NO126296B - - Google Patents

Download PDF

Info

Publication number
NO126296B
NO126296B NO04431/69A NO443169A NO126296B NO 126296 B NO126296 B NO 126296B NO 04431/69 A NO04431/69 A NO 04431/69A NO 443169 A NO443169 A NO 443169A NO 126296 B NO126296 B NO 126296B
Authority
NO
Norway
Prior art keywords
hmf
reaction
temperature
sucrose
heating
Prior art date
Application number
NO04431/69A
Other languages
Norwegian (no)
Inventor
Gustav Eric Valdemar Benson
Original Assignee
Minipump Ind Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minipump Ind Ab filed Critical Minipump Ind Ab
Publication of NO126296B publication Critical patent/NO126296B/no

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/02Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement
    • G01F11/08Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement of the diaphragm or bellows type
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K5/00Holders or dispensers for soap, toothpaste, or the like
    • A47K5/06Dispensers for soap
    • A47K5/12Dispensers for soap for liquid or pasty soap
    • A47K5/1202Dispensers for soap for liquid or pasty soap dispensing dosed volume
    • A47K5/1208Dispensers for soap for liquid or pasty soap dispensing dosed volume by means of a flexible dispensing chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • F04B43/0063Special features particularities of the flexible members bell-shaped flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/10Pumps having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/109Valves; Arrangement of valves inlet and outlet valve forming one unit
    • F04B53/1092Valves; Arrangement of valves inlet and outlet valve forming one unit and one single element forming both the inlet and outlet closure member

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Coating Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Fremgangsmåte til fremstilling av 5-hydroksy-metyl-furfural. Process for the production of 5-hydroxy-methyl-furfural.

Foreliggende oppfinnelse angår en The present invention relates to a

fremgangsmåte til fremstilling av 5-hydroksy-metyl-furfural (i det følgende beteg-net HMF) ved omformning av sukkerarter. Ved hjelp av oppfinnelsen skaffes der en kontinuerlig prosess som utføres ved relativt høye temperaturer og ved hvilke invertsukker, glykose, fruktosaner, fruktose, sukrose og hydrolysert tre eller stivelse method for the production of 5-hydroxy-methyl-furfural (hereinafter referred to as HMF) by reforming sugars. With the help of the invention, a continuous process is obtained which is carried out at relatively high temperatures and in which invert sugar, glucose, fructosans, fructose, sucrose and hydrolysed wood or starch

(alle disse stoffer kalles i det følgende «sukkerarter» for bekvemhets skyld) i vandig oppløsning overføres til HMF. Fremgangsmåten ifølge oppfinnelsen er både rask og effektiv. (all these substances are called "sugars" in the following for convenience) in aqueous solution are transferred to HMF. The method according to the invention is both fast and efficient.

Tidligere forskere har beskrevet over-føring av sukrose til HMF ved forsøk i små charger og med sure katalysatorer som for-tynnede mineralsyrer eller organiske syrer, f. eks. oksalsyre, såmt ved relativt lave temperaturer. De tidligere beskrevne fremgangsmåter krever lang tid for overførin-gen og gir lave utbytter. Disse fremgangsmåter er derfor ikke egnet for utførelse i industriell målestokk. De maksimale utbytter som er angitt for de tidligere fremgangsmåter er oppnådd ved 162—167° C med utbyttet av HMF synkende til null ved 225° C. Humin er et av reaksjonspro-duktene, og dannelsen av dette stoff har i de tidligere fremgangsmåter øket progres-sivt med økende temperatur. Dannelsen av humin har således i alvorlig grad innvirket ufordelaktig på utbyttet av HMF. Previous researchers have described the transfer of sucrose to HMF by experiments in small batches and with acid catalysts such as dilute mineral acids or organic acids, e.g. oxalic acid, sown at relatively low temperatures. The previously described methods require a long time for the transfer and give low yields. These methods are therefore not suitable for implementation on an industrial scale. The maximum yields indicated for the previous methods are obtained at 162-167° C with the yield of HMF decreasing to zero at 225° C. Humin is one of the reaction products, and the formation of this substance has increased progress in the previous methods - sieve with increasing temperature. The formation of humin has thus seriously adversely affected the yield of HMF.

Humin er et brunt til sort, dunaktig, Humin is a brown to black, downy,

fast stoff som er nesten fullstendig uopp-løselig i vann, etsalkalier, syrer og organiske oppløsningsmidler av alle slag. Det danner belegg på reaksjonskarenes vegger solid substance which is almost completely insoluble in water, caustic alkalis, acids and organic solvents of all kinds. It forms a coating on the walls of the reaction vessels

og virker da sterkt varmeisolerende så at det forårsaker dårlig gjennomgang av var-men. Humin initierer også emulgering av vandige faser sammen med forskjellige ekstraksjonsmidler og kompliserer i det hele tatt problemet utvinning av HMF. and then acts as a strong heat insulator so that it causes poor passage of heat. Humin also initiates emulsification of aqueous phases together with different extractants and altogether complicates the problem of recovery of HMF.

