NO127202B - - Google Patents

Download PDF

Info

Publication number
NO127202B
NO127202B NO04331/70A NO433170A NO127202B NO 127202 B NO127202 B NO 127202B NO 04331/70 A NO04331/70 A NO 04331/70A NO 433170 A NO433170 A NO 433170A NO 127202 B NO127202 B NO 127202B
Authority
NO
Norway
Prior art keywords
aluminum
content
alloy
zinc
nickel
Prior art date
Application number
NO04331/70A
Other languages
Norwegian (no)
Inventor
Erich Pelzel
Original Assignee
Voest Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voest Ag filed Critical Voest Ag
Publication of NO127202B publication Critical patent/NO127202B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

Legering på basis av aluminium og sink og Alloy based on aluminum and zinc and

fremgangsmåte ved fremstilling derav. method of manufacturing thereof.

Oppfinnelsen angår en legering på basis av aluminium .og sink med' et 'aluminiuminnhold av. 38 -. 75%, fortrinnsvis 50 65$., The invention relates to an alloy based on aluminum and zinc with an aluminum content of 38 -. 75%, preferably 50 65$.,

et nikkeiinnhold og eventuelt et innhold, av .magnesium og kobber., a nickel content and possibly a content of .magnesium and copper.,

idet resten' er sink, og en fremgangsmåte ved fremstilling derav. the remainder being zinc, and a method for producing it.

Slike legeringer anvendes forst, og fremst som; lagermaterialer-for lagerskåler etc., hvorved disse,deler fremstilles ved stop.ing eller "ved tilsvarende forming av valsede plater, og. blikk. I . hvert "tilfelle fremstilles forst, et stopegods med en struktur som vidtgående bestemmer lagerets egenskaper.. Such alloys are used first and foremost as; bearing materials-for bearing bowls etc., whereby these parts are produced by stop.ing or "by corresponding shaping of rolled plates, and. sheet metal. In . each "case, a stop goods with a structure that largely determines the properties of the bearing is produced first..

De kjente legeringer på basis av aluminium og_ sink er på ... ?runn av deres brede storkhingsintervall tilboyelige til å utsettes for en omvendt blokkseigring med derav fdlgénde interkrystalltnsk porosi-tét. Slike porer er ikke, som tidligere antatt^ gunstige for lågere Por ose 5" med olje" impregnerte lager er" bare selvsmoreride dersom porer méd bestemt størrelse regelmessig er fordelt over lagrenes lopeflate. Dersom dette ikke er tilfelle, trekker de pofosé steder på en glideflate ol jef i Imen vekk fr a de tette steder, og .dette'kan fore til:, en slitasje, av lageret.. The known alloys on the basis of aluminum and zinc are, over their wide range of sizes, liable to be subjected to a reverse block segregation with consequent intercrystalline porosity. Such pores are not, as previously assumed^ favorable for lower Porose 5" oil-impregnated bearings" are only self-lubricating if pores of a certain size are regularly distributed over the bearing's running surface. If this is not the case, they pull pofosé places on a sliding surface ol jef i Imen away from the tight places, and this can lead to wear and tear of the bearing.

