NO128333B - - Google Patents
Download PDFInfo
- Publication number
- NO128333B NO128333B NO01821/70A NO182170A NO128333B NO 128333 B NO128333 B NO 128333B NO 01821/70 A NO01821/70 A NO 01821/70A NO 182170 A NO182170 A NO 182170A NO 128333 B NO128333 B NO 128333B
- Authority
- NO
- Norway
- Prior art keywords
- weight percent
- alloy
- aluminum
- alloys
- magnesium
- Prior art date
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 43
- 239000000956 alloy Substances 0.000 claims description 43
- 229910052782 aluminium Inorganic materials 0.000 claims description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000011777 magnesium Substances 0.000 claims description 16
- 229910052793 cadmium Inorganic materials 0.000 claims description 14
- 239000010936 titanium Substances 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 12
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 12
- 229910052749 magnesium Inorganic materials 0.000 claims description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 239000011572 manganese Substances 0.000 claims description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 10
- -1 aluminium-zinc-magnesium Chemical compound 0.000 description 8
- 238000004090 dissolution Methods 0.000 description 8
- 239000000155 melt Substances 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910000925 Cd alloy Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 241001062472 Stokellia anisodon Species 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- 238000003483 aging Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000004227 thermal cracking Methods 0.000 description 2
- 235000005338 Allium tuberosum Nutrition 0.000 description 1
- 244000003377 Allium tuberosum Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- VHHHONWQHHHLTI-UHFFFAOYSA-N hexachloroethane Chemical group ClC(Cl)(Cl)C(Cl)(Cl)Cl VHHHONWQHHHLTI-UHFFFAOYSA-N 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010721 machine oil Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Continuous Casting (AREA)
- Conductive Materials (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Description
Aluminium-støpelegering og fremgangsmåte ved Aluminum casting alloy and method by
fremstilling derav. manufacture thereof.
Den foreliggende oppfinnelse angår aluminium-stopelegeringer- The present invention relates to aluminum stop alloys-
som etter varmebehandling utmerker seg ved hoy mekanisk styrke, which, after heat treatment, is characterized by high mechanical strength,
og mer spesielt aluminiumlegeringer med hoy strekkfasthet, hoy flytegrense og god seighet, samt fremgangsmåte for fremstilling av slike legeringer. and more particularly aluminum alloys with high tensile strength, high yield strength and good toughness, as well as methods for producing such alloys.
I den senere tid har det vært et bkende behov for aluminiumlegeringer med gode mekaniske egenskaper til forskjellige industrielle formål, som for eksempel til bil-, fly- og bygnings-industrien. In recent times, there has been a growing need for aluminum alloys with good mechanical properties for various industrial purposes, such as for example in the car, aircraft and construction industries.
Relativ hoy styrk-é' kan oppnås ved alurriinium-knalegeringer., men tilfredsstillende styrke kan neppe oppnås ved aluminium-stopelegeringer. Relatively high strength-é' can be achieved with aluminum stop alloys, but satisfactory strength can hardly be achieved with aluminum stop alloys.
Noen få aluminium-stopelegeringer méd strekkfasthet på ca. A few aluminum stop alloys with a tensile strength of approx.
^0 kp/mm er allerede vel,kjent, nien legeringer med strekkfasthet på ^5 kp/mm eller mer er bare kjent fra legeringer i aluminium-sink-magnesium-systemet. ^0 kp/mm is already well known, nine alloys with tensile strengths of ^5 kp/mm or more are only known from alloys in the aluminium-zinc-magnesium system.
Legeringer som inneholder relativt store mengder sink er meget utsatt for spennings-korrosjons-sprekker. Aluminium-kobber-magnesium-solv-stopelegeringer som er beskrevet i britisk patentskrift nr. 1'. 090.960, har også hoy strekkf asthet på h- 5 kp/mmo eller mer, men disse legeringer er meget kostbare på grunn av solvinnholdet. Det har derfor vært et behov å utvikle billige aluminium-stopelegeringer med hoy strekkfasthet på ^5 kp/mm eller mer, og det har også vært onskelig å utvikle andre mekaniske egenskaper. Alloys containing relatively large amounts of zinc are very susceptible to stress corrosion cracking. Aluminium-copper-magnesium solvo-stop alloys which are described in British Patent Document No. 1'. 090.960, also have high tensile strength of h- 5 kp/mmo or more, but these alloys are very expensive due to the sol content. There has therefore been a need to develop cheap aluminum stop alloys with high tensile strength of ^5 kp/mm or more, and it has also been desirable to develop other mechanical properties.