Foreliggende oppfinnelse er basert på den erkjennelse at sukkerarter i vandig oppløsning kan overføres til HMF ved temperatur over omkring 250° C med høyt utbytte, på kort tid, uten den dannelse av humin som inntrer når man arbeider ved lave temperaturer og med forbedret utbytte av HMF. The present invention is based on the realization that sugars in aqueous solution can be transferred to HMF at a temperature above about 250° C with high yield, in a short time, without the formation of humin that occurs when working at low temperatures and with improved yield of HMF .

De karakteristiske hovedtrekk ved fremgangsmåten ifølge oppfinnelsen er følgelig at man oppvarmer en vandig oppløsning av en sukkerart til temperaturer over 250° C, men fortrinsvis ikke over 380° C i et tidsrom som er tilstrekkelig til å danne HMF med høyt utbytte. Fremgangsmåten ifølge oppfinnelsen utføres fortrinsvis kontinuerlig. The characteristic main features of the method according to the invention are consequently that an aqueous solution of a sugar is heated to temperatures above 250° C, but preferably not above 380° C for a period of time which is sufficient to form HMF with a high yield. The method according to the invention is preferably carried out continuously.

Det er videre funnet at forholdet mellom tid og temperatur ved denne reaksjon er slik at tiden for oppvarmning til den øvre grense for temperaturområdet kan gjøres meget kort. I området fra 250° C til omkring 380° C er kontakttiden under to minutter ved anvendelse av sukrose eller invertsukker som utgangsmateriale og kan være så kort som et tiendedels sekund eller noen få hundrededels sekunder i den øvre del av dette temperaturområde. It has further been found that the relationship between time and temperature in this reaction is such that the time for heating to the upper limit of the temperature range can be made very short. In the range from 250° C to about 380° C, the contact time is under two minutes when using sucrose or invert sugar as starting material and can be as short as a tenth of a second or a few hundredths of a second in the upper part of this temperature range.

Anvendelse av katalysatorer er ikke nødvendig i fremgangsmåten ifølge oppfinnelsen, men anvendelsen av sådanne kan være fordelaktig i noen tilfelle, f. eks. når glykose eller oppløsninger inneholdende overveiende glykose brukes som utgangsmateriale, eller når der føres tilbake til reaksjonen moderlut fra hvilken mestepar-ten av fruktose er fjernet ved overføring til HMF. Et effektivt utbytte ved behandling av slike oppløsninger krever strenge betingelser, deriblant høyere temperaturer, lengere kontakttid eller en katalysator. Ved anvendelse av katalysatorer kan der brukes de forannevnte tidligere kjente katalysatorer, det foretrekkes imidlertid å bruke levulinsyre som er funnet å være en meget god katalysator. The use of catalysts is not necessary in the method according to the invention, but the use of such can be advantageous in some cases, e.g. when glucose or solutions containing predominantly glucose are used as starting material, or when mother liquor is returned to the reaction from which most of the fructose has been removed by transfer to HMF. An effective yield when treating such solutions requires strict conditions, including higher temperatures, longer contact time or a catalyst. When using catalysts, the aforementioned previously known catalysts can be used, but it is preferred to use levulinic acid, which has been found to be a very good catalyst.

Ved utførelse av fremgangsmåten ifølge oppfinnelsen hvorved der altså brukes relativt høye temperaturer, dvs. over omkring 250° C, unngåes i det vesentlige eller fullstendig dannelse av humin. Ved lange kon-takttider eller høye begynnelseskonsentra-sjoner i oppløsningene av sukkerartene dannes der et tjæreabtig stoff som imidlertid ikke er humin. Dette tjæreaktige stoff er oppløselig i mange organiske opp-løsningsmidler som f. eks. furfural, etylacetat, formamid, dimetylformamid, dime-tyl-sulfoksyd. Videre overføres dette stoff ikke til det uoppløselige humin selv ved strenge reaksjonsbetingelser. I sammen-ligning med humindannelsen har ikke dette tjæreaktige stoff de ulemper som humindannelsen er beheftet med ved fremstilling av HMF i stor målestokk. I reaktorer med rørslange for kontinuerlige reaksjoner danner således det uoppløselige humin belegg på overflater og i åpninger og tilstopper temmelig raskt apparaturen. På den annen side er det nevnte tjæreaktige stoff temmelig lettf ly tende ved reaksjonstempera turen, og oppfører seg slik som man kan vente av en emulsjon av halvt viskose ma-terialer i vandige systemer. When carrying out the method according to the invention whereby relatively high temperatures are used, i.e. above about 250° C, the formation of humin is essentially or completely avoided. In the case of long contact times or high initial concentrations in the solutions of the sugars, a tar-like substance is formed which, however, is not humin. This tar-like substance is soluble in many organic solvents such as e.g. furfural, ethyl acetate, formamide, dimethylformamide, dimethyl sulfoxide. Furthermore, this substance is not transferred to the insoluble humin even under strict reaction conditions. In comparison with humic formation, this tar-like substance does not have the disadvantages that humic formation is plagued with in the production of HMF on a large scale. In reactors with tubing for continuous reactions, the insoluble humin thus forms a coating on surfaces and in openings and clogs the apparatus rather quickly. On the other hand, the aforementioned tar-like substance is rather easy-flowing at the reaction temperature, and behaves as one would expect from an emulsion of semi-viscous materials in aqueous systems.

