NO128354B - - Google Patents

Download PDF

Info

Publication number
NO128354B
NO128354B NO02274/71A NO227471A NO128354B NO 128354 B NO128354 B NO 128354B NO 02274/71 A NO02274/71 A NO 02274/71A NO 227471 A NO227471 A NO 227471A NO 128354 B NO128354 B NO 128354B
Authority
NO
Norway
Prior art keywords
synchronous
converter
synchronous machine
machine
frequency converter
Prior art date
Application number
NO02274/71A
Other languages
Norwegian (no)
Inventor
P Rauhut
Original Assignee
Bbc Brown Boveri & Cie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bbc Brown Boveri & Cie filed Critical Bbc Brown Boveri & Cie
Publication of NO128354B publication Critical patent/NO128354B/no

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • H02P5/747Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors mechanically coupled by gearing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Description

Synkronmaskinenhet for pumpekraftverk. Synchronous machine unit for pumped power plants.

Oppfinnelsen vedrorer en synkronmaskinenhet med foranderlig turtall for pumpekraftverk, bestående av to stivt sammenkoblede synkronmaskiner som har ulike poltall og arbeider på samme nett. The invention relates to a variable speed synchronous machine unit for pumped power stations, consisting of two rigidly connected synchronous machines which have different numbers of poles and work on the same network.

Ved anvendelse av synkronmaskiner, enten de er motor- eller generatordrevet, kan det faste forhold mellom turtall og nettfre-kvens være uonsket, f.eks. når et foranderlig turtall er drifts-messig fordelaktig eller endog nodvendig. Et typisk slikt tilfelle er driftsmåten for en pumpeturbin for et pumpekraftverk som er koblet til en synkronmaskin. Pumpeturtallet kan i slike anlegg av okonomiske grunner ligge på en hoyere verdi enn tur-binturtallet. Også med henblikk på variasjoner i fallhoyden kan foranderlighet av turtallet være onskelig ved pumpe- og turbindrift. Ved enkelte anvendelsestilf elle, f.eks. ved spesielt store pumpeturbiner, bor forandringer av turtallet etter at anlegget er tatt i bruk være mulige for optimal innstilling av anlegget. When using synchronous machines, whether they are motor- or generator-driven, the fixed ratio between speed and mains frequency may be undesirable, e.g. when a variable speed is operationally advantageous or even necessary. A typical such case is the operation of a pump turbine for a pumped power station connected to a synchronous machine. For economic reasons, the pump speed in such facilities can be at a higher value than the trip-bin speed. Also with a view to variations in the drop height, changeability of the speed can be undesirable in pump and turbine operation. In certain applications, e.g. in the case of particularly large pump turbines, changes to the speed after the system has been put into use should be possible for optimal setting of the system.

For å mestre disse vanskeligheter har man i lengre tid benyttet seg av polomkoblingsbare synkronmaskiner. Slike maskiner er imidlertid kompliserte. De har en uregelmessig omkretskonstruk-sjon i stator og rotor. In order to master these difficulties, pole-switchable synchronous machines have been used for a long time. However, such machines are complicated. They have an irregular circumferential construction in the stator and rotor.

En annen kjent mulighet for turtall-forandring som spesielt benyttes ved store synkronmaskiner, består i at man kobler inn en frekvensomformer mellom nettet og maskinen. Som frekvensomfor-mere velges gjerne vekselstrom-omformere, f.eks. ev det slag som benyttes for sammenkobling av nett med forskjellige frekven-ser. En ulempe ved slike anordninger ligger i at frekvensomformeren må ha samme effekt som den tilkoblede synkronmaskin og dermed blir omfattende og kostbar. Another known option for speed change, which is particularly used with large synchronous machines, consists in connecting a frequency converter between the mains and the machine. Alternating current converters are often chosen as frequency converters, e.g. possibly the type used for connecting networks with different frequencies. A disadvantage of such devices lies in the fact that the frequency converter must have the same effect as the connected synchronous machine and thus becomes extensive and expensive.