Fra britisk patentskrift nr. 550.516 er det kjent en legering An alloy is known from British Patent No. 550,516
som består av 0,5-10 vektprosent Cu, 0,5-5 vektprosent Mg, which consists of 0.5-10 weight percent Cu, 0.5-5 weight percent Mg,
0,5-10 vektprosent Cd og resten Al. Det hoye innhold av Mg forer til at de fremstilte gjenstander har tendens til å danne stopesprekker og spennings-korrosjons-sprekker. Videre krever det hoye innhold av Mg noye overvåkning av varmebehandlings-temperaturen og stbpeprosessen. De foreliggende legeringer har ikke bare hoy styrke, men også gode stope-egenskaper. 0.5-10 weight percent Cd and the rest Al. The high content of Mg means that the manufactured objects tend to form stop cracks and stress-corrosion cracks. Furthermore, the high content of Mg requires careful monitoring of the heat treatment temperature and the casting process. The present alloys not only have high strength, but also good stope properties.
Fra britisk patentskrift nr. 681.906 er de.t kjent Al-Cu-Cd-legeringer, men det benyttes ikke innfbring av Mg i legeringen for effektivt å forbedre de mekaniske egenskaper. Al-Cu-Cd alloys are known from British patent document no. 681,906, but the introduction of Mg in the alloy is not used to effectively improve the mechanical properties.
Som resultat av undersøkelser av aluminium-stopelegeringer med hoy strekkfasthet, hoy flytegrense og god seighet, og særlig slike som har god motstand mot varmebrudd og spennings-korros jons-sprekker , ble det funnet at aluminium-kobber-magnesium-kadmium-stbpelegeringer tilfredsstilte de foran nevnte kr av..... Det har vært kjent at de vanlige aluminium-kobber-magnesium-legeringer har oppnådd relativt gode mekaniske egenskaper ved varmebehandling. De mekaniske egenskaper til disse legeringer kan merkbart forbedres ved tilsetning av små mengder kadmium og passende varmebehandling, dvs. at strekkfasthet, flytegrense og forlengelse kan utgjore henholdsvis k- 5 kp/mm 2 eller mer, M> kp/mm o eller mer og k- til ^ 0% eller mer. Disse mekaniske egenskaper kan sammenlignes med egenskapene til de kostbare aluminium-kobber-magnesium-solv-legeri nger. As a result of investigations of aluminum stope alloys with high tensile strength, high yield strength and good toughness, and particularly those that have good resistance to thermal cracking and stress corrosion cracking, it was found that aluminium-copper-magnesium-cadmium stope alloys satisfied the in front of the aforementioned NOK of..... It has been known that the usual aluminium-copper-magnesium alloys have achieved relatively good mechanical properties by heat treatment. The mechanical properties of these alloys can be noticeably improved by the addition of small amounts of cadmium and appropriate heat treatment, i.e. that tensile strength, yield strength and elongation can respectively amount to k- 5 kp/mm 2 or more, M> kp/mm o or more and k - to ^ 0% or more. These mechanical properties can be compared with the properties of the expensive aluminium-copper-magnesium-solv alloys.
Den foreliggende oppfinnelse angår folgelig en aluminium-stopelegering som etter varmebehandling utmerker seg ved hoy styrke, The present invention therefore relates to an aluminum stop alloy which, after heat treatment, is characterized by high strength,
og det særegne ved legeringen er at den består av <>>+,0 til 6,2 vektprosent kobber, 0,2 ti-l 0,^ vektprosent magnesium,'0,05 and the distinctive feature of the alloy is that it consists of <>>+.0 to 6.2 weight percent copper, 0.2 ti-l 0.^ weight percent magnesium,'0.05
til 0,8 vektprosent kadmium, eventuelt 0,01 til 0,5 vektprosent titan og/eller 0,001 til 0,01 vektprosent bor og eventuelt opptil 1,0 vektprosent mangan og/eller opptil 2,0 vektprosent solv, idet resten er aluminium. to 0.8 weight percent cadmium, optionally 0.01 to 0.5 weight percent titanium and/or 0.001 to 0.01 weight percent boron and optionally up to 1.0 weight percent manganese and/or up to 2.0 weight percent solv, the remainder being aluminum.