Foruten den ovenfor nevnte fordel som er av ytterst stor praktisk betydning, er ut-, byttene av HMF ved fremgangsmåten ifølge oppfinnelsen betydelig høyere enn dem som er angitt for de tidligere kjente fremgangsmåter. Ved anvendelse av sukrose som utgangsmateriale har man ved drift i liten målestokk oppnådd utbytter av HMF på nesten 40 pst. (Utbyttene er her bestemt ved absorpsjonsspektret i det ultrafiolette område som er en hensiktsmessig bestem-melsesmetode). Dvs.ved anvendelse av 300 g sukrose får man 88 g HMF ved å lede ma-terialet en gang gjennom oppvarmnings-apparaturen. Det er her ikke tatt hensyn til sukkerarter som kan gjenvinnes. Ifølge det som angis om de tidligere fremgangsmåter ville man i disse bare få 48 g HMF. Besides the above-mentioned advantage, which is of extremely great practical importance, the yields of HMF in the method according to the invention are significantly higher than those indicated for the previously known methods. When using sucrose as starting material, yields of HMF of almost 40 per cent have been achieved in operation on a small scale (the yields are here determined by the absorption spectrum in the ultraviolet range, which is an appropriate determination method). That is, when using 300 g of sucrose, 88 g of HMF is obtained by passing the material once through the heating apparatus. Sugars that can be recovered have not been taken into account here. According to what is stated about the previous methods, only 48 g of HMF would be obtained in these.

Ved utførelsen av fremgangsmåten ifølge oppfinnelsen oppvarmes sukkerarten oppløst i vann i nærvær eller fravær av katalysator raskt i et hvilket som helst egnet ■ apparat forsynt med anordninger til kontinuerlig å lede sukkerartoppløsningen inn i apparatet og til å fjerne reaksjons-produktene inklusive HMF. Apparaturen i sin helhet bør omfatte anordninger til å skille den vandige fase inneholdende ikke omsatt sukkerart så at dette kan returneres ti! prosessen, det tjæreaktige stoff og HMF. When carrying out the method according to the invention, the sugar dissolved in water is heated rapidly in the presence or absence of a catalyst in any suitable apparatus equipped with devices to continuously feed the sugar solution into the apparatus and to remove the reaction products including HMF. The apparatus as a whole should include devices to separate the aqueous phase containing unreacted sugar so that this can be returned to! the process, the tarry substance and HMF.

I ethvert praktisk system for utførelse av denne reaksjon må man ta i betraktning sammenhengen mellom tid og temperatur under oppvarmningsperioden, reaksjons-perioden og avkjølingstrinnet. I et fore-trukket kontinuerlig system for overføring av sukkerarter til HMF bør der oppnåes en rask oppvarmning til reaksjonstempera turen og rask avkjøling eller bråkjøling efter reaksjonen. Der er tilgjengelig apparatur for dette formål med hvilken man kan ut-føre fremgangsmåten ved atmosfæretrykk eller ved høyere trykk. En apparatur som er særlig skikket til utførelse av fremgangsmåten ifølge oppfinnelsen omfatter i det minste en pumpe, en varmekilde, en reaktor og en ventil for avspenning av trykket. Det foretrekkes å bruke en pumpe som avmåler mengdeforholdet som f. eks. pumper av Hills-McKanna eller Milton Roy-typene og en tilbakeslags-kontrollventil, f. eks. av Annin-Hammel-Dahl eller Mason-Neilan-typene. Reaktoren omfatter fortrinsvis en eller flere kontinuerlige rørslanger av rustfritt stål eller kullholdig stål og med slik diameter at man oppnår det mest effektive forhold mellom varmetilførsel og oppløs-ningens volum. Tilbakeslags-kontrollventi-len tillater å holde reaksjonsblandingen ved hvilket som helst ønsket høyt trykk under samtidig unnvikelse av flytende produkt ved hvilket som helst ønsket lavere trykk, fordelaktig ved atmosfæretrykk. Annen apparatur som er fordelaktig ved utførelsen av foreliggende fremgangsmåte i industriell målestokk omfatter anordninger til regulering av temperatur og trykk. Disse anordninger kan være av typer som er til-gjengelige i handelen. In any practical system for carrying out this reaction, one must take into account the relationship between time and temperature during the heating period, the reaction period and the cooling step. In a preferred continuous system for transferring sugars to HMF, a rapid heating to the reaction temperature and rapid cooling or quenching should be achieved after the reaction. Apparatus is available for this purpose with which the method can be carried out at atmospheric pressure or at higher pressure. An apparatus which is particularly suitable for carrying out the method according to the invention comprises at least a pump, a heat source, a reactor and a valve for relieving the pressure. It is preferable to use a pump that measures the quantity ratio, such as pumps of the Hills-McKanna or Milton Roy types and a check valve, e.g. of the Annin-Hammel-Dahl or Mason-Neilan types. The reactor preferably comprises one or more continuous tubes of stainless steel or carbon-containing steel and with such a diameter that the most effective ratio between heat supply and the volume of the solution is achieved. The check valve allows the reaction mixture to be maintained at any desired high pressure while simultaneously avoiding liquid product at any desired lower pressure, advantageously at atmospheric pressure. Other apparatus which is advantageous in carrying out the present method on an industrial scale includes devices for regulating temperature and pressure. These devices can be of commercially available types.