For turtallforandring ved pumpekraftverk er det videre kjent at to synkronmaskiner som har forskjellige poltall blir stivt sam-menkoblet og tilkoblet samme nett (sveitsisk patent 155 238). Ved denne kjente anordning benyttes imidlertid til enhver tid bare en av de to synkronmaskiner, dvs. brukes som motor til drift av pumpen hhv. som generator, drevet av turbinen, slik at hver maskin må være dimensjonert for full effekt ved pumpe- eller turbindrift. For speed change at pumped power plants, it is also known that two synchronous machines that have different pole numbers are rigidly interconnected and connected to the same network (Swiss patent 155 238). With this known device, however, only one of the two synchronous machines is used at all times, i.e. used as a motor to operate the pump or as a generator, driven by the turbine, so that each machine must be dimensioned for full effect in pump or turbine operation.

Til grunn for oppfinnelsen ligger den oppgave å tilveiebringe The invention is based on the task of providing

en synkronmaskinenhet for pumpekraftverk, hvor oppbudet for opp-nåelse av to turtall for pumpe- og turbindrift vesentlig reduse-res ved en gitt blokkeffekt og ved bruk av normale synkronmaskiner. a synchronous machine unit for pumped power plants, where the bid for achieving two speeds for pump and turbine operation is significantly reduced for a given block output and when using normal synchronous machines.

Denne oppgave loses ved en synkronmaskinenhet av innledningsvis omtalte art ifolge oppfinnelsen ved at det er anordnet en frekvensomformer som valgfritt kan kobles inn mellom en av de to synkronmaskiner og nettet. This task is solved by a synchronous machine unit of the type mentioned at the outset according to the invention in that a frequency converter is arranged which can optionally be connected between one of the two synchronous machines and the network.

Oppfinnelsen skal i det folgende beskrives nærmere under henvis-ning til et utforelseseksempel som er vist i tegningen. Alle detaljer som er uvesentlige for oppfinnelsen er utelatt på tegningen. Fig. 1 viser en enkeltsyrikronmaskin som svarer til teknikkens stilling. Fig. 2 viser en synkronmaskinenhet som består av to synkronmaskiner med felles aksel, og en pumpeturbin. Fig. 3 er et koblingsskjema for en synkronmaskinenhet med en synkron-synkron-omformer som frekvensomformer. Fig. 4 er et koblingsskjema for en synkronmaskinenhet med en roterende nettkoblingsomformer som frekvensomformer. Fig. 5 viser et koblingsskjema for en synkronmaskinenhet med en mellomkretsomformer som frekvensomformer. In the following, the invention will be described in more detail with reference to an embodiment shown in the drawing. All details that are immaterial to the invention have been omitted from the drawing. Fig. 1 shows a single screw crown machine which corresponds to the state of the art. Fig. 2 shows a synchronous machine unit consisting of two synchronous machines with a common shaft, and a pump turbine. Fig. 3 is a connection diagram for a synchronous machine unit with a synchronous-synchronous converter as frequency converter. Fig. 4 is a connection diagram for a synchronous machine unit with a rotating mains connection converter as frequency converter. Fig. 5 shows a connection diagram for a synchronous machine unit with an intermediate circuit converter as frequency converter.

Som et utforelseseksempel til belysning av oppfinnelsens gjen-stand benyttes en synkronmaskinenhet på 5oo MVA, 5o Hz. Det op-timale pumpeturtall forutsettes som 15o omdr./min og det opti-male turbinturtall forutsettes å være 125 omdr./min. I fig. 1 er det vist en synkronmaskin 01 på 5oo MVA, 125 omdr./min til-svarende. 48 poler, med vertikal aksel. Den oppdeles i to maskiner a 25o MVA med felles aksel. Den nye synkronmaskinenhet, i det folgende også kalt dobbeltsynkronmaskinenhet, er vist i fig. A synchronous machine unit of 500 MVA, 50 Hz is used as an embodiment to illustrate the object of the invention. The optimal pump speed is assumed to be 150 rpm and the optimal turbine speed is assumed to be 125 rpm. In fig. 1 shows a synchronous machine 01 of 5oo MVA, 125 rpm correspondingly. 48 poles, with vertical shaft. It is divided into two machines of 25o VAT with a common axle. The new synchronous machine unit, hereinafter also called double synchronous machine unit, is shown in fig.

