embodiment of the present invention.

【図2】図2は図1中の冷却器6を構成する伝熱管の横
断面図である。
FIG. 2 is a cross-sectional view of a heat transfer tube which constitutes the cooler 6 in FIG.

【図3】図3は高温ガス冷却炉を熱源とした従来のガス
タービン発電装置の一例を示すフロー線図である。
FIG. 3 is a flow diagram showing an example of a conventional gas turbine power generator using a high temperature gas cooling furnace as a heat source.

【符号の説明】[Explanation of symbols]

1 高温ガス炉 2 熱交換器 3 一次系圧縮機 4 出力タービン 5 発電機 6 冷却機 7 二次系圧縮機 8 一次系ガスタービン 9 バッファガスシールシステム 10 ガス軸受 1 High Temperature Gas Furnace 2 Heat Exchanger 3 Primary System Compressor 4 Output Turbine 5 Generator 6 Cooler 7 Secondary System Compressor 8 Primary System Gas Turbine 9 Buffer Gas Seal System 10 Gas Bearing

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高温ガス炉を出たヘリウムガスが、一次
系ガスタービン、熱交換器の高温側流路、上記一次系ガ
スタービンで駆動される一次系コンプレッサを順次経由
して、上記高温ガス炉へ戻る一次循環系と、上記熱交換
器の低温側流路を出た上記とは別のヘリウムガスが、出
力タービン、冷却器、上記一次系ガスタービンで駆動さ
れる二次系コンプレッサを順次経由して、上記低温側流
路へ戻る二次循環系とを具備し、上記一次系ガスタービ
ンおよび上記一次系コンプレッサがヘリウムガス軸受に
より支持されたことを特徴とするガスタービン発電装
置。
1. The helium gas discharged from the high temperature gas furnace is sequentially passed through a primary system gas turbine, a high temperature side flow path of a heat exchanger, and a primary system compressor driven by the primary system gas turbine, and then the high temperature gas. The primary circulation system that returns to the furnace, and the helium gas that has flowed out of the low temperature side flow path of the heat exchanger and is different from the above helium gas, are sequentially output to the output turbine, the cooler, and the secondary compressor driven by the primary gas turbine. A secondary circulation system that returns to the low temperature side flow path via the above, wherein the primary gas turbine and the primary compressor are supported by helium gas bearings.
【請求項2】 上記冷却器が作動ガスと冷却水との間に
バッファヘリウムガスを介した三重管により構成された
ことを特徴とする請求項1記載のガスタービン発電装
置。
2. The gas turbine power generator according to claim 1, wherein the cooler is constituted by a triple pipe with a buffer helium gas interposed between a working gas and cooling water.
JP3330615A 1991-12-13 1991-12-13 Gas turbine power generating set Withdrawn JPH05164888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3330615A JPH05164888A (en) 1991-12-13 1991-12-13 Gas turbine power generating set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3330615A JPH05164888A (en) 1991-12-13 1991-12-13 Gas turbine power generating set

Publications (1)

Publication Number Publication Date
JPH05164888A true JPH05164888A (en) 1993-06-29

Family

ID=18234644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3330615A Withdrawn JPH05164888A (en) 1991-12-13 1991-12-13 Gas turbine power generating set

Country Status (1)

Country Link
JP (1) JPH05164888A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291869A (en) * 2006-04-21 2007-11-08 Japan Atomic Energy Agency Combined brayton cycle power generation system device using nuclear heat
US20120314830A1 (en) * 2010-02-24 2012-12-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Installation for producing power from a gas-cooled fast nuclear reactor
CN103174517A (en) * 2012-03-26 2013-06-26 摩尔动力(北京)技术股份有限公司 Cold-source-acting impeller Stirling hot-air engine
CN104265455A (en) * 2013-09-22 2015-01-07 摩尔动力(北京)技术股份有限公司 Cold source working impeller air heating machine
JP2016537546A (en) * 2013-10-11 2016-12-01 リアクション エンジンズ リミテッド Rotating machine
WO2019182667A1 (en) * 2018-03-23 2019-09-26 General Electric Company Closed cycle heat engine federally sponsored research

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291869A (en) * 2006-04-21 2007-11-08 Japan Atomic Energy Agency Combined brayton cycle power generation system device using nuclear heat
JP4724848B2 (en) * 2006-04-21 2011-07-13 独立行政法人 日本原子力研究開発機構 Combined Brayton cycle power generation system using nuclear heat
US20120314830A1 (en) * 2010-02-24 2012-12-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Installation for producing power from a gas-cooled fast nuclear reactor
JP2013520671A (en) * 2010-02-24 2013-06-06 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Facilities that produce energy from gas-cooled fast reactors
CN103174517A (en) * 2012-03-26 2013-06-26 摩尔动力(北京)技术股份有限公司 Cold-source-acting impeller Stirling hot-air engine
CN104265455A (en) * 2013-09-22 2015-01-07 摩尔动力(北京)技术股份有限公司 Cold source working impeller air heating machine
JP2016537546A (en) * 2013-10-11 2016-12-01 リアクション エンジンズ リミテッド Rotating machine
WO2019182667A1 (en) * 2018-03-23 2019-09-26 General Electric Company Closed cycle heat engine federally sponsored research
US10982713B2 (en) 2018-03-23 2021-04-20 General Electric Company Closed cycle heat engine

Similar Documents

Publication Publication Date Title
Ahn et al. Review of supercritical CO2 power cycle technology and current status of research and development
RU2308103C2 (en) Method and device for electrical energy generation from heat released by core of at least one high-temperature nuclear reactor
US3583156A (en) Gas turbine powerplants
JP2880925B2 (en) Hydrogen combustion gas turbine plant
CN106098122A (en) A kind of nuclear power generating system based on supercritical carbon dioxide Brayton cycle
CN212406844U (en) Supercritical carbon dioxide Brayton cycle power generation system for recycling waste heat
KR20140054266A (en) Backup nuclear reactor auxiliary power using decay heat
WO2022166185A1 (en) High-temperature gas-cooled reactor carbon dioxide power generation system and method
US4257846A (en) Bi-brayton power generation with a gas-cooled nuclear reactor
JPH05164888A (en) Gas turbine power generating set
US4466249A (en) Gas turbine system for generating high-temperature process heat
US3444038A (en) Nuclear power station with carbon dioxide cooling system
US3158002A (en) Operation of a thermal power plant with nuclear reactor
CN112160809A (en) System and method for generating power by high-temperature gas cooled reactor
CN113027551B (en) Mobile integrated double-process gas-cooled reactor system and working method thereof
RU2550504C2 (en) Apparatus for generating energy based on gas-cooled fast reactor
JP4344839B2 (en) Equipment equipped with HTGR gas turbine power generation system with twin double pipe arrangement
JPH0491325A (en) High temperature gas furnace type heat-electricity compound generating system
RU97121547A (en) METHOD FOR OPERATING POWER INSTALLATION AND INSTALLATION FOR ITS IMPLEMENTATION
CN114607482B (en) System and method for cogeneration of high-temperature gas cooled reactor
CN112037945B (en) Gas-cooled reactor main loop capable of flowing by self
Bammert et al. Nuclear Power Plants With High Temperature Reactor and Helium Turbine
JPH06330709A (en) Power generation plant
Tilliette et al. Progress in Investigating Brayton Cycle Conversion Systems for Future French Ariane 5 Space Power Applications.
Endres Large Helium Turbines for Nuclear Power Plants

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311