Anordningene til oppvarmning av opp-løsningen i reaktoren er av viktighet i for-bindelse med regulering av forholdet mellom tid og temperatur. Det er viktig å nå reaksjonstempera turen meget raskt, om mulig nesten øyeblikkelig. For dette formål kan man oppvarme ved innblåsning av overhetet damp i oppløsningen av sukkerartene. Varmemengden i dampen pluss den latente kondensasjonsvarme frembringer da en rask økning av temperaturen. En annen anordning til rask oppvarmning omfatter reaktor-rørslanger som oppløsningen ledes gjennom og som har meget liten diameter samt oppvarmes utenfra i en ovn på den måte som brukes til oppvarmning av moderne høytrykks-dampkjeler. Der kan imidlertid også brukes andre anordninger tii oppvarmning av reaktoren, som f. eks. elektrisk oppvarmning. The devices for heating the solution in the reactor are of importance in connection with regulation of the relationship between time and temperature. It is important to reach the reaction temperature very quickly, if possible almost instantly. For this purpose, heating can be done by blowing superheated steam into the solution of the sugars. The amount of heat in the steam plus the latent heat of condensation then produces a rapid increase in temperature. Another device for rapid heating comprises reactor tubes through which the solution is led and which have a very small diameter and are heated from the outside in a furnace in the manner used for heating modern high-pressure steam boilers. However, other devices can also be used for heating the reactor, such as e.g. electric heating.

På grunn av at HMF er ustabilt, er det viktig at produktet fjernes fra reaksjonsblandingen så raskt som mulig. Dette kan oppnåes ved å arbeide kontinuerlig i nærvær av et ekstraksjonsmiddel som furfural, hvorved den vandige oppløsning av sukkerarter og furfural pumpes i samme retning eller i motstrøm gjennom reaktoren. Reaksjonsblandingen kan behandles på mange forskjellige måter, således kan den ekstra-heres, destilleres eller underkastes adsorp-sjon for utvinning av HMF. Det foretrekkes i alminnelighet å ekstrahere HMF fra den nøytrale reaksjonsblanding for å ad-skille sukkerarter og andre delvis dehydra-tiserte kullhydrater. Som ekstraksjonsmiddel kan man bruke alkoholer som ikke er blandbare med vann, ketoner, etere, estere og halogenerte kullvannstoffer eller blandinger fra sådanne stoffer. Det foretrekkes imidlertid å bruke furfural da dette stoff i alminnelighet dannes i liten grad i reaktoren og derfor i hvert fall må skilles fra HMF. Det vandige raffinerte produkt man får ved ekstraksjonen kan viderebehandles for gjenvinning av spor av oppløsningsmid-ler og derpå returneres til reaktoren, eventuelt efter tilsetning av en passende katalysator. Because HMF is unstable, it is important that the product be removed from the reaction mixture as quickly as possible. This can be achieved by working continuously in the presence of an extractant such as furfural, whereby the aqueous solution of sugars and furfural is pumped in the same direction or in countercurrent through the reactor. The reaction mixture can be treated in many different ways, thus it can be extracted, distilled or subjected to adsorption for recovery of HMF. It is generally preferred to extract HMF from the neutral reaction mixture to separate sugars and other partially dehydrated carbohydrates. Alcohols which are not miscible with water, ketones, ethers, esters and halogenated hydrocarbons or mixtures of such substances can be used as extraction agents. However, it is preferred to use furfural as this substance is generally formed to a small extent in the reactor and must therefore at least be separated from HMF. The aqueous refined product obtained during the extraction can be further processed to recover traces of solvents and then returned to the reactor, possibly after the addition of a suitable catalyst.