2 i samme målestokk som fig. 1. Synkronmaskin 1 har 4o poler, dvs. et turtall på 15o omdr./min ved 5o Hz, synkronmaskin 2 2 on the same scale as fig. 1. Synchronous machine 1 has 4o poles, i.e. a speed of 15o rpm at 5o Hz, synchronous machine 2

har 48 poler, dvs. et turtall på 125 omdr./min ved 5o Hz. has 48 poles, i.e. a speed of 125 rpm at 5o Hz.

En pumpeturbin 4 er stivt koblet til den felles aksel 3 for de to enkeltmaskiner. For synkronmaskinenheten benyttes uvesentlig mer materiale enn for enkeltmaskinen; den aktive vekt er om-trent lik. Grunnflaten, som i forste rekke er avgjbrende for konstruksjonsomkostningene, kan gjores mindre. I hoyden kreves så meget mer plass som utlading av to viklingshoder krever. Driftsmåten for denne maskin er som folger: Når "det i pumpedriften (dobbeltsynkronmaskin, motordrevet) kreves et turtall på 15o omdr./min, er 4o-pol-maskinen 1 direkte koblet til nettet. 48-pol-maskinen 2 har da 6o Hz. Denne frekvens omformes til 5o Hz av en seriekoblet frekvensomformer, slik at parallellgang med den andre synkronmaskin 1 muliggjores. A pump turbine 4 is rigidly connected to the common shaft 3 for the two individual machines. For the synchronous machine unit, insignificantly more material is used than for the single machine; the active weight is approximately equal. The base area, which is primarily decisive for the construction costs, can be made smaller. In the height, as much more space is required as the discharge of two winding heads requires. The mode of operation for this machine is as follows: When in pump operation (double synchronous machine, motor-driven) a speed of 15o rpm is required, the 4o-pole machine 1 is directly connected to the mains. The 48-pole machine 2 then has 6o Hz This frequency is converted to 5o Hz by a series-connected frequency converter, so that parallel operation with the second synchronous machine 1 is made possible.

Når det i turbindriften (dobbeltsynkronmaskin, generatordrevet, When in turbine operation (double synchronous machine, generator driven,

i motsatt dreieretning) kreves et turtall på 125, er 48-pol-maskinen 2 direkte koblet til nettet. 4o-pol-maskinen 1 har da 41 2/3 Hz. Denne frekvens omformes tii 5o Hz av den serie-koblede frekvensomformer, slik at parallellgang med den andre synkronmaskin 2 muliggjores. I begge tilfelle må frekvensomformeren - bortsett fra tap - bare overfore 25o MVA. Hvis det i stedet for dobbeltsynkronmaskinen bare ble benyttet en enkelt synkronmaskin, måtte den og frekvensomformeren konstrueres for 5oo MVA. Fordelen ved den nye anordning er åpenlys, idet plass og omkostninger for frekvensomformeren er utslagsgivende for anlegget. For ovrig må de to synkronmaskiner ikke benyttes samtidig i parallellkobling. En fordel ved den nye anordning består nemlig også i at det til enhver tid disponeres en maskin på in the opposite direction of rotation) a speed of 125 is required, the 48-pole machine 2 is directly connected to the mains. The 4o-pole machine 1 then has 41 2/3 Hz. This frequency is converted to 50 Hz by the series-connected frequency converter, so that parallel operation with the second synchronous machine 2 is made possible. In both cases, the frequency converter must - apart from losses - only transfer 25o MVA. If only a single synchronous machine was used instead of the double synchronous machine, it and the frequency converter had to be designed for 5oo MVA. The advantage of the new device is obvious, as space and costs for the frequency converter are decisive for the system. Furthermore, the two synchronous machines must not be used simultaneously in parallel connection. An advantage of the new arrangement also consists in the fact that a machine is available at all times

25o MVA for den rette frekvens hhv. det rette turtall. Dussuten muliggjor frekvensomformeren en turtall-variasjon for 48-pol-maskinen fra loo - 15o omdr./min og en turtall-variasjon for 4o-pol-maskinen på 125 175 omdr./min. 25o VAT for the correct frequency or the right speed. Additionally, the frequency converter enables a speed variation for the 48-pole machine from loo - 15o rpm and a speed variation for the 4o-pole machine of 125 175 rpm.

