NO125730B - - Google Patents

Download PDF

Info

Publication number
NO125730B
NO125730B NO4442/70A NO444270A NO125730B NO 125730 B NO125730 B NO 125730B NO 4442/70 A NO4442/70 A NO 4442/70A NO 444270 A NO444270 A NO 444270A NO 125730 B NO125730 B NO 125730B
Authority
NO
Norway
Prior art keywords
water
oxygen
hydrocarbon
carbon
gas
Prior art date
Application number
NO4442/70A
Other languages
Norwegian (no)
Inventor
W Schlinger
W Slater
Dille R Mccormick
Original Assignee
Texaco Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Development Corp filed Critical Texaco Development Corp
Publication of NO125730B publication Critical patent/NO125730B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents

Description

Fremgangsmåte for fremstilling av reduserende gass. Process for the production of reducing gas.

Foreliggende oppfinnelse angår en fremgangsmåte for fremstilling av en reduserende gass, f.eks. til reduksjon av malmer, fra flytende hydrokarboner ved direkte partiell oksydasjon med oksygen-holdig gass. Oppfinnelsen vedrører mer spesielt en ikke-katalytisk prosess for fremstilling av reduksjonsgass hvorved flytende vann til-føres reaksjonssonen. Reduksjonsgassen utvikles ved direkte partiell oksydasjon. Vann blandes med hydrokarbonolje og blandingen føres til en reaksjonssone i flytende fase og omsettes med oksygen ved en reak-sjonstemperatur på omkring 982° til l649°C. The present invention relates to a method for producing a reducing gas, e.g. for the reduction of ores, from liquid hydrocarbons by direct partial oxidation with oxygen-containing gas. The invention relates more particularly to a non-catalytic process for the production of reducing gas whereby liquid water is supplied to the reaction zone. The reducing gas is developed by direct partial oxidation. Water is mixed with hydrocarbon oil and the mixture is fed to a liquid phase reaction zone and reacted with oxygen at a reaction temperature of about 982° to 1649°C.

Dannelsen av karbonmonoksyd og hydrogen, eller syntesegass, ved ikke-katalytisk omsetning av hydrokarboner med oksygen eller oksygen-anriket luft i nærvær av damp er kjent. Partial-oksydasjon av normalt flytende hydrokarboner, spesielt tungoljer, er en meget økonomisk fremgangsmåte for fremstilling av større mengder syntesegass. Ved partial-oksydasjonen omsettes flytende hydrokarbon med oksygen og damp i en lukket kompakt reaksjonssone i fravær av kata-lysator eller fyllmateriale og ved en autogen temperatur på ca. 982° til 1760°C, fortrinnsvis mellom ca. 1204° og 1538°C. Hydrokarbonolje blir vanligvis helt eller delvis fordampet og blandet med eller dis-pergert i damp. Hydrokarbonoljen og dampen blir vanligvis forvarmet til en temperatur på mellom 260° og 427°C, vanligvis til minst 3l6°C, mens oksygenet vanligvis ikke forvarmes. Reaksjonssonen holdes vanligvis under et trykk på over 7 kg/cm 2 , f.eks. 40 til 70 kg/cm 2, og i det senere har man brukt høyere driftstrykk på opptil 170 til 210 kg/cm . Produktgass-strømmen består hovedsakelig av karbonmorioksyd og hydrogen og inneholder mindre mengder karbondioksyd, damp, metan og medrevet karbon. Fast karbon dannet under prosessen frigjøres i meget fin partikkelform som lett fuktes av vann. The formation of carbon monoxide and hydrogen, or synthesis gas, by non-catalytic reaction of hydrocarbons with oxygen or oxygen-enriched air in the presence of steam is known. Partial oxidation of normally liquid hydrocarbons, especially heavy oils, is a very economical method for producing large quantities of synthesis gas. In the partial oxidation, liquid hydrocarbon reacts with oxygen and steam in a closed compact reaction zone in the absence of catalyst or filler material and at an autogenous temperature of approx. 982° to 1760°C, preferably between approx. 1204° and 1538°C. Hydrocarbon oil is usually completely or partially evaporated and mixed with or dispersed in steam. The hydrocarbon oil and steam are usually preheated to a temperature of between 260° and 427°C, usually to at least 316°C, while the oxygen is usually not preheated. The reaction zone is usually kept under a pressure of over 7 kg/cm 2 , e.g. 40 to 70 kg/cm 2 , and later higher operating pressures of up to 170 to 210 kg/cm 2 have been used. The product gas flow mainly consists of carbon monoxide and hydrogen and contains smaller amounts of carbon dioxide, steam, methane and entrained carbon. Solid carbon formed during the process is released in very fine particle form which is easily wetted by water.