Oppløsningen inneholdende HMF kan behandles med aktivt kull for fjernelse av forurensninger og derpå destilleres for utvinning av HMF. The solution containing HMF can be treated with activated charcoal to remove contaminants and then distilled to extract HMF.

Da fruktose dehydratiseres til HMF let-tere enn glykose, er det fordeler ved anvendelse av oppløsninger av i det vesentlige ren fruktose som utgangsmateriale for fremgangsmåten ifølge oppfinnelsen. Denne sukkerart kan fåes ved hydrolyse av de fruktosaner som forekommer i ti-planten, Jerusalemartiskokken, eller ved oppdeling av invertsukker i dets bestanddeler. Man kan med økonomisk fordel bruke saften fra sukkerrør, eventuelt i konsentrert tilstand, suspensjon av knuste sukkerrør, invertme-lasse eller «high test»-melasse, hydrolysert tre eller stivelse eller melasse erholdt ved sådan hydrolyse. «Blackstrap»-melasse kan også brukes. Det er videre funnet at når blandinger av glykose eller sukrose med fruktose krakkes ved temperaturer omkring 275°, skriver det herved erholdte HMF seg hovedsakelig fra fruktose og bare delvis fra glykose eller sukrose. De sukkerarter som føres tilbake til prosessen er derfor i stor utstrekning glykose eller sukrose. Ved behandling av slike blandinger er det fordelaktig å bruke relativt strenge reaksjonsbetingelser, deriblant katalysatorer. As fructose is dehydrated to HMF more easily than glucose, there are advantages in using solutions of essentially pure fructose as starting material for the method according to the invention. This type of sugar can be obtained by hydrolysis of the fructosans that occur in the ti plant, the Jerusalem artichoke, or by breaking down invert sugar into its components. It is economically advantageous to use the juice from sugar cane, possibly in a concentrated state, a suspension of crushed sugar cane, invert molasses or "high test" molasses, hydrolysed wood or starch or molasses obtained by such hydrolysis. "Blackstrap" molasses can also be used. It has further been found that when mixtures of glucose or sucrose with fructose are cracked at temperatures of around 275°, the HMF thus obtained is written mainly from fructose and only partially from glucose or sucrose. The sugars that are returned to the process are therefore largely glucose or sucrose. When treating such mixtures, it is advantageous to use relatively strict reaction conditions, including catalysts.

I det følgende beskrives som eksempler noen utførelsesformer for fremgangsmåten ifølge oppfinnelsen. In the following, some embodiments of the method according to the invention are described as examples.

Eksempel I. Example I.

For å studere krakking ved høy temperatur av sukkerarter til furaner i labora-toriet ble der utført en rekke kapillarrørs-forsøk. Kapillarrør av den type som i alminnelighet brukes til smeltepunktbestem-melser ble veiet og fylt med 40—60 mg av en beholdning av sukkeroppløsning. Efter veining ble kapillarrørene tillukket og opp-varmet i et oljebad som ble holdt ved kon-stant temperatur i det ønskede tidsrom. Kapillarrørene ble derpå tatt raskt ut av oljebadet og dykket ned i kold olje. Rørene ble så anbragt i målekolber og knust. Om-vandlingen til HMF ble bestemt ved å måle absorpsjonen i spektrets ultrafiolette område ved 28—30 Å. In order to study the high-temperature cracking of sugars into furans in the laboratory, a number of capillary tube experiments were carried out. Capillary tubes of the type commonly used for melting point determinations were weighed and filled with 40-60 mg of a stock of sugar solution. After weighing, the capillary tubes were closed and heated in an oil bath which was kept at a constant temperature for the desired period of time. The capillary tubes were then quickly taken out of the oil bath and immersed in cold oil. The tubes were then placed in volumetric flasks and crushed. The conversion to HMF was determined by measuring the absorption in the ultraviolet region of the spectrum at 28-30 Å.

Data erholdt ved en enkelt behandling ved 270° C av en 40 pst.'s oppløsning av sukrose i vann tilsatte 0,01 pst. levulinsyre angis i nedenstående tabell. Data obtained from a single treatment at 270° C of a 40% solution of sucrose in water to which 0.01% levulinic acid has been added are shown in the table below.

De høyeste utbytter ved forskjellige reaksjonstempera turer angis i nedenstående tabell: The highest yields at different reaction temperatures are given in the table below:

I virkeligheten er dette sansynligvis ikke det maksimale utbytte da det er vanskelig å behandle kapillarrør ved korte kontakt-tidsrom hvor feil ved oppvarmn ingen og av-kjølingen blir fremtredende. In reality, this is probably not the maximum yield as it is difficult to process capillary tubes at short contact times where errors during heating and cooling become prominent.