Som vist ved utforelseseksemplet, muliggjores parallelldriften av synkronmaskinene ved at man ved drift med hoyere turtall kobler synkronmaskinen med lavere poltall direkte og synkronmaskinen med hoyere poltall via frekvensomformeren til nettet, mens man ved drift med lavere turtall kobler synkronmaskinen med hoyere poltall direkte og synkronmaskinen med lavere poltall via frekvensomformeren til nettet. As shown in the embodiment example, the parallel operation of the synchronous machines is made possible by connecting the synchronous machine with a lower number of poles directly and the synchronous machine with a higher number of poles via the frequency converter to the grid when operating at a higher speed, while when operating at a lower speed, the synchronous machine with a higher number of poles is connected directly and the synchronous machine with a lower number of poles via the frequency converter to the grid.

Frekvensomformeren kan være utfort som synkron-synkron-omformer, som f.eks. beskrevet i Brown, Boveri Mitt. bd. 39 (1952), nr. 7, s. 249...263. The frequency converter can be designed as a synchronous-synchronous converter, such as described in Brown, Boveri Mitt. Vol. 39 (1952), No. 7, pp. 249...263.

For det omtalte utforelseseksempel kunne omformeren bestå av synkronmaskiner 6,7 med lo hhv. 12 poler. Kobling ifolgé fig. 3a og 3b. For synkronmaskinenheten vil det ved parallelgang av enkeltmaskinene disponeres turtall 125 og 15o omdr./min. Det er hensiktsmessig å anordne forskyvbarhet (Verdrehbarkeit) For the embodiment mentioned, the converter could consist of synchronous machines 6,7 with lo or 12 poles. Connection according to fig. 3a and 3b. For the synchronous machine unit, when the individual machines are running in parallel, speeds of 125 and 15o rpm will be available. It is appropriate to provide displaceability (Verdrehbarkeit)

av statoren for en synkronmaskin i omformeren. Det blir da lett of the stator of a synchronous machine in the converter. It will then be easy

å innstille korrekt gjensidig' fasestilling for spenningene i de to delmaskiner. Dessuten kan man foreta belastningsfordeling etter valg på de to enkeltmaskiner. to set the correct mutual phase position for the voltages in the two submachines. In addition, load distribution can be carried out as desired on the two individual machines.

Ved enkeltdrift av delmaskinene foreligger også folgende mulig-heter: Hvis omformeren ved kobling ifolge fig. 3a kobles foran 4o-pol-synkronmaskinen, går denne med 18o omdr./min. Hvis omformeren ved kobling som i fig. 3b kobles foran 48-pol-synkronmaskinen, går denne med lo4 omdr./min. Man kan bruke turtallene lo4 -125 - 15o omdr./min som trinn for en asynkron hoyeffekt (Hochlauf) av pumpen ved lukkede skyvere. In case of individual operation of the submachines, the following possibilities are also available: If the converter when connected according to fig. 3a is connected in front of the 4o-pole synchronous machine, this runs at 18o rev/min. If the converter when connected as in fig. 3b is connected in front of the 48-pole synchronous machine, this runs at lo4 rpm. One can use the speeds lo4 -125 - 15o rev/min as a step for an asynchronous high effect (Hochlauf) of the pump with closed pushers.