Innholdet av legeringselementer i aluminium-stopelegeringen bestemmes av folgende faktorer: The content of alloying elements in the aluminum stop alloy is determined by the following factors:
Kobbertilsetning er vesentlig for å oke legeringens styrke. Copper addition is essential to increase the strength of the alloy.
Kobber i mengder fra k-, 0 til 6,2% kreves for dette formål. Tilsetning av kobber i mengder over 6, 2% forer til uonsket Copper in amounts from k-, 0 to 6.2% is required for this purpose. Addition of copper in amounts above 6.2% leads to unwanted
okning av den fase som er loselig i grunnmassen, selv ved opplosnings-varmebehandling, og er derfor ugunstig når det gjelder å beholde de gode mekaniske egenskaper. Videre oker tendensen til varmebrudd. For optimale resultater tilsettes kobber i mengder fra h, 7 til. 5, 5%. increase in the phase which is soluble in the base mass, even during dissolution heat treatment, and is therefore unfavorable when it comes to retaining the good mechanical properties. Furthermore, the tendency to thermal breakdown increases. For optimal results, copper is added in amounts from h, 7 to. 5.5%.
Magnesiumtilsetning oker legeringens styrke og eldnings-egenskapene. Magnesium i mengder fra 0,2 til 0 , h% kreves for dette formål. Tilsetning av magnesium i mengder over 0, 5% Magnesium addition increases the alloy's strength and aging properties. Magnesium in amounts from 0.2 to 0, h% is required for this purpose. Addition of magnesium in amounts above 0.5%
oker tendensen til varmebrudd og bevirker ofte brenning og brå-kjolings-sprekker hvis temperaturen for opplosnings-varmebehandlingen er hoy, mens styrken avtar hvis det anvendes en lavere temperatur for opplosnings-varmebehandlingen, for derved å hindre varmebrudd. For optimale resultater tilsettes magensium i mengder fra 0,2 til 0, h%. increases the tendency to heat fracture and often causes burning and rapid cooling cracks if the temperature for the dissolution heat treatment is high, while the strength decreases if a lower temperature is used for the dissolution heat treatment, thereby preventing heat fracture. For optimal results, magnesium is added in amounts from 0.2 to 0.0%.
Tilsetning av en liten mengde kadmium til aluminium-kobber-magnesium-legeringen oker eldningshérdnings-egenskapene og de mekaniske egenskaper til legeringen, og forbedrer også motstanden mot spennings-korrosjons-sprekker. Kadmium i mengder fra 0,05 til 0,8% kreves for dette formål. Tilsetning av kadmium i mengder over 0,8% gir tendens til varmebrudd, Adding a small amount of cadmium to the aluminium-copper-magnesium alloy increases the age-hardening properties and the mechanical properties of the alloy, and also improves the resistance to stress corrosion cracking. Cadmium in amounts from 0.05 to 0.8% is required for this purpose. Addition of cadmium in amounts above 0.8% tends to thermal breakdown,
brenning under opplosnings-varmebehandlingen og bråkjolings-sprekker. For optimale, resultater tilsettes kadmium i mengder fra 0,1 til 0, 2%. Kadmium er billigere enn solv og derfor kan denne aluminium-kobber-magnesium-kadmium-legering fremtillés med lavere omkostninger. burning during the dissolution heat treatment and brazing cracks. For optimal results, cadmium is added in amounts from 0.1 to 0.2%. Cadmium is cheaper than sol and therefore this aluminium-copper-magnesium-cadmium alloy can be produced at lower costs.