Eksempel II. Example II.

Der ble konstruert en rørformet reaktor bestående av tre 1/4 tommes O.D., 18 gage rør av rustfritt stål nr. 316, hvert med en lengde på 4,25 m. Disse rør ble anbragt i serie og forbundet med en 9 meters kjøle-slange. Rørene ble tilført varme ved å omgi dem med en mantel og pumpe varm olje gjennom denne. Hjelpeapparaturen bestod av en trykkavspenningsventil samt regule-ringsanordninger for trykk og temperatur. A tubular reactor was constructed consisting of three 1/4 inch O.D., 18 gage No. 316 stainless steel tubes, each 4.25 m long. These tubes were placed in series and connected by a 9 m cooling hose . The tubes were heated by surrounding them with a jacket and pumping hot oil through this. The auxiliary equipment consisted of a pressure relief valve as well as regulating devices for pressure and temperature.

Vann ble først pumpet gjennom reaktoren ved hjelp av et Hills-McCanna Duplex pumpesett slik at man fikk en kontakttid på 43 sekunder. Da temperaturen nådde 256° C, ble pumpen koblet til en beholder inneholdende en 40 pst.'s oppløsning av sukrose i vann, tilsatt 0,04 pst. levulinsyre som katalysator. Det erholdte produkt var mørkt og inneholdt spor av tjæreaktig materiale, men humin oppsamlet seg ikke selv efter et lengere tidsrom. Water was first pumped through the reactor using a Hills-McCanna Duplex pump set so that a contact time of 43 seconds was obtained. When the temperature reached 256°C, the pump was connected to a container containing a 40% solution of sucrose in water, with 0.04% levulinic acid added as a catalyst. The product obtained was dark and contained traces of tarry material, but humin did not accumulate even after a longer period of time.

Ved ekstraksjon av reaksjonsblandingen med etylacetat og inndampning av ekstraktet til tørrhet fikk man brunt kry-stallinsk HMF. Utbyttet var 30—31 ps. be-regnet på den anvendte sukrose. Det tjæreaktige materiale viste samme analyse som HMF og kan være et polymerisat av en eller annen art. By extracting the reaction mixture with ethyl acetate and evaporating the extract to dryness, brown crystalline HMF was obtained. The yield was 30-31 ps. calculated on the sucrose used. The tarry material showed the same analysis as HMF and may be a polymer of some kind.

Ved analyse ble produktet funnet å inneholde 57,08 pst. C og 4,53 pst. H, be-regnet for (HMF)X eller (C0H0O3) : C, : 57,2 pst.; H : 4,8 pst. On analysis, the product was found to contain 57.08 per cent C and 4.53 per cent H, calculated for (HMF)X or (C0H0O3) : C, : 57.2 per cent; H: 4.8 per cent.

Eksempel III. Example III.

Man brukte den i eksempel II angitte apparatur og gikk frem således som beskrevet i eksempel II med unntagelse av at furfural ble sprøytet inn i systemet på et sted umiddelbart efter reaksjonssonen (oppvarmningssonen). Dette forhindret ut-skillelse av tjæreaktige stoffer fra reaksjonsblandingen i reaksjonsrørene. Ved av-kjøling skilte furfuralet seg ut i et skikt som ble opparbeidet for utvinning av HMF. Man fikk med relativt høyt utbytte et flytende produkt som øyeblikkelig krystalli-serte ved avkjøling til 15° C. The apparatus specified in example II was used and the procedure was as described in example II with the exception that furfural was injected into the system at a location immediately after the reaction zone (heating zone). This prevented the separation of tar-like substances from the reaction mixture in the reaction tubes. On cooling, the furfural separated in a layer which was worked up for extraction of HMF. A liquid product was obtained in relatively high yield which immediately crystallized on cooling to 15° C.

Furfural ble valgt som oppløsningsmid-del på grunn av dets særlig gunstige for-delingskoeffisient for HMF i vann. Metoksy-metyl- og etoksymetylfurfural kan også brukes for dette formål. Furfural was chosen as solvent because of its particularly favorable distribution coefficient for HMF in water. Methoxymethyl and ethoxymethylfurfural can also be used for this purpose.

Eksempel IV. Example IV.

Man brukte den i eksempel II angitte reaktor. Utgangsmaterialet bestående av en 35 pst.'s oppløsning av sukrose i vann, tilsatt ved 0,04 pst. levulinsyre som katalysator ble pumpet inn i reaktorrørene. Efter en kontakttid på omkring 30 sekunder ved 280—285° C var reaksjonsproduktet en brun oppløsning som nesten var fri for uoppløselige tjæreaktige stoffer. Ved un-dersøkelse av den filtrerte reaksjonsblanding (ved hjelp av absorpsjonsspektret i det ultrafiolette område) viste det seg at 62 pst. av sukkeret var overført til HMF. The reactor specified in example II was used. The starting material consisting of a 35% solution of sucrose in water, added at 0.04% levulinic acid as a catalyst, was pumped into the reactor tubes. After a contact time of about 30 seconds at 280-285° C, the reaction product was a brown solution which was almost free of insoluble tar-like substances. When examining the filtered reaction mixture (using the absorption spectrum in the ultraviolet range) it was found that 62 per cent of the sugar had been transferred to HMF.