Frekvensomformeren kan også utfores som roterende nettkoblingsomformer. En slik omformer er f.eks. beskrevet i Brown, Boveri Mitt. 54 (1967), nr. 9, s. 554...565, og betegnes der som roterende transformator. En frekvensomformer som består av en roterende nettkoblingsomformer er skjematisk gjengitt i fig. 4. Den roterende nettkoblingsomformer 8 er i prinsippet en dobbelt-matet asynkronmaskin 9, som er koblet sammen med en hjelpemas-kin, gjennom hvilken frekvensforholdet hhv. gjennomgangseffekten kan innstilles. Fig. 4 viser et skjema som svarer til for-holdene ved det ovenfor omtalte eksempel. I den enkleste ut-forelsesform kan hjelpemaskinen lo være en synkronmaskin. Det vil da ved den roterende transformator fremtvinges et stivt frekvensforhold på samme måte som med en synkron-synkron-omformer. Ved en nominell effekt på 25o MVA trenger den en mag-netiseringseffekt på ca. 5o MVar, som kan fremskaffes av synkronmaskinenhet en eller/og ved et kondensatorbatteri. Hvis man gjor hjelpmaskinens lo turtall foranderlig, kan man styre gjennomgangseffekten for den roterende transformator og dermed effektfordelingen på de enkelte synkronmaskiner. Videre har man et middel til turtallforandring hos en enkeltmaskin som er koblet til nettet eller til å lette hoyeffekten (Hochlauf) for pumpedrift. The frequency converter can also be designed as a rotary mains coupling converter. Such a converter is e.g. described in Brown, Boveri Mitt. 54 (1967), no. 9, pp. 554...565, and is referred to there as a rotary transformer. A frequency converter consisting of a rotating mains connection converter is schematically shown in fig. 4. The rotating grid connection converter 8 is in principle a double-fed asynchronous machine 9, which is connected together with an auxiliary machine, through which the frequency ratio or the pass-through effect can be set. Fig. 4 shows a diagram that corresponds to the conditions of the above-mentioned example. In the simplest embodiment, the auxiliary machine can be a synchronous machine. A rigid frequency ratio will then be enforced with the rotary transformer in the same way as with a synchronous-synchronous converter. At a nominal power of 25o MVA, it needs a magnetizing power of approx. 5o MVar, which can be provided by the synchronous machine unit and/or by a capacitor bank. If you make the speed of the auxiliary machine changeable, you can control the feed-through power for the rotating transformer and thus the power distribution on the individual synchronous machines. Furthermore, there is a means of changing the speed of a single machine that is connected to the network or to ease the high power (Hochlauf) for pump operation.

Hvis' man velger en statisk losning for frekvensomformeren, If you choose a static solution for the frequency converter,

dvs. en vekselstrom-omformer (betegnelse ifolge DIN-Entwurf 4175o, bl.2), utfores den fortrinnsvis med likestrom-mellomkrets. I det ovenfor omtalte tilfelle kobles den for pumpe- i.e. an alternating current converter (designation according to DIN-Entwurf 4175o, bl.2), it is preferably carried out with a direct current intermediate circuit. In the case mentioned above, it is connected for pump