Det er kjent at det i forbindelse med enkelt formede gods av aluminium-sink-legeringer kan oppnås gode mekaniske egenskaper ved en megethurtig -avkjbling av disse ved stoping. Det- har ...imidlertid • hittil ikke., vært mulig, å utnytte de fordeler som kan oppnås ^ved en hurtig avkjoling av stopegodset fordi den.omvendte seigring tiltar med okende storkningshastighet og porer derved hyppigere forekommer i stopegodset. Tilbøyeligheten'til poredannelse kan/riktignok ned-settes ved stopetekniske forholdsregler, som ved å oke antallet av stigelop og synkebokser og ved å holde disse flytende. Det i stige-ldpene og synkebokserie-storknende metall må imidlertid skilles fra det egentlige stopegods, f.eks. ved varmskjæring, og går til skrap. Da den i stigelopene og synkeboksene storknende metallmengde utgjor en vesentlig del av den samlede metallmengde som utstopes ved fremstilling av et stopegods, medforer den dannede skrapmengde vesent-lige ulemper og meromkostninger for stoperiet.■ Foruten slike okonomiske ulemper er det ikke tilstrekkelig sikkert at de angitte stopetekniske forholdsregler vil virke tilfredsstillende. It is known that, in connection with simply shaped goods made of aluminum-zinc alloys, good mechanical properties can be achieved by a very rapid decoupling of these by stopping. However, until now it has not been possible to utilize the advantages that can be achieved by rapid cooling of the stope material because the reverse sieving increases with increasing solidification speed and pores thereby occur more frequently in the stope material. The tendency to pore formation can/admittedly be reduced by stoping technical precautions, such as by increasing the number of risers and sink boxes and by keeping these afloat. However, the solidifying metal in the risers and sinker series must be separated from the actual stope, e.g. by hot cutting, and goes to scrap. As the amount of metal solidified in the risers and sinkers constitutes a significant part of the total amount of metal that is filled out during the production of a stope, the amount of scrap produced entails significant disadvantages and additional costs for the stope factory. In addition to such economic disadvantages, it is not sufficiently certain that the stated stopping technical precautions will work satisfactorily.

Oppfinnelsen tar sikte på å. unngå disse ulemper og angår en legering på basis av aluminium og sink med et aluminiuminnhold av 38-75$) fortrinnsvis 50-65$, e^ nikkeiinnhold og eventuelt et innhold av magnesium og kobber idet resten er sink, og legeringen er særpreget ved at nikkelinnholdet er minst 0,05$ og hoyst tilsvarer forlopet for den eutektiske renne i systemet aluminium-sink-nikkel, hvorved det hoyeste nikkeiinnhold er 0,6$ for 38$ aluminium, 1,1$ for 50$ aluminium, 1,7$ for .60$ aluminium, 2,.<*>+$ for 70$ aluminium og 2,8$ for<:>75$ aluminium og forloper jevnt mellom de angitte verdier, det eventuelle magnesiuminnhold er 0,005-0,05$, og det eventuelle kobberinnhold er hoyst 6,5$ av aluminiuminhholdet The invention aims to avoid these disadvantages and relates to an alloy based on aluminum and zinc with an aluminum content of 38-75%, preferably 50-65%, a nickel content and possibly a content of magnesium and copper, the remainder being zinc. and the alloy is distinctive in that the nickel content is at least 0.05$ and the highest corresponds to the course of the eutectic trough in the aluminum-zinc-nickel system, whereby the highest nickel content is 0.6$ for 38$ aluminium, 1.1$ for 50$ aluminum, 1.7$ for .60$ aluminum, 2..<*>+$ for 70$ aluminum and 2.8$ for<:>75$ aluminum and runs smoothly between the indicated values, the possible magnesium content is 0.005- 0.05$, and the possible copper content is at most 6.5$ of the aluminum content

På grunn- av. nikkelinnholdet i legeringen, i folge, oppfinnelsen, oppnås et hardere stopegods med porefri og finkornig struktur. Because of. the nickel content in the alloy, according to the invention, a harder stope is obtained with a pore-free and fine-grained structure.

Ved hjelp av det eventuelle magnesiuminnhold oppnås en ytterligere kornforfining. Kobber som eventuell ytterligere bestanddel virker, også hardhetsokende. With the help of the possible magnesium content, a further grain refinement is achieved. Copper as an additional component works, also increasing hardness.

Den foreliggende fremgangsmåte ved fremstilling av legeringen ifolge oppfinnelsen, hvor utgangsmaterialene smeltes og den smeltede, legering utstopes og får storkne, er særpreget The present method for producing the alloy according to the invention, where the starting materials are melted and the melted alloy is filled out and allowed to solidify, is distinctive

ved at varmeavgangen under storkningen av den utstopte legering holdes under 0,2 cal/s/g, fortrinnsvis mellom 0,05 og 0,1 cal/s/g. in that the heat loss during the solidification of the filled alloy is kept below 0.2 cal/s/g, preferably between 0.05 and 0.1 cal/s/g.