Titan er fordelaktig for å sikre en finkornet struktur i legeringen, gode mekaniske egenskaper gjennom en vellykket opplosningsvarmebehandling for å hindre varmebrudd. Titan i mengder fra 0,01 til 0,5% kreves for dette formål. Tilsetning av titan i mengder over 0,5% bevirker utskilling av grove forbindelser, og det reduserer de mekaniske egenskapene. For optimale resultater anvendes titan i mengder fra 0,1 til 0,3%. Titanium is beneficial for ensuring a fine-grained structure in the alloy, good mechanical properties through a successful solution heat treatment to prevent thermal cracking. Titanium in amounts from 0.01 to 0.5% is required for this purpose. Addition of titanium in quantities above 0.5% causes the separation of coarse compounds, and this reduces the mechanical properties. For optimal results, titanium is used in amounts from 0.1 to 0.3%.
Bor i en mengde av 0,001 til 0,01% som tilsettes til legeringen sammen med titan i forlegeringen eller i flussmidlene, er gunstig, for å sikre en finkornet struktur. Boron in an amount of 0.001 to 0.01% added to the alloy together with titanium in the master alloy or in the fluxes is beneficial, to ensure a fine grain structure.
Legeringens egenskaper forbedres ytterligere ved tilsetning av solv og mangan til aluminium-kobber-magnesium-kadmium-legeringen. Tilsetning av små mengder solv oker dessuten eldningshérdnings-egenskapene og de mekaniske egenskapene til legeringen. Det vil si at det kan oppnås en strekkfasthet på 50 kp/mm 2 eller mer, flytegrense på !+5 kp/mm 2 eller mer og forlengelse fra h til 15%- Tilsetning av solv i mengder under 2,0% forbedrer de mekaniske egenskapene. Tilsetning av solv over 2,0% har imidlertid ikke lenger noen virkning når det gjelder å forbedre de mekaniske egenskapene. Da solv er et kostbart metall foretrekkes det at solv tilsettes i mengder under 2,0%. Selv om prisen på legeringen forhoyes ved tilsetning av solv, kan kravet til spesielt hoy styrke av stopegods oppnås ved tilsetning av solv. The alloy's properties are further improved by adding sol and manganese to the aluminium-copper-magnesium-cadmium alloy. The addition of small amounts of solv also increases the age-hardening properties and the mechanical properties of the alloy. That is to say, a tensile strength of 50 kp/mm 2 or more can be achieved, yield strength of !+5 kp/mm 2 or more and elongation from h to 15% - Addition of solv in amounts below 2.0% improves the mechanical the properties. Addition of solv above 2.0%, however, no longer has any effect when it comes to improving the mechanical properties. As solv is an expensive metal, it is preferred that solv is added in amounts below 2.0%. Although the price of the alloy is increased by the addition of solv, the requirement for particularly high strength of stope goods can be achieved by the addition of solv.
Tilsetning av mangan forbedrer legeringens motstand mot spennings-korrosjons-sprekker. Det vil si at tilsetning av mangan i mengder under 1% oker motstanden mot spennings-korros jons- sprekker uten å redusere de-mekaniske- egenskaper, men tilsetning av mangan over 1,0% har ingen virkning. For The addition of manganese improves the alloy's resistance to stress corrosion cracking. That is to say, the addition of manganese in quantities below 1% increases the resistance to stress corrosion cracking without reducing the mechanical properties, but the addition of manganese above 1.0% has no effect. For
optimale resultater anvendes mangan i mengder under 0,5%. optimal results use manganese in amounts below 0.5%.