drift til 48-pol-synkronmaskinen (fig. 5a), og for turbindrift til 4o-'pol-synkronmaskinen (fig. 5b). Figurene 5a og 5b viser losningen skjematisk. Vekselstrom-omformeren 11 omfatter en likeretterdel 12 og en vekselretterdel 13. I forste tilstand (fig. 5a) går effekten fra maskinen til nettet, i den annen (fig. 5b) omvendt. Man kan utfore mellomkrets-omformerens 11 likeretterdel 12 med dioder. For vekselretterdelen 13 kreves tyristorer. Tilkoblingene for mellomkrets-omformeren 11 rever-seres ved overgangen fra en driftsmåte til en annen, som illu-strert ved fig. 5a og 5b. En mellomkrets-omformer på 25o MW krever en blindeffekt på ca. 25o MVar, som kan tilveiebringes ved synkronmaskinenheten eller/og et kondensatorbatteri. Via tyristorene kan enkeltmaskinene synkroniseres, deres belastningsfordeling kan reguleres og deres turtall kan innstilles, styres eller reguleres trinnlost. Ved bruk av en mellomkrets-omformer er hoyeffekten (Hochlauf) for pumpedrift særdeles hoy . Man kan bruke mellomkrets-omformeren ved lukket skyver til frekvens-start av 48-pol-maskinen til den synkrone turtall for 4o-pol-maskinen, hvis synkronisering deretter er meget enkel. Dreiemomentet for igangsetting og akselerasjon kan lett styres ved tyristorene. Det er mulig å holde dreiemomentet på maksimalt 'tillatte verdi under hoyfrekvens(Hochlauf), slik at nettet skånes for reell effekt- og blindeffektstot. Hurtig hoyfrekvens er meget viktig for hurtig driftberedskap". Overgangsperioden avkortes ytterligere, hvis man samtidig foretar en asynkron igangsetting med 4o-pol-synkronmaskinen. Passende fordeling av dreiemomentet på maskinene under igangsetting kan oppnås med tyristorene. Etter en slik igangsetting er synkronisering ikke nodvendig. Den sist omtalte metode er også mulig ved åpen skyver, og 4o-pol-maskinen må da ikke allerede kobles inn ved stillstand, men forst ved et turtall som synes nyttig. operation for the 48-pole synchronous machine (Fig. 5a), and for turbine operation for the 40-pole synchronous machine (Fig. 5b). Figures 5a and 5b show the solution schematically. The alternating current converter 11 comprises a rectifier part 12 and an inverter part 13. In the first state (fig. 5a) the power goes from the machine to the grid, in the second (fig. 5b) vice versa. The rectifier part 12 of the intermediate circuit converter 11 can be made with diodes. For the inverter part 13, thyristors are required. The connections for the intermediate circuit converter 11 are reversed at the transition from one mode of operation to another, as illustrated by fig. 5a and 5b. An intermediate circuit converter of 25o MW requires a reactive power of approx. 25o MVar, which can be provided by the synchronous machine unit or/and a capacitor bank. Via the thyristors, the individual machines can be synchronized, their load distribution can be regulated and their speed can be set, controlled or regulated continuously. When using an intermediate circuit converter, the high power (Hochlauf) for pump operation is particularly high. One can use the intermediate circuit converter with a closed slider to frequency-start the 48-pole machine to the synchronous speed of the 4o-pole machine, whose synchronization is then very simple. The torque for starting and acceleration can be easily controlled by the thyristors. It is possible to keep the torque at the maximum permissible value under high frequency (Hochlauf), so that the network is spared real power and reactive power support. Fast high frequency is very important for quick operational readiness". The transition period is further shortened if an asynchronous start-up is carried out with the 4o-pole synchronous machine at the same time. Appropriate distribution of the torque on the machines during start-up can be achieved with the thyristors. After such a start-up, synchronization is not necessary. The last-mentioned method is also possible with an open slide, and the 4o-pole machine must then not already be switched on at a standstill, but only at a speed that seems useful.

Vekselstrom-omformeren gir en elegant losnLng. Da den får av-gjorende betydning for anleggets omkostning, vil de besparel-ser som oppnås ved ovenfor omtalte anordning veie tungt på vektskålen. Vekselstrom-omformeren er nemlig bare halvparten så stor som ved bruk av en enkelt-synkronmaskin med full effekt. The alternating current converter provides an elegant solution. As it is of decisive importance for the plant's costs, the savings achieved by the above-mentioned device will weigh heavily on the scales. The alternating current converter is only half as large as when using a single synchronous machine with full power.