Utgangsmaterialene har fortrinnsvis en renhet av minst 99,5$ og The starting materials preferably have a purity of at least 99.5$ and

er frie for elementer, som silicium eller bor, som danner uoppløse-lige forbindelser med. nikkel,, og for elementer, som jern, mangan, titan, vanadium, molybden, wolfram og carbon, som danner primære og nåleformige krystaller. are free of elements, such as silicon or boron, which form insoluble compounds with. nickel,, and for elements such as iron, manganese, titanium, vanadium, molybdenum, tungsten and carbon, which form primary and acicular crystals.

Eventuelt magnesium innfores fortrinnsvis i form av en for-legering med hoy egenvekt, fortrinnsvis i form av en legering med 5$ aluminium, 3$ magnesium og 92$ sink. Any magnesium is preferably introduced in the form of a pre-alloy with a high specific gravity, preferably in the form of an alloy with 5% aluminium, 3% magnesium and 92% zinc.

Formstykker fremstilt fra legeringen ifolge oppfinnelsen kan o hurtig avkjoles fra temperatur over 350 C til værelsetemperatur og derefter varmebehandles i 0,25 - 8 timer ved en temperatur av 80-275°C. Ved denne varmebehandling oppnås en utskillelse av rene sinkkrystaller i meget findelt form fra legeringen, hvorved nodlop-egenskapene til de fra legeringen Ifolge oppfinnelsen fremstilte lagre vesentlig forbedres. Shaped pieces produced from the alloy according to the invention can o quickly be cooled from a temperature above 350°C to room temperature and then heat-treated for 0.25 - 8 hours at a temperature of 80-275°C. By this heat treatment, a separation of pure zinc crystals in very finely divided form from the alloy is achieved, whereby the nodlop properties of the bearings produced from the alloy according to the invention are significantly improved.

Legeringen ifolge oppfinnelsen kan varmformes ved en.temperatur av 200-1+00oC, men den kan også kaldformes. Derved er det mulig å fremstille tynnveggede lagerskåler ved forming av kaldvalsede blikk bestående av den foreliggende legering. The alloy according to the invention can be hot-formed at a temperature of 200-1+00oC, but it can also be cold-formed. Thereby, it is possible to produce thin-walled bearing bowls by forming cold-rolled sheets consisting of the present alloy.

Det er nedenfor angitt noen eksempler på sammensetninger av legeringer ifolge oppfinnelsen og deres mekaniske egenskaper: 1) Lagerlegering for middels'belastning, glodet i 1 time ved 150°C, sammensetning: Al 50$, Zn ^9,3$, Ni 0,7$. Below are some examples of compositions of alloys according to the invention and their mechanical properties: 1) Bearing alloy for medium load, annealed for 1 hour at 150°C, composition: Al 50$, Zn ^9.3$, Ni 0, 7$.

Stopegodshardhet H-r - 90 kp/mmStop goods hardness H-r - 90 kp/mm

Hardhet efter gloding Hfi - 65 kp/mm<2>Hardness after annealing Hfi - 65 kp/mm<2>

2) Lagerlegering for hoy belastning, glodet i 1 time ved 150°C, sammensetning: Al 58$, Zn k- 0%, Ni 1$, Cu 1$. 2) Bearing alloy for high load, annealed for 1 hour at 150°C, composition: Al 58$, Zn k- 0%, Ni 1$, Cu 1$.

HSatorpdhegeot deshfatredr hgelt oding HHR g a - - 1910 0 kpk/pm/mmm 22 HSatorpdhegeot deshfatredr hgelt oding HHR g a - - 1910 0 kpk/pm/mmm 22

Ved tilsetning av 0,03$ Mg steg hardheten med 10 kp/mm . By adding 0.03$ Mg, the hardness increased by 10 kp/mm.