HMF lot seg lett utvinne fra reaksjonsblandingen ved å bringe den i kontakt med flere ganger dens eget volum etyleter. Etyl-eteren ble derpå fordampet og residuet de-stillert i vakuum, hvoretter man fikk HMF av god kvalitet, dvs. produktet' krystalli-serte fullstendig ved avkjøling og viste et smeltepunkt på 30° C. HMF was easily recovered from the reaction mixture by contacting it with several times its own volume of ethyl ether. The ethyl ether was then evaporated and the residue distilled in vacuum, after which HMF of good quality was obtained, i.e. the product crystallized completely on cooling and showed a melting point of 30°C.

Eksempel V. Example V.

Man fremstillet en oppløsning av 6,81 kg sukrose i 13,6 1 vann. Sur katalysator ble ikke tilsatt. Denne oppløsning ble kontinuerlig pumpet gjennom den i eksempel II beskrevne reaktor. Temperaturen av ol-jen som omgav reaktoren var 260—265° C, og kontakttiden var 40 sekunder. A solution of 6.81 kg of sucrose in 13.6 1 of water was prepared. Acid catalyst was not added. This solution was continuously pumped through the reactor described in Example II. The temperature of the oil surrounding the reactor was 260-265° C, and the contact time was 40 seconds.

Det mørke avløp fra reaktoren ble raskt kjølet i en isavkjølet kondensator. En prøve av produktet ble fortynnet i passende grad og dets spektrum i det ultrafiolette område bestemt. Utbyttet viste seg da å være 38 pst. av det teoretiske. HMF ble ekstrahert og isolert på den i det fore-gående beskrevne måte. The dark effluent from the reactor was quickly cooled in an ice-cooled condenser. A sample of the product was suitably diluted and its spectrum in the ultraviolet region determined. The yield then turned out to be 38 per cent of the theoretical amount. HMF was extracted and isolated in the manner described above.

Claims (2)

1. Fremgangsmåte til å overføre sukkerarter av gruppen bestående av glukose, fruktose, invertsukker, fruktosaner, sukrose og hydrolysert tre eller stivelse til 5-hydroksy-metyl-furfural ved oppvarmning av en vandig oppløsning av sukkerarten, fortrinsvis i nærvær av en organisk syre, karakterisert ved at man oppvarmer oppløs-ningen over 250° C i et tidsrom som er tilstrekkelig til at der dannes 5-hydroksy-metyl-furfural med høyt utbytte.1. Process for transferring sugars from the group consisting of glucose, fructose, invert sugar, fructosans, sucrose and hydrolysed wood or starch to 5-hydroxy-methyl-furfural by heating an aqueous solution of the sugar, preferably in the presence of an organic acid, characterized by heating the solution above 250° C for a period of time which is sufficient for 5-hydroxy-methyl-furfural to be formed with a high yield. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at reaksjonen utføres ved en temperatur som ikke overstiger 380° C.2. Method according to claim 1, characterized in that the reaction is carried out at a temperature that does not exceed 380° C.
NO04431/69A 1968-11-08 1969-11-07 NO126296B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE15138/68A SE325680B (en) 1968-11-08 1968-11-08

Publications (1)

Publication Number Publication Date
NO126296B true NO126296B (en) 1973-01-22

Family

ID=20300207

Family Applications (1)

Application Number Title Priority Date Filing Date
NO04431/69A NO126296B (en) 1968-11-08 1969-11-07

Country Status (13)

