NO127318B - - Google Patents
Download PDFInfo
- Publication number
- NO127318B NO127318B NO01126/71A NO112671A NO127318B NO 127318 B NO127318 B NO 127318B NO 01126/71 A NO01126/71 A NO 01126/71A NO 112671 A NO112671 A NO 112671A NO 127318 B NO127318 B NO 127318B
- Authority
- NO
- Norway
- Prior art keywords
- alloy
- alloys
- manganese
- molybdenum
- copper
- Prior art date
Links
- 229910045601 alloy Inorganic materials 0.000 claims description 31
- 239000000956 alloy Substances 0.000 claims description 31
- 239000010949 copper Substances 0.000 claims description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 17
- 239000011572 manganese Substances 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 239000011733 molybdenum Substances 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 230000009466 transformation Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L15/00—Heating of air supplied for combustion
- F23L15/04—Arrangements of recuperators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M20/00—Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/051—Heat exchange having expansion and contraction relieving or absorbing means
- Y10S165/052—Heat exchange having expansion and contraction relieving or absorbing means for cylindrical heat exchanger
- Y10S165/06—Expandable casing for cylindrical heat exchanger
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Soft Magnetic Materials (AREA)
- Manufacture Of Motors, Generators (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Description
Nikkel-jern-legering. Nickel-iron alloy.
Det er kjent at visse magnetiske nikkel- jern-legeringer er særlig nyttige for fremstilling av indikeringsinstrumenter som f. eks. magnetiske fartsmålere, som er nesten fullstendig uavhengig av variasjoner i temperaturen over usedvanlig vide temperaturområder. Disse legeringer inneholder ca. 29 til ca. 31 % nikkel og vanligvis meget mindre mengder av krom. De inneholder også alltid små mengder av kullstoff og silicium. Legeringene er i besittelse av en negativ temperaturkoeffisient for magnetisk permeabilitet som er i alt vesentlig konstant over et temperaturom-råde lavere enn Curie punktet, og dette område er vanligvis av størrelsesordenen 100° C. Den martensitiske omdannelsestemperatur, dvs. den ved hvilken der fin-ner sted en faseforandring fra gamma til alfa kan være innenfor eller under dette område. I praksis krever spesifikasjonene for slike legeringer en bestemt Curie temperatur og en lav martensitisk omdannelsestemperatur. It is known that certain magnetic nickel-iron alloys are particularly useful for the manufacture of indicating instruments such as e.g. magnetic speedometers, which are almost completely independent of variations in temperature over exceptionally wide temperature ranges. These alloys contain approx. 29 to approx. 31% nickel and usually much smaller amounts of chromium. They also always contain small amounts of carbon and silicon. The alloys possess a negative temperature coefficient for magnetic permeability which is essentially constant over a temperature range lower than the Curie point, and this range is usually of the order of 100° C. The martensitic transformation temperature, i.e. the one at which fin- where a phase change from gamma to alpha may be within or below this range. In practice, the specifications for such alloys require a specific Curie temperature and a low martensitic transformation temperature.
Ved fremstillingen av disse legeringer støter man på betydelige vanskeligheter når der skal fremstilles legeringer som alltid oppviser de ønskede egenskaper, dvs. Curie-punktet varierer i betraktelig grad fra en smelte til en annen, slik at en legering som etter fremstillingen skulle tilfredsstille de krevde spesifikasjoner dog ikke gjør dette. In the production of these alloys, considerable difficulties are encountered when alloys are to be produced which always exhibit the desired properties, i.e. the Curie point varies considerably from one melt to another, so that an alloy which after production should satisfy the required specifications however, do not do this.