Generelt er det gunstig å kjøre syntesegassgeneratoren slik at minst ca. 2 % av karbonet i hydrokarbonoljen som tilføres generatoren frigjøres som fritt karbon som rives med i produktgassen som.forlater generatoren. Medrevet karbon i syntesegass-strømmen fjernes effektivt ved å kontakte gass-strømmen med vann i et egnet gass-væske-system, f.eks. i et dusjtårn, bobleplatekolonne eller fylit kolonne. In general, it is advantageous to run the synthesis gas generator so that at least approx. 2% of the carbon in the hydrocarbon oil that is fed to the generator is released as free carbon that is entrained in the product gas that leaves the generator. Entrained carbon in the synthesis gas stream is effectively removed by contacting the gas stream with water in a suitable gas-liquid system, e.g. in a shower tower, bubble plate column or phyllite column.

Foreliggende oppfinnelse er rettet mot fremstilling av en spesiell type gassblanding, nemlig reduserende gass av den type som kan brukes f.eks. til reduksjon av malmer. Således kan gassen inn-føres uten mellomliggende behandling i en reduksjonssone. Problemene som møtes ved produksjon av reduksjonsgass er forskjellige og til en viss grad forskjellige fra de problemer som opptrer ved vanlig produksjon av syntesegass. En reduksjonsgass for ovennevnte formål i henhold til oppfinnelsen har et reduksjonsforhold på minst 10 og fortrinnsvis minst 15. Reduksjonsforholdet defineres som molforholdet mellom CO + H2 til mol C02 + H20. The present invention is aimed at producing a special type of gas mixture, namely reducing gas of the type that can be used e.g. for the reduction of ores. Thus, the gas can be introduced without intermediate treatment in a reduction zone. The problems encountered in the production of reducing gas are different and to a certain extent different from the problems encountered in the normal production of synthesis gas. A reducing gas for the above purposes according to the invention has a reduction ratio of at least 10 and preferably at least 15. The reduction ratio is defined as the molar ratio between CO + H2 to moles of CO2 + H20.

Produksjonen av reduksjonsgass ved partial forbrenning av hydrokarbon i flytende form er mer komplisert enn produksjonen av syntesegass etter samme reaksjon. Ved vanlig fremstilling av syntesegass dannes det f.eks. fritt karbon i ukontrollert mengde. Dette betraktes ikke som uønsket, idet når man bruker tungoljer inneholdende metallbestanddeler som charge, vil karbondannelsen være en fordel på grunn av at det frie karbon omslutter de små askepartikler som dannes ved partialforbrenningen. Selv om det ikke' finnes noen metallholdige forbindelser i chargen, betraktes karbonet i syntesegassen ikke som skadelig etter vanlig oppfatning, fordi ved fremstilling av hydrogen blir syntesegassen vasket med vann både for kjøling og for fjerning av karbonet. Siden reduksjonsgassen ofte brukes i den produserte form er det imidlertid tilfelle hvor nærvær av fritt karbon er uønsket. Når det er nødvendig å avkjøle reduksjonsgassen før bruk gjennomføres denne kjøling fortrinnsvis ved indirekte varmeveksling. Kjøling av reduksjonsgassen ved direkte varmeveksling som vanninnsprøyting eller dusjing ville forringe kvaliteten som reduksjonsgass fordi ti^ O innholdet i gassen ville øke og reduksjonsforholdet synke tilsvarende. The production of reducing gas by partial combustion of hydrocarbon in liquid form is more complicated than the production of synthesis gas after the same reaction. In the normal production of synthesis gas, e.g. free carbon in an uncontrolled amount. This is not considered undesirable, since when using heavy oils containing metal components as charge, the formation of carbon will be an advantage due to the fact that the free carbon surrounds the small ash particles that are formed during the partial combustion. Even if there are no metal-containing compounds in the charge, the carbon in the synthesis gas is not considered harmful according to conventional wisdom, because in the production of hydrogen the synthesis gas is washed with water both for cooling and for removing the carbon. However, since the reducing gas is often used in its manufactured form, it is the case where the presence of free carbon is undesirable. When it is necessary to cool the reducing gas before use, this cooling is preferably carried out by indirect heat exchange. Cooling the reducing gas by direct heat exchange such as water injection or showering would deteriorate the quality as a reducing gas because the Ti^O content in the gas would increase and the reduction ratio would decrease accordingly.