3) Lagerlegering, varmvalset ved 280°C fra 30 mm til 6 mm, glodet i 3 timer ved 150°C. 3) Bearing alloy, hot rolled at 280°C from 30 mm to 6 mm, annealed for 3 hours at 150°C.

Legeringene a) og b). ble kaldvalset og anlopt i 3 timer véd 150°C. Resultatene av noen prover.for å fastslå en del av leger-ingenes fysikalske egenskaper er gjengitt nedenfor, idet den forste av to verdier er resultatet av proving parallelt med valseretningen og den annen av proving loddrett på valseretningen. The alloys a) and b). was cold rolled and annealed for 3 hours at 150°C. The results of some tests to determine some of the physical properties of the alloys are reproduced below, the first of two values being the result of testing parallel to the rolling direction and the other of testing perpendicular to the rolling direction.

Claims (2)

1. Legering på basis av aluminium og sink for anvendelse ved fremstilling av maskindeler med gode glideegenskaper, fortrinnsvis for lågere, med et aluminiuminnhold av 38 - 75%, fortrinnsvis 50-63%, et nikkeiinnhold og eventuelt et innhold av magnesium og kobber idet resten er sink, karakterisert, ved at nikkelinnholdet er minst 0, 5% og hoyst tilsvarer forlbpet for den-eutektiske renne i systemet aluminium-sink-nikkel, hvorved det hoyeste nikkeiinnhold er 0,6$ for 38$ aluminium, 1,1$ for 50$ aluminium, 1,7$ for 60$ aluminium, 2,^-$ for 70$ aluminium og 2,8$ for 75$ aluminium og forlbper jevnt mellom de angitte verdier, det eventuelle magnesiuminnhold er 0,005 - 0,05$, og det eventuelle kobberinnhold er hoyst 6,5$ av aluminiuminnholdet.1. Alloy based on aluminum and zinc for use in the production of machine parts with good sliding properties, preferably for lower ones, with an aluminum content of 38 - 75%, preferably 50-63%, a nickel content and possibly a content of magnesium and copper with the rest is zinc, characterized in that the nickel content is at least 0.5% and the highest corresponds to the course of the eutectic trough in the system aluminium-zinc-nickel, whereby the highest nickel content is 0.6$ for 38$ aluminum, 1.1$ for 50$ aluminum, 1.7$ for 60$ aluminum, 2.^-$ for 70$ aluminum and 2.8$ for 75$ aluminum and proceeds smoothly between the indicated values, the possible magnesium content is 0.005 - 0.05$, and the possible copper content is at most 6.5% of the aluminum content. 2. Fremgangsmåte ,ved fremstilling av en legering ifolge krav 1 hvor utgangsmaterialene smeltes og den smeltede legering utstopes og får storkne, karakterisert ved at varmeavgangen under storkningen av den utstbpte legering holdes under 0,2 cal/s/g, fortrinnsvis mellom 0,05 og 0,1 cal/s/g.2. Procedure for the production of an alloy according to claim 1 where the starting materials are melted and the molten alloy is poured out and allowed to solidify, characterized in that the heat output during the solidification of the poured out alloy is kept below 0.2 cal/s/g, preferably between 0.05 and 0.1 cal/s/g.
NO04331/70A 1970-02-05 1970-11-13 NO127202B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT104570A AT294440B (en) 1970-02-05 1970-02-05 Aluminum-zinc-based alloy and process for its manufacture and heat treatment

Publications (1)

Publication Number Publication Date
NO127202B true NO127202B (en) 1973-05-21

Family

ID=3505383

Family Applications (1)

Application Number Title Priority Date Filing Date
NO04331/70A NO127202B (en) 1970-02-05 1970-11-13

Country Status (17)