Det er onskelig"at det brukes aluminium av så hoy renhet som mulig for fremstilling av aluminium-kobber-magnesium-kadmium-legeringene. Jern- og silisium-innholdet bor fortrinnsvis ligge under 0,2%. De optimale områder for innhold av legeringselementer er som folger: It is desirable that aluminum of as high a purity as possible is used for the production of the aluminum-copper-magnesium-cadmium alloys. The iron and silicon content should preferably be below 0.2%. The optimal ranges for the content of alloying elements are as follows:
Kobber: <1>+,7-555 vektprosent Copper: <1>+.7-555 percent by weight
Magnesium: 0,2-0, h vektprosent Magnesium: 0.2-0, h weight percent
Kadmium: 0,1-0,2 vektprosent Cadmium: 0.1-0.2% by weight
Titan: 0,1-0,3 vektprosent Titanium: 0.1-0.3% by weight
Bor: under 0,01 vektprosent Boron: less than 0.01% by weight
Aluminiumlegeringen varmebehandles på folgende måte. Opplosnings-varmebehandlingen må utfores véd en temperatur hbyere enn 5'00°C i et tidsrom tilstrekkelig til fullstendig å opplose den kobber-rike forbindelse i grunnmassen. Temperaturen for opplosnings-varmebehandlingen velges fortrinnsvis så hoy som mulig uten å bevirke brenning eller bråkjblings-sprekker. Den ovre grense for temperaturen bestemmes av innholdet av legeringselementer, spesielt kadmium og magensium. Aluminiumlegeringen med den foretrukne sammensetning blir fortrinnsvis opplbsningsvarmebehandlet ved 530°C i 12 timer. The aluminum alloy is heat treated in the following way. The dissolution heat treatment must be carried out at a temperature higher than 5'00°C for a period of time sufficient to completely dissolve the copper-rich compound in the base mass. The temperature for the dissolution heat treatment is preferably chosen as high as possible without causing burning or brazing cracks. The upper limit of the temperature is determined by the content of alloying elements, especially cadmium and magnesium. The aluminum alloy of the preferred composition is preferably solution heat treated at 530°C for 12 hours.
Vann-bråkjbling etter opplosnings-varmebehandlingen må utfores så hurtig som mulig. Temperaturen i vannet etter bråkjolingen bor ikke overskride 50°C. Bråkjblingstemperaturen for komplisert stopegods med deler av forskjellig- tykkelse bor fortrinnsvis senkes 5 til 10°C i forhold til temperaturen for opplosnings-varmebehandlingen for dermed å hindre indre spenning eller brudd under bråkjolingen. Water brazing after the dissolution heat treatment must be carried out as quickly as possible. The temperature of the water after the rapid jolling must not exceed 50°C. The quenching temperature for complicated stop goods with parts of different thicknesses should preferably be lowered 5 to 10°C in relation to the temperature for the solution heat treatment in order to prevent internal stress or breakage during quenching.
Utherdings-varmebehandlingen av denne aluminiumlegering utfores ved ca. 160Q til 190°C i <1>+ til ^8 timer. The hardening heat treatment of this aluminum alloy is carried out at approx. 160Q to 190°C for <1>+ to ^8 hours.
Den maksimale styrke oppnås ved utherdning ved 175°C i 20 timer. Den hoye flytegrense oppnås ved utherdning over lengre tid ved The maximum strength is achieved by curing at 175°C for 20 hours. The high yield strength is achieved by curing over a longer period of time
en hoyere temperatur, mens hoy forlengelse derimot oppnås ved utherdning over en kortere tid ved lavere temperatur. a higher temperature, while high elongation, on the other hand, is achieved by curing over a shorter time at a lower temperature.
I det tilfelle hvor. det kreves hoy forlengelse på .bekostning av flytegrensen, bor utherdningstemperaturen ikke overskride 160°C. In the event where. a high extension is required at the expense of the yield strength, the curing temperature should not exceed 160°C.
Eksempel 1. Example 1.
Aluminium av 99, 9% renhet er renset for å fjerne maskinolje og smuss. Deretter ble den torket og fylt i en grafittdigel og smeltet. Etter at temperaturen i smeiten hadde nådd 750°C ble det tilsatt en aluminium-5% titan-forlegering til smeiten. Deretter" ble kobber tilsatt til smeiten ved 750°C og smeiten omrort. Deretter ble kadmium innpakket i aluminiumfolie samt magensium tilsatt til smeiten ved henholdsvis 730°C og 750°C. Aluminum of 99.9% purity is cleaned to remove machine oil and dirt. It was then dried and filled into a graphite crucible and melted. After the temperature in the forge had reached 750°C, an aluminium-5% titanium pre-alloy was added to the forge. Then copper was added to the smelt at 750°C and the smelt stirred. Then cadmium was wrapped in aluminum foil and magnesium added to the smelt at 730°C and 750°C respectively.