Oppfinneren har oppdaget at uregel-messigheter i legeringens egenskaper for en stor del forårsakes av variasjoner i kullstoff- og silicium-innholdet og særlig i det førstnevnte. Kullstoff har i alminnelighet vært betraktet som et element som nød-vendigvis er tilstede og som er harmløst i mengder opp til f. eks. 0,25 %. Kullstoffinnholdet i legeringene som vanligvis anvendes er da også ca. 0,2 %, skjønt det kan variere fra dette prosenttall ved mengder som man har betraktet som ubetydelige, men som er av stor viktighet. Silicium-innholdet i legeringene har i alminnelighet også vært omkring 0,2 %. The inventor has discovered that irregularities in the alloy's properties are to a large extent caused by variations in the carbon and silicon content and particularly in the former. Carbon has generally been regarded as an element which is necessarily present and which is harmless in amounts up to, e.g. 0.25%. The carbon content in the alloys that are usually used is then also approx. 0.2%, although it may vary from this percentage for amounts that have been considered insignificant, but which are of great importance. The silicon content in the alloys has generally also been around 0.2%.
Da oppfinneren har oppdaget betyd-ningen av mindre variasjoner i kullstoffinnholdet, har han søkt å nedsette disse variasjoner til et minimum. I praksis er kullstoffinnholdet imidlertid vanskelig å kontrollere innenfor snevre grenser, særlig hvis legeringen fremstilles ved smeltning. Hvis man bare reduserer kullstoff-innholdet, økes den martensitiske omdannelsestemperatur slik at legeringen reversibelt taper sin høye permeabilitet ved lave tem-peraturer som den ofte vil bli utsatt for under bruken. Hvis på den annen side jern-mengden reduseres i øyemed å nedsette omdannelsestemperaturen, så økes auto-matisk mengden av nikkel og hermed økes Curie punktet med det resultat at man igjen ikke er istand til å tilfredsstille spesi-fikasjonskravene. When the inventor discovered the importance of minor variations in the carbon content, he sought to reduce these variations to a minimum. In practice, however, the carbon content is difficult to control within narrow limits, particularly if the alloy is produced by melting. If one simply reduces the carbon content, the martensitic transformation temperature is increased so that the alloy reversibly loses its high permeability at low temperatures to which it will often be exposed during use. If, on the other hand, the amount of iron is reduced with a view to lowering the transformation temperature, then the amount of nickel is automatically increased and thus the Curie point is increased with the result that one is again unable to satisfy the specification requirements.
Oppfinneren har nå funnet at omdannelsestemperaturen kan opprettholdes ved det ønskede lave nivå og Curie-punktet i legeringene kan kontrolleres slik at legeringene kan re-produseres uten noen vesentlig vanskelighet. For å oppnå dette opprettholdes legeringen i alt vesentlig fri for kullstoff og silicium, og der innføres i den visse mengder av kobber, molybden eller mangan, nemlig fra 0,6 til 6 % kobber, fra 1 til 10 % molybden og fra 0,6 til 6 % mangan. Disse elementer tjener til å redu-sere omdannelsestemperaturen og variasjoner i mengden av elementene medfører variasjoner i Curie-punktet, som er meget mindre enn de variasjoner som frembrin-ges av kullstoffet og silicium. The inventor has now found that the transformation temperature can be maintained at the desired low level and the Curie point in the alloys can be controlled so that the alloys can be re-produced without any significant difficulty. To achieve this, the alloy is maintained essentially free of carbon and silicon, and certain amounts of copper, molybdenum or manganese are introduced into it, namely from 0.6 to 6% copper, from 1 to 10% molybdenum and from 0.6 to 6% manganese. These elements serve to reduce the transformation temperature and variations in the amount of the elements cause variations in the Curie point, which is much smaller than the variations produced by the carbon and silicon.