Country Link
JP (1) JPS495308B1 (en)
BE (1) BE741386A (en)
CH (1) CH499305A (en)
DE (1) DE1951696C3 (en)
DK (1) DK126157B (en)
ES (1) ES373614A1 (en)
FI (1) FI47721C (en)
FR (1) FR2022933A1 (en)
GB (1) GB1269545A (en)
LU (1) LU59632A1 (en)
NL (1) NL6916654A (en)
NO (1) NO126296B (en)
SE (1) SE325680B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE401780B (en) * 1976-09-30 1978-05-29 Benson Gustav Eric Valdemar DEVICE FOR APPARATUS FOR DISCHARGE OF LIQUID OR CREAM PRODUCTS
US8579159B2 (en) * 2008-01-18 2013-11-12 Gojo Industries, Inc. Squeeze action foam pump
US9494240B2 (en) * 2011-01-07 2016-11-15 Fast & Fluid Management B.V. Valve assembly for a dispenser for fluids
US9038862B2 (en) 2013-01-23 2015-05-26 Gojo Industries, Inc. Pumps with container vents
US9204765B2 (en) 2012-08-23 2015-12-08 Gojo Industries, Inc. Off-axis inverted foam dispensers and refill units
US9179808B2 (en) 2012-08-30 2015-11-10 Gojo Industries, Inc. Horizontal pumps, refill units and foam dispensers
US9307871B2 (en) 2012-08-30 2016-04-12 Gojo Industries, Inc. Horizontal pumps, refill units and foam dispensers
US8955718B2 (en) 2012-10-31 2015-02-17 Gojo Industries, Inc. Foam pumps with lost motion and adjustable output foam pumps
CN105142797B (en) 2013-04-25 2018-10-30 高乔工业股份有限公司 Horizontal pump, refill unit and the distributor of number of parts reduction
US9648992B2 (en) 2013-12-19 2017-05-16 Gojo Industries, Inc. Pumps with vents to vent inverted containers and refill units having non-collapsing containers
WO2015108827A1 (en) 2014-01-15 2015-07-23 Gojo Industries, Inc. Pumps with angled outlets, refill units and dispensers having angled outlets
CA2940525C (en) 2014-02-24 2023-01-31 Gojo Industries, Inc. Vented non-collapsing containers, refillable refill containers, dispensers and refill units
US9737177B2 (en) 2014-05-20 2017-08-22 Gojo Industries, Inc. Two-part fluid delivery systems
US9596963B2 (en) 2014-07-30 2017-03-21 Gojo Industries, Inc. Vented refill units and dispensers having vented refill units
DE102016004164A1 (en) 2016-04-11 2017-10-12 Merck Patent Gmbh pigment mixture
US10961750B2 (en) 2017-09-29 2021-03-30 Sumitomo Riko Company Limited Cover unit

Also Published As

Publication number Publication date
SE325680B (en) 1970-07-06
JPS495308B1 (en) 1974-02-06
DK126157B (en) 1973-06-18
FR2022933A1 (en) 1970-08-07
FI47721B (en) 1973-11-30
CH499305A (en) 1970-11-30
NL6916654A (en) 1970-05-12
BE741386A (en) 1970-04-16
DE1951696B2 (en) 1973-11-22
GB1269545A (en) 1972-04-06
DE1951696A1 (en) 1970-06-04
FI47721C (en) 1974-03-11
LU59632A1 (en) 1970-01-12
DE1951696C3 (en) 1974-06-27
ES373614A1 (en) 1972-02-01

Similar Documents

Publication Publication Date Title
US2929823A (en) Production of 5-hydroxymethylfurfural
NO126296B (en)
US2917520A (en) Production and recovery of furans
Abaide et al. Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode
US5879463A (en) Process for rapid acid hydrolysis of lignocellulosic material and hydrolysis reactor
Amiri et al. Production of furans from rice straw by single-phase and biphasic systems
CN101801946B (en) Method for production of 5-hydroxymethyl-2-furfural from fructose
Chen et al. Autohydrolysis of Miscanthus x giganteus for the production of xylooligosaccharides (XOS): Kinetics, characterization and recovery
US9481626B2 (en) Production of formic acid
EP3665147B1 (en) Process for producing levulinic acid
US20140371473A1 (en) Process for the Preparation of 5-Hydroxymethylfurfural (HMF)
EP2585184A1 (en) Process for separating furfural from a liquid aqueous phase comprising furfural and one or more organic acids
US2536732A (en) Production of furfural
Maravić et al. Subcritical water hydrolysis of sugar beet pulp towards production of monosaccharide fraction
EP1171665A1 (en) Process for the production of furfural from lignosulphonate waste liquor
RU2014128459A (en) PRODUCTION OF 5-HYDROXYMETHYLFURFURAL (HMF) FROM SUGAR SOLUTIONS IN THE PRESENCE OF A SOLVENT WITH A BOILING TEMPERATURE OF MORE THAN 60 ° C AND LESS THAN 200 ° C (WITH NORMAL PRESSURE, SHORTLY GRINDING)
NO152695B (en) PROCEDURE FOR CLEANING RAAETANOL FOR ESSENTIALS OF ESSENTIAL PURE ETHANOL-WATER AZEOTROP
NO123579B (en)
US20190263767A1 (en) Process for the recovery of furfural
EP2723726A1 (en) Method for dehydrating a carbohydrate-comprising composition
CA3039792A1 (en) Process for the recovery of furfural
NL2012819B1 (en) Method and Apparatus for Furfural Production.
US1940699A (en) Process and apparatus for con
EP3319933B1 (en) Levulinic acid compositions
US1946667A (en) Production of furfural