Claims (5)

1. Synkronmaskinenhet med foranderlig turtall for pumpekraftverk, bestående av to stivt sammenkoblede synkronmaskiner som har forskjellige poltall og er koblet til samme nett, karakterisert ved at det er anordnet en frekvens-omf ormer som-valgfritt kan kobles inn mellom en av de to synkronmaskiner (1,2) og nettet.1. Synchronous machine unit with variable speed for pumping power plants, consisting of two rigidly connected synchronous machines that have different pole numbers and are connected to the same network, characterized by the fact that a frequency converter is arranged which can optionally be connected between one of the two synchronous machines ( 1,2) and the web. 2. Synkronmaskinenhet som angitt i krav 1, karakterisert ved at frekvensomformeren er en synkron-synkronomformer.(5).2. Synchronous machine unit as stated in claim 1, characterized in that the frequency converter is a synchronous-synchronous converter. (5). 3. Synkronmaskinenhet som angitt i krav 1, karakterisert ved at frekvensomformeren er en roterende nettkoblingsomformer (8).3. Synchronous machine unit as stated in claim 1, characterized in that the frequency converter is a rotating mains connection converter (8). 4. Synkronmaskinenhet som angitt i krav 1, karakterisert ved at frekvensomformeren er en vekselstrom-omf ormer (11) .4. Synchronous machine unit as stated in claim 1, characterized in that the frequency converter is an alternating current converter (11). 5. Synkronmaskinenhet som angitt i krav 3 eller 4, karakterisert ved at frekvensomformeren har et foranderlig frekvensforhold.5. Synchronous machine unit as specified in claim 3 or 4, characterized in that the frequency converter has a changeable frequency ratio.
NO02274/71A 1970-06-18 1971-06-16 NO128354B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH923770A CH525583A (en) 1970-06-18 1970-06-18 Synchronous machine system with variable speed

Publications (1)

Publication Number Publication Date
NO128354B true NO128354B (en) 1973-10-29

Family

ID=4349828

Family Applications (1)

Application Number Title Priority Date Filing Date
NO02274/71A NO128354B (en) 1970-06-18 1971-06-16

Country Status (2)

Country Link
CH (1) CH525583A (en)
NO (1) NO128354B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3005375C2 (en) * 1980-02-11 1985-04-25 Siemens AG, 1000 Berlin und 8000 München Turbine set

Also Published As

Publication number Publication date
CH525583A (en) 1972-07-15
DE2043697A1 (en) 1971-12-30
DE2043697B2 (en) 1972-07-13

Similar Documents

Publication Publication Date Title
Uctug et al. Modelling and output power optimisation of a wind turbine driven double output induction generator
US3975646A (en) Asynchronous tie
Poza et al. New vector control algorithm for brushless doubly-fed machines
ES416824A1 (en) Starting system for power plants
US20150048623A1 (en) Method for operating an electric unit for a pumped-storage power plant
Gish et al. An adjustable speed synchronous machine for hydroelectric power applications
GB1369844A (en) Energy supply plant more especially for aircraft comprising an asynchronous generator driven at variable speed by a prime mover
NO128354B (en)
NO148877B (en) DEVICE FOR AA MOUNT TWO HODS WITH EACH OTHER
Simond et al. Expected benefits of adjustable speed pumped storage in the European network.
Bourdoulis et al. Rotor-side PI controller design of DFIG wind turbines based on direct power flow modeling
US2137990A (en) Frequency converter
Stumpf et al. Dynamics of DFIG controlled by rotor side converter in wind energy
Allan et al. Electrical aspects of the 8750 hp gearless ball-mill drive at St. Lawrence Cement Company
Rashad Effect of parameters on sub-synchronous operation of series-connected wound-rotor induction motor
Schafer et al. Advantages for the electrical grid using a doubly fed asynchronous machine-Numerical simulations
Valikhani et al. Dynamic Modelling and Control of Multiphase Doubly Fed Induction Generator in Wind Turbine Systems
JP2019517239A (en) Arrangement and method for generating a three-phase AC voltage to be supplied to a power supply system
SU115310A1 (en) Electric device for the synchronous rotation of two shafts
US1551294A (en) House electric
Rezaei et al. Evaluation and Improvement of Power Selsyns for Speed Synchronization of Induction Motors
US913757A (en) Alternating-current regulator.
Kuz’min et al. Experience in development and use of asynchronized turbogenerators made by Elektrotyazhmash.
GB789517A (en) Improvements in or relating to polyphase alternating current systems
US2620461A (en) Starting arrangement for dynamoelectric machines