For legeringer som skal brukes som temperaturkompensatorelement i indikeringsinstrumenter som magnetiske fartsmålere og elektriske motormålere, er de foran nevnte egenskaper av avgjørende betydning, idet det for slike kompensator-elementer kreves en negativ temperaturkoeffisient av magnetisk permeabilitet, som er i alt vesentlig konstant over et vidt område, og som selv er så stor som mulig. For-uten dette skal legeringene ha en bestemt Curie-temperatur, og en lav martensitisk omdannelsestemperatur. En høy mot-standsevne kreves ikke, og heller ikke en høy magnetisk permeabilitet. For alloys that are to be used as temperature compensator elements in indicating instruments such as magnetic speedometers and electric motor meters, the aforementioned properties are of decisive importance, since such compensator elements require a negative temperature coefficient of magnetic permeability, which is essentially constant over a wide range , and which itself is as large as possible. Apart from this, the alloys must have a specific Curie temperature and a low martensitic transformation temperature. A high resistivity is not required, nor is a high magnetic permeability.
I henhold til det foran anførte går oppfinnelsen ut på at det for temperatur-kompensaturelementet brukes en legering som inneholder fra 28,4—32,5 % nikkel, en eller flere av elementene kobber, molybden og mangan i slike mengder at 2 Cu % + 1,2 Mo % + 2 Mn % er mellom 1,2 og 12, og hvor kullstoffmengden ikke overskrider 0,03 %, og siliciuminnholdet ikke overskrider 0,03 %, mens resten, bortsett fra forurensninger, består av jern. In accordance with the foregoing, the invention involves using an alloy containing from 28.4-32.5% nickel, one or more of the elements copper, molybdenum and manganese in such quantities that 2 Cu % + 1.2 Mo % + 2 Mn % is between 1.2 and 12, and where the carbon content does not exceed 0.03 %, and the silicon content does not exceed 0.03 %, while the rest, apart from impurities, consists of iron.
Det foretrekkes å anvende enten kobber eller molybden eller begge heller enn mangan i legeringen. Mangan oxyderes så lett at det er vanskelig å regulere den mengde som den ferdige legering skal inneholde, og det reduseres legeringens korrosjonsmotstandsevne. It is preferred to use either copper or molybdenum or both rather than manganese in the alloy. Manganese oxidizes so easily that it is difficult to regulate the amount that the finished alloy must contain, and the alloy's corrosion resistance is reduced.
Med sikte på med sikkerhet å oppnå de ønskede resultater, fremstilles legeringene som inneholder molybden eller kobber eller begge ved hjelp av pulvermetall-urgiske fremgangsmåter. In order to achieve the desired results with certainty, the alloys containing molybdenum or copper or both are prepared by powder metallurgical methods.
Legeringer som inneholder mangan skal fremstilles ved smeltning under en inert atmosfære. Alloys containing manganese must be produced by melting under an inert atmosphere.
Oppfinneren har funnet at Curie-temperaturen Øc og omdannelsestemperaturen 0A ved hvilke austenitten omdannes ved avkjøling, bestemmes omtrentlig av ligningene: 0(. = A, + 70 Ni — 48 Mn — 22 Mo + 40 Cu og The inventor has found that the Curie temperature Øc and the transformation temperature 0A at which the austenite is transformed on cooling are approximately determined by the equations: 0(. = A, + 70 Ni — 48 Mn — 22 Mo + 40 Cu and
0A = A2 — 54 Ni — 90 Mn — 36 Mo — 36 Cu 0A = A2 — 54 Ni — 90 Mn — 36 Mo — 36 Cu
Verdien av konstantene A, og A2 i disse ligninger beror på mengdene av tilfeldige forurensninger som skriver seg fra råmate-rial-kildene og fra fremstillingsmetoden. Konstantene kan således bestemmes for en spesiell fremgangsmåte som anvendes for fremstillingen og koeffisienten for nikkel og mangan, molybden og kobber vil da gjøre det mulig å fremstille en hvilken som helst legering som tilfredsstiller de krevede spesifikasjoner. The value of the constants A, and A2 in these equations depends on the amounts of random contamination that arise from the raw material sources and from the manufacturing method. The constants can thus be determined for a special method used for the production and the coefficient for nickel and manganese, molybdenum and copper will then make it possible to produce any alloy that satisfies the required specifications.