Det er mulig å nedsette dannelsen av karbon eller sot ved It is possible to reduce the formation of carbon or soot

å øke mengden oksygen som innføres i reaktoren. Vanligvis fører dette imidlertid til reaksjonstemperaturer over 1760°C og dessverre kan så høye temperaturer ikke opprettholdes i lengre tid i ovnen uten at den ildfaste f<5ring i reaksjonskammeret nedbrytes. Det er også mulig å redusere sotinnholdet i produktgassen ved å innføre damp i reaksjonssonen. Denne fremgangsmåte er tilfredsstillende for fremstilling av syntesegass, men svært uønsket når produktet skal brukes som reduksjonsgass siden nærvær av damp i produktet som nevnt nedsetter reduksjonsforholdet. to increase the amount of oxygen introduced into the reactor. Usually, however, this leads to reaction temperatures above 1760°C and unfortunately such high temperatures cannot be maintained for a long time in the furnace without the refractory lining in the reaction chamber breaking down. It is also possible to reduce the soot content in the product gas by introducing steam into the reaction zone. This method is satisfactory for the production of synthesis gas, but very undesirable when the product is to be used as a reducing gas since the presence of steam in the product as mentioned reduces the reduction ratio.

Ifølge foreliggende oppfinnelse er det tilveiebragt en fremgangsmåte for fremstilling av en reduserende gass, f.eks. til reduksjon av malmer, med et reduksjonsforhold på minst 10 og med minst 9 8 % av det tilstedeværende karbon i oksydform, hvor et normalt flyt-' According to the present invention, a method for producing a reducing gas, e.g. for the reduction of ores, with a reduction ratio of at least 10 and with at least 98% of the carbon present in oxide form, where a normal flow-'

ende hydrokarbon underkastes partiell forbrenning ved en temperatur på under l649°C med en gass inneholdende fritt oksygen med en oksygenrenhet på minst 95 %, og hvor alt HgO som trenges til reaksjonen føres inn i reaksjonssonen i form av flytende vann, kjennetegnet ved at atomforholdet mellom fritt oksygen og karbon i hydrokarbonchargen er minst 1, vektforholdet mellom vann og hydrokarbon er mindre enn 0.25, og ved at trykket 1 reaksjonssonen holdes under 7 kg/cm 2. end hydrocarbon is subjected to partial combustion at a temperature below 1649°C with a gas containing free oxygen with an oxygen purity of at least 95%, and where all the HgO needed for the reaction is introduced into the reaction zone in the form of liquid water, characterized by the atomic ratio between free oxygen and carbon in the hydrocarbon charge is at least 1, the weight ratio between water and hydrocarbon is less than 0.25, and by pressure 1 the reaction zone is kept below 7 kg/cm 2.

Et atomforhold mellom fritt oksygen og karbon i hydrokarbonchargen på minst 1 er viktig for å oppnå en produsert reduksjonsgass hvor minst 98 % av karbonet foreligger i oksydform. Ved et vektfor-hold mellom vann og hydrokarbon på under 0.25 oppnås en gass med tilfredsstillende reduksjonsforhold. Helst skal forholdet mellom vann og hydrokarbon være under 0.20. An atomic ratio between free oxygen and carbon in the hydrocarbon charge of at least 1 is important to obtain a produced reducing gas in which at least 98% of the carbon is in oxide form. At a weight ratio between water and hydrocarbon of less than 0.25, a gas with a satisfactory reduction ratio is obtained. Ideally, the ratio between water and hydrocarbon should be below 0.20.