Flussmiddel inneholdende titan og bor (KpTiFg + KBF^ + C2C16-) Flux containing titanium and boron (KpTiFg + KBF^ + C2C16-)
ble deretter tilsatt til smeiten ved 750°C i mengder fra 0,1 . was then added to the melt at 750°C in amounts from 0.1 .
til 0, 2%, på basis av smeiten, for forfining av legeringens kornstruktur. Til slutt ble heksakloretylenpellets (CgCl^) tilsatt smeiten for avgassing av denne. to 0.2%, on the basis of the forging, for refinement of the grain structure of the alloy. Finally, hexachloroethylene pellets (CgCl^) were added to the melt to degas it.
Den resulterende smelte holdei ved 750°C i 30 minutter og utsettes for en gassutviklingsprove ved å helle- ca. 200 g smelte i. en forvarmet isolert form. Smeiten storkner under et redusert trykk på ca. 5 nira Hg og utviklet gass observeres fra den stbrknede smelte. The resulting melt is held at 750°C for 30 minutes and subjected to a gas evolution test by pouring approx. 200 g melt in. a preheated insulated mold. The melt solidifies under a reduced pressure of approx. 5 nira Hg and evolved gas are observed from the refracted melt.
Etter å ha fastslått at det ikke var mer gassutvikling fra proven ble slagg fjernet fra smeltens overflate og smeiten ble helt i en permanent proveform. Stopeprovestykkene ble.opplosnings-varmebehandlet ved 530°C i 12 timer, bråkjolt.i kaldt vann og utherdet ved 165°C i 32 timer. After determining that there was no more gas evolution from the sample, slag was removed from the surface of the melt and the melt was poured into a permanent sample form. The stop samples were solution heat treated at 530°C for 12 hours, quenched in cold water and cured at 165°C for 32 hours.
Prbvestykkene ble underkastet strekkprover og kjemisk analyse. The test pieces were subjected to tensile tests and chemical analysis.
Strekkprover: Strekkfasthet ^8,6 kp/mm , flytegrense (0,2% avvikelse) ^3,6 kp/mm og forlengelse 6%. Tensile tests: Tensile strength ^8.6 kp/mm, yield strength (0.2% deviation) ^3.6 kp/mm and elongation 6%.
Kjemisk sammensetning: Cu 5,37%, Mg 0,33%, Cd 0,13%, Ti 0,16%, Chemical composition: Cu 5.37%, Mg 0.33%, Cd 0.13%, Ti 0.16%,
B 0,00<*>+%, Fe 0,07%, Si' 0,05%i og resten aluminium. ;Eksempel 2.;En aluminiumlegeringssmelte ble fremstilt ved den samme smelte- ;og legeringsprosess som i eksempel 1. Gass i smeiten ble' fjernet ved innfbring av en gassblanding av klor og nitrogen i smeiten gjennom et grafittrbr. Prøvestykkene som ble stbpt i formen ble opplbsningsvarmebehandlet ved 525°C i 6 timer, bråkj.blt i kaldt' vann og utherdet ved 180°C i 16 timer. Strekkfasthetén, flytegrensen- (0,2% avvikelse), forlengelse og kjemisk sammensetning ■■ av den resulterende legering var som folger: Strekkfasthet ^7,0 kp/mm 2 , flytegrense ^0,6 kp/mm 2, forlengelse 9,6%. ;Kjemisk sammensetning: Cu Lf,83%, Mg 0,31%, Cd 0,11%, Ti'0,02%, ;B 0,003%, Fe 0,07%, Si 0,0*+% og resten aluminium. B 0.00<*>+%, Fe 0.07%, Si' 0.05%i and the rest aluminum. Example 2. An aluminum alloy melt was produced by the same melting and alloying process as in example 1. Gas in the melt was removed by introducing a gas mixture of chlorine and nitrogen into the melt through a graphite tube. The test pieces that were cast in the mold were quench heat treated at 525°C for 6 hours, quenched in cold water and cured at 180°C for 16 hours. The tensile strength, yield strength (0.2% deviation), elongation and chemical composition ■■ of the resulting alloy were as follows: Tensile strength ^7.0 kp/mm 2 , yield strength ^0.6 kp/mm 2 , elongation 9.6 %. ;Chemical composition: Cu Lf,83%, Mg 0.31%, Cd 0.11%, Ti'0.02%, ;B 0.003%, Fe 0.07%, Si 0.0*+% and the rest aluminum .