Country Link
US (1) US3790373A (en)
JP (1) JPS518089B1 (en)
AT (1) AT294440B (en)
BE (1) BE759747A (en)
BR (1) BR7024871D0 (en)
CH (2) CH560251A5 (en)
DE (1) DE2055307C3 (en)
DK (1) DK141373B (en)
ES (1) ES386489A1 (en)
FR (1) FR2080495A5 (en)
GB (1) GB1326777A (en)
IL (1) IL35699A (en)
LU (1) LU62034A1 (en)
NL (1) NL154274B (en)
NO (1) NO127202B (en)
SE (1) SE358903B (en)
YU (1) YU34147B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599279A (en) * 1984-10-01 1986-07-08 Ball Corporation Zinc alloy for reducing copper-zinc diffusion
JP4578631B2 (en) * 2000-07-03 2010-11-10 有限会社ヤブサキ自動車工業 Bracket for vehicle sheet metal work
US6383657B1 (en) 2000-12-18 2002-05-07 Alltrista Zinc Products Aluminum clad zinc bimetallic coin planchet
CN101985709B (en) * 2010-11-08 2012-08-08 西安晟金新材料科技有限公司 Wear-resistant high zinc-aluminum-based bronze substitute material
CN117026029B (en) * 2023-08-09 2024-03-01 仲恺农业工程学院 High-strength high-damping aluminum-zinc bimetallic alloy and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1788751A (en) * 1926-02-27 1931-01-13 Max Dietiker Aluminum alloy
US2280170A (en) * 1939-10-27 1942-04-21 Aluminum Co Of America Aluminum alloy
US2870008A (en) * 1954-11-18 1959-01-20 Main Alloy Company Establishme Zinc-aluminium alloys and the method for producing same

Also Published As

Publication number Publication date
YU281570A (en) 1978-06-30
US3790373A (en) 1974-02-05
CH556914A (en) 1974-12-13
NL154274B (en) 1977-08-15
DK141373C (en) 1980-08-18
IL35699A0 (en) 1971-01-28
FR2080495A5 (en) 1971-11-12
DE2055307C3 (en) 1979-11-08
GB1326777A (en) 1973-08-15
LU62034A1 (en) 1971-05-10
ES386489A1 (en) 1973-11-16
CH560251A5 (en) 1975-03-27
BR7024871D0 (en) 1973-04-05
YU34147B (en) 1978-12-31
DK141373B (en) 1980-03-03
NL7016759A (en) 1971-08-09
AT294440B (en) 1971-11-25
DE2055307A1 (en) 1971-08-19
JPS518089B1 (en) 1976-03-13
DE2055307B2 (en) 1979-03-22
IL35699A (en) 1974-01-14
BE759747A (en) 1971-05-17
SE358903B (en) 1973-08-13

Similar Documents

Publication Publication Date Title
US4636357A (en) Aluminum alloys
CN103930577A (en) Aluminum alloy material and aluminum alloy structure and production process therefor
JPWO2015052776A1 (en) Cast aluminum alloy and casting using the same
US4002502A (en) Aluminum base alloys
NO127202B (en)
US20050000604A1 (en) Aluminum alloy, cast article of aluminum alloy, and method for producing cast article of aluminum alloy
US2798827A (en) Method of casting and heat treating nickel base alloys
US1410461A (en) Making castings of aluminum-silicon alloys
US2059557A (en) Copper-base alloys
US2185452A (en) Method of heat treating magnesium base alloys
JP7293696B2 (en) Aluminum alloy casting material and manufacturing method thereof
US2290025A (en) Aluminum alloy
US2059555A (en) Alloys
US2720459A (en) Highly wear-resistant zinc base alloy
US2185453A (en) Method of heat treating magnesium base alloys
US3370945A (en) Magnesium-base alloy
EP0241193B1 (en) Process for producing extruded aluminum alloys
US1341774A (en) Metal alloy
US1852442A (en) Zinc-base die-casting alloy
US2123886A (en) Heat treated aluminum base alloy
JP2746521B2 (en) Method for Preventing Generation of Giant Compound in Al-Zn-Mg Alloy
US2059558A (en) Copper-base alloys containing chromium and iron
US2059556A (en) Copper-base alloys
US1974971A (en) Method of treating alloys
JPWO2018084103A1 (en) Aluminum alloy for low pressure casting