Da ligningene for temperaturene inneholder fire variabler i innholdet av elementene, er det klart et legeringsområde som vil være i besittelse av ethvert spesielt sett verdier for Øu og 0A. Andre faktorer som f. eks. korrosjonsmotstandsevne, omkost-ninger og råmaterialenes tilgjengelighet kan på denne måte anvendes når legeringens sluttsammensetning skal fastsettes. Når der ble anvendt en pulvermetallurgisk fremgangsmåte, viste det seg at konstantene A, og A., var — 1900 resp. 1580. Hvis det derfor er ønskelig å fremstille en legering for hvilken Øc og 0A tilsvarer 140° F og — 160° F, kan ligningene omskrives: 140 = —1900 + 70 Ni—48 Mn—22 Mo+40 Cu og —160 = 1580—54 Ni—90 Mn—36 Mo—36 Cu. Antas det at der kreves en rimelig god korrosjonsmotstandsevne er det ønskelig å ha et rimelig høyt molybdeninnhold, f. eks. 3 % og ikke noe mangan. Dette fører til to samtidige ligninger: 70 Ni + 40 Cu = 2106 54 Ni + 36 Cu = 1632 Since the equations for the temperatures contain four variables in the content of the elements, there is clearly an alloy range that will possess any particular set of values for Øu and 0A. Other factors such as corrosion resistance, costs and the availability of the raw materials can in this way be used when the final composition of the alloy is to be determined. When a powder metallurgical method was used, it turned out that the constants A, and A., were — 1900 resp. 1580. If it is therefore desired to produce an alloy for which Øc and 0A correspond to 140° F and — 160° F, the equations can be rewritten: 140 = —1900 + 70 Ni—48 Mn—22 Mo+40 Cu and —160 = 1580—54 Ni—90 Mn—36 Mo—36 Cu. Assuming that reasonably good corrosion resistance is required, it is desirable to have a reasonably high molybdenum content, e.g. 3% and no manganese. This leads to two simultaneous equations: 70 Ni + 40 Cu = 2106 54 Ni + 36 Cu = 1632
og løsningen av disse er 29,3 % nikkel og 1,4 % kobber. Sluttlegeringen skal derfor inneholde 29,3 % Ni, 3,0 % Mo, 1,4 % Cu og resten jern. Der kreves varmebehandling for å gjøre legeringene austenitiske, men forutsatt at avkjølingshastigheten ikke er meget lang, som f. eks. lengere enn seks timer for å avkjøle til 200° C, så er varme-behandlingen ikke av kritisk betydning. and the solution of these is 29.3% nickel and 1.4% copper. The final alloy must therefore contain 29.3% Ni, 3.0% Mo, 1.4% Cu and the rest iron. Heat treatment is required to make the alloys austenitic, but provided that the cooling rate is not very long, such as e.g. longer than six hours to cool to 200° C, then the heat treatment is not of critical importance.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00029080A US3814174A (en) | 1970-04-16 | 1970-04-16 | Stack type recuperator having a liquid seal |
Publications (1)
Publication Number | Publication Date |
---|---|
NO127318B true NO127318B (en) | 1973-06-04 |
Family
ID=21847108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO01126/71A NO127318B (en) | 1970-04-16 | 1971-03-24 |
Country Status (10)
Country | Link |
---|---|
US (1) | US3814174A (en) |
BE (1) | BE763481A (en) |
CA (1) | CA927817A (en) |
DE (1) | DE2116988C3 (en) |
ES (1) | ES168024Y (en) |
FR (1) | FR2092420A5 (en) |
GB (1) | GB1306906A (en) |
NL (1) | NL161867C (en) |
NO (1) | NO127318B (en) |
SE (1) | SE374599B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4300627A (en) * | 1979-06-04 | 1981-11-17 | Cleveland Joseph J | Insulated housing for ceramic heat recuperators and assembly |