Titanet i legeringen ble ikke oppnådd fra aluminium-titan-legering, men fra flussmidlet. The titanium in the alloy was not obtained from aluminium-titanium alloy, but from the flux.
Tabell 1 viser den kjemiske sammensetning av aluminiumlegeringer Table 1 shows the chemical composition of aluminum alloys
i henhold til foreliggende oppfinnelse samt for kjente varme-bestandige aluminium-stopelegeringer av hoy styrke. according to the present invention as well as for known high-strength heat-resistant aluminum stop alloys.
Tabell 2 viser opplosnings-varmebehandlings-betingelsene og de mekaniske egenskaper ved romtemperatur av legeringene angitt i tabell 1 . Table 2 shows the dissolution heat treatment conditions and the mechanical properties at room temperature of the alloys indicated in table 1.
Tabell 3 viser mekaniske egenskaper ved forhoyede temperaturer av legeringene angitt i tabellene 1 og 2. Table 3 shows the mechanical properties at elevated temperatures of the alloys indicated in tables 1 and 2.
Strekkfasthet og flytegrense er angitt i kp/mm p. Tensile strength and yield strength are indicated in kp/mm p.
Forlengelse er angitt i %. Elongation is indicated in %.
Av tabellene 2 og 3 fremgår det at aluminiumlegeringene i henhold til foreliggende oppfinnelse har utmerkede mekaniske egenskaper ved romtemperatur og ved forhoyede temperaturer. Tables 2 and 3 show that the aluminum alloys according to the present invention have excellent mechanical properties at room temperature and at elevated temperatures.
Som nevnt ovenfor kan aluminiumlegeringene fremstilles med lave omkostninger og allikevel få gode mekaniske egenskaper sammen-lignet med aluminiumlegeringer av kjent type. De kan derfor anvendes i forskjellige typer maskindeler, fly, rullende materiell, bygningskonstruksjoner og annet konstruksjonsmateriell. As mentioned above, the aluminum alloys can be produced at low cost and still have good mechanical properties compared to aluminum alloys of a known type. They can therefore be used in various types of machine parts, aircraft, rolling stock, building structures and other construction materials.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP44037157A JPS4918329B1 (en) | 1969-05-13 | 1969-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
NO128333B true NO128333B (en) | 1973-10-29 |
Family
ID=12489750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO01821/70A NO128333B (en) | 1969-05-13 | 1970-05-13 |
Country Status (10)
Country | Link |
---|---|
US (1) | US3759758A (en) |
JP (1) | JPS4918329B1 (en) |
BE (1) | BE750235A (en) |
CA (1) | CA918458A (en) |
CH (1) | CH523327A (en) |
DE (1) | DE2023446B2 (en) |
FR (1) | FR2047739A5 (en) |
GB (1) | GB1270887A (en) |
NL (1) | NL7006904A (en) |
NO (1) | NO128333B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA991926A (en) * | 1972-01-20 | 1976-06-29 | Teruo Asahina | Method for producing aluminum or aluminum-based alloy molded materials |
JPS52113525A (en) * | 1976-03-22 | 1977-09-22 | Oiles Industry Co Ltd | Supporting structure |
CH642683A5 (en) * | 1978-05-19 | 1984-04-30 | Alusuisse | ALUMINUM ALLOY FOR THE PRODUCTION OF EXTRUDED PRODUCTS. |
US4365046A (en) * | 1981-01-12 | 1982-12-21 | The Goodyear Tire & Rubber Company | Process to control the curing reaction between a copolyester resin and an epoxide compound, and a composition formed for that process |
DE3328890A1 (en) * | 1983-08-10 | 1985-02-28 | Metallgesellschaft Ag, 6000 Frankfurt | METHOD FOR PRODUCING PERMANENTLY BEATABLE AL RIVETS |
US5630889A (en) * | 1995-03-22 | 1997-05-20 | Aluminum Company Of America | Vanadium-free aluminum alloy suitable for extruded aerospace products |
US6368427B1 (en) | 1999-09-10 | 2002-04-09 | Geoffrey K. Sigworth | Method for grain refinement of high strength aluminum casting alloys |
US6645321B2 (en) | 1999-09-10 | 2003-11-11 | Geoffrey K. Sigworth | Method for grain refinement of high strength aluminum casting alloys |
CN102605206A (en) * | 2012-03-29 | 2012-07-25 | 天津千鑫有色金属制品有限公司 | Aluminium alloy casting manufacturing process |
JP6122932B2 (en) * | 2014-11-13 | 2017-04-26 | 有限会社ベルモデル | High toughness aluminum alloy casting |
CN105177325A (en) * | 2015-04-29 | 2015-12-23 | 安徽长城输送机械制造有限公司 | Aluminum alloy casting treatment technology |
-
1969
- 1969-05-13 JP JP44037157A patent/JPS4918329B1/ja active Pending
-
1970
- 1970-05-07 GB GB22094/70A patent/GB1270887A/en not_active Expired
- 1970-05-11 BE BE750235D patent/BE750235A/en unknown
- 1970-05-12 CA CA082498A patent/CA918458A/en not_active Expired
- 1970-05-13 NO NO01821/70A patent/NO128333B/no unknown
- 1970-05-13 CH CH710270A patent/CH523327A/en not_active IP Right Cessation
- 1970-05-13 US US00037000A patent/US3759758A/en not_active Expired - Lifetime
- 1970-05-13 DE DE2023446A patent/DE2023446B2/en active Pending
- 1970-05-13 NL NL7006904A patent/NL7006904A/xx unknown
- 1970-05-13 FR FR7017517A patent/FR2047739A5/fr not_active Expired
Also Published As
Publication number | Publication date |
---|---|
BE750235A (en) | 1970-10-16 |
CA918458A (en) | 1973-01-09 |
FR2047739A5 (en) | 1971-03-12 |
GB1270887A (en) | 1972-04-19 |
US3759758A (en) | 1973-09-18 |
JPS4918329B1 (en) | 1974-05-09 |
CH523327A (en) | 1972-05-31 |
SU446978A3 (en) | 1974-10-15 |
DE2023446B2 (en) | 1974-04-04 |
NL7006904A (en) | 1970-11-17 |
DE2023446A1 (en) | 1971-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2950187A (en) | Iron-calcium base alloy | |
JP5898819B1 (en) | Aluminum alloy for die casting and aluminum alloy die casting using the same | |
EP1329530B1 (en) | High temperature resistant magnesium alloys | |
US11286542B2 (en) | Aluminum alloy for die casting and functional component using the same | |
CN102912196A (en) | Aluminum-silicon-magnesium cast aluminum alloy and manufacturing method thereof | |
JPWO2010086951A1 (en) | Aluminum alloy for pressure casting and cast aluminum alloy | |
CN107164665B (en) | High tenacity Alcoa profile and its preparation process | |
NO128333B (en) | ||
CN110438358B (en) | Composite modifier for hypereutectic aluminum-silicon-copper alloy and preparation method thereof | |
CN107779695A (en) | A kind of high corrosion resistant chain-less bicycle manufacture of casing of flowing | |
Podprocká et al. | Iron intermetallic phases in the alloy based on Al-Si-Mg by applying manganese | |
KR101935243B1 (en) | Aluminum alloy for die casting, and aluminum alloy die-cast product using same | |
Lemieux et al. | Reduction of hot tearing of cast semi-solid 206 alloys | |
CN110438375B (en) | Alterant for hypereutectic aluminum-silicon-copper alloy and preparation method thereof | |
CN110709526A (en) | Aluminum alloy and aluminum alloy cast product | |
CN107619974B (en) | A kind of high-strength high-elasticity modulus aluminium alloy and preparation method thereof | |
JPS6135261B2 (en) | ||
JP4966584B2 (en) | Aluminum alloy for casting, aluminum alloy casting and die casting method using the alloy | |
RU2616734C1 (en) | Aluminium-based cast high-silicon alloy | |
RU2026401C1 (en) | Heat-resistant alloy | |
RU2473709C1 (en) | High-strength heat-treatable aluminium alloy and article made thereof | |
Ahmad et al. | The Effect of Metallic Addition on Mechanical Property of Aluminum (LM6) Alloy | |
US1965604A (en) | Process for improving aluminum alloy | |
SU1573046A1 (en) | Low-silicon aluminium cast iron | |
RU2009250C1 (en) | Aluminium-base alloy |