US4510892A (en) * | 1984-06-18 | 1985-04-16 | Combustion Engineering, Inc. | Seal for boiler water wall |
US4604972A (en) * | 1985-03-11 | 1986-08-12 | Foster Wheeler Energy Corporation | Seal assembly for a vapor generator |
US6675880B2 (en) | 1996-03-29 | 2004-01-13 | Mitsui Engineering And Shipbuilding Company Limited | Air heater for recovering a heat of exhaust gas |
US20120042687A1 (en) * | 2010-08-23 | 2012-02-23 | Showa Denko K.K. | Evaporator with cool storage function |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2332450A (en) * | 1940-04-08 | 1943-10-19 | Gen Properties Company Inc | Heat exchanger |
US3346042A (en) * | 1965-10-13 | 1967-10-10 | Gen Ionics Corp | Radiation recuperator |
-
1970
- 1970-04-16 US US00029080A patent/US3814174A/en not_active Expired - Lifetime
- 1970-11-04 CA CA097378A patent/CA927817A/en not_active Expired
-
1971
- 1971-02-26 BE BE763481A patent/BE763481A/en not_active IP Right Cessation
- 1971-03-02 NL NL7102782.A patent/NL161867C/en not_active IP Right Cessation
- 1971-03-16 FR FR7109140A patent/FR2092420A5/fr not_active Expired
- 1971-03-24 NO NO01126/71A patent/NO127318B/no unknown
- 1971-04-07 DE DE2116988A patent/DE2116988C3/en not_active Expired
- 1971-04-14 SE SE7104849A patent/SE374599B/xx unknown
- 1971-04-16 ES ES1971168024U patent/ES168024Y/en not_active Expired
- 1971-04-19 GB GB2090771A patent/GB1306906A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
NL161867B (en) | 1979-10-15 |
DE2116988B2 (en) | 1977-09-15 |
US3814174A (en) | 1974-06-04 |
CA927817A (en) | 1973-06-05 |
DE2116988C3 (en) | 1978-05-11 |
GB1306906A (en) | 1973-02-14 |
DE2116988A1 (en) | 1971-10-28 |
FR2092420A5 (en) | 1972-01-21 |
NL7102782A (en) | 1971-10-19 |
BE763481A (en) | 1971-07-16 |
ES168024Y (en) | 1972-04-16 |
NL161867C (en) | 1980-03-17 |
SE374599B (en) | 1975-03-10 |
ES168024U (en) | 1971-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2870051A (en) | Method of heat treating aluminum bronze alloy and product thereof | |
US2460590A (en) | Electric resistance element and method of heat-treatment | |
NO127318B (en) | ||
US2360868A (en) | Manufacture of nonaging steel | |
US2330018A (en) | Thermocouple element | |
US2736649A (en) | Ferritic stainless steel | |
Panish et al. | Activities in the Chromium–Nickel System | |
US1988568A (en) | Temperature compensator | |
Ni et al. | Thermodynamics of Mn–Fe–C and Mn–Si–C system | |
US4217136A (en) | Corrosion resistant austenitic stainless steel | |
NO130412B (en) | ||
US1892316A (en) | Noncorrosive steel alloy | |
Zimmerman et al. | Anomalous lattice specific heat of gold and zinc at liquid helium temperatures | |
Ashtakala et al. | Determination of the activities of magnesium in liquid magnesium–tin alloys by vapor pressure measurements | |
US1483298A (en) | Alloy comprising iron, nickel, chromium, molybdenum | |
US2172023A (en) | Heat-resistant alloy | |
DE1133443B (en) | Nickel alloy thermocouple | |
US2859264A (en) | Thermocouple element composition | |
US3473922A (en) | Corrosion-resistant alloys | |
US3993475A (en) | Heat resisting alloys | |
US1401925A (en) | Alloy steel | |
US2864694A (en) | Alloys assistant to salt baths | |
US2968548A (en) | Temperature compensating iron-nickelcopper alloys | |
US1460048A (en) | Electrical heating element | |
US1467562A (en) | Electrical heating element |