Selv om forskjellige hydrokarbonvæsker som bensin, petro-leum og lignende kan brukes som charge for prosessen, foretrekkes hydrokarbonoljer med en API-egenvekt på minst 10° API. Tungoljer som er egnet til dette omfatter f.eks. tungdestillater, restoljer, bunker-brenselolje og brenselolje nr. 6. Fortrinnsvis har hydrokarbonchargen et startkokepunkt høyere enn vannets kokepunkt, fortrinnsvis over 12<*>1°C. Brenseloljen kan forvarmes før den blandes med vann, men for-varmingen bør begrenses til en temperatur under vannets kokepunkt under det trykk blandingen foretas ved. Med fordel innmates blandingen av olje og vann i reaksjonssonen i form av en emulsjon. For-varming av oksygenet er ikke nødvendig. Although various hydrocarbon liquids such as petrol, kerosene and the like can be used as charge for the process, hydrocarbon oils with an API specific gravity of at least 10° API are preferred. Heavy oils that are suitable for this include e.g. heavy distillates, residual oils, bunker fuel oil and fuel oil No. 6. Preferably, the hydrocarbon charge has an initial boiling point higher than the boiling point of water, preferably above 12<*>1°C. The fuel oil can be preheated before it is mixed with water, but the preheating should be limited to a temperature below the boiling point of water under the pressure at which the mixture is made. Advantageously, the mixture of oil and water is fed into the reaction zone in the form of an emulsion. Pre-heating of the oxygen is not necessary.

Reaktantene, olje, vann og oksygen kan innføres i reaksjonssonen eller gassgeneratoren på en hvilken som helst kjent måte. I henhold til en utførelse innføres en konvergerende rørformet strøm av oksygen med relativt høy hastighet, f.eks. over 60 meter per sekund, f.eks. 60 til 80 meter per sekund, aksialt i reaksjonssonen. En blanding av olje dg vann innmates sentralt og aksialt i reaksjonssonen i den.innløpende oksygenstrøm. Sammenstøtet mellom disse strømmer fører til en omhyggelig blanding av oksygen og olje- og vann-dråper. Olje-vann-strømmens hastighet er fortrinnsvis under 30 meter per sekund og fortrinnsvis mellom 1.5 og 12 meter per sekund. Den relativt store hastighetsforskjell mellom gass- og væskestrømmen fører til en effek-tiv forstøvning av væsken. The reactants, oil, water and oxygen can be introduced into the reaction zone or gas generator in any known manner. According to one embodiment, a converging tubular flow of oxygen is introduced at a relatively high speed, e.g. over 60 meters per second, e.g. 60 to 80 meters per second, axially in the reaction zone. A mixture of oil and water is fed centrally and axially into the reaction zone in the incoming oxygen stream. The collision between these currents leads to a careful mixing of oxygen and oil and water droplets. The speed of the oil-water flow is preferably below 30 meters per second and preferably between 1.5 and 12 meters per second. The relatively large speed difference between the gas and liquid flow leads to an effective atomization of the liquid.

Trykket i reaksjonssonen holdes fortrinnsvis mellom 2.8 og i».2 kg/cm<2>. The pressure in the reaction zone is preferably kept between 2.8 and i».2 kg/cm<2>.

De følgende eksempler som illustrerer fremgangsmåten tjener til å skille foreliggende fremgangsmåte fra de tidligere kjente pro-sesser hvor damp brukes, eller innholdet av fritt karbon i produktgassen er høyere enn 2 %. I de forskjellige forsøk som er oppført i tabellen nedenfor, består forbrenningskammeret av et ikke-fyllt gene-ratorkammer fdret med ildfast materiale med volum 333 liter, chargen er en California redusert råolje med API-egenvekt 9.7° API og driftstrykk 2.8 kg/cm . I alle forsøk er oljeinnmatingsmengden 155 kg per time unntatt forsøkene l6V og 17V hvor oljematningsmengden er 157 kg per time. I kolonneoverskriftene betegner H20/0 vektforholdet mellom R^O og olje, O/C betegner atomforholdet oksygen/karbon, SOF betegner spesifikt oljeforbruk i liter per liter H2 pluss CO produsert, tem-peraturen angir utgangs-gasstemperaturen i C, RF betegner reduksjonsforholdet og C betegner karbon i produktgassen. Bokstavene "D" og "V" etter forsøksnummeret antyder om H20 tilføres som damp eller vann, respektivt. The following examples which illustrate the method serve to distinguish the present method from the previously known processes where steam is used, or the content of free carbon in the product gas is higher than 2%. In the various experiments listed in the table below, the combustion chamber consists of an unfilled generator chamber lined with refractory material with a volume of 333 liters, the charge is a California reduced crude oil with an API specific gravity of 9.7° API and an operating pressure of 2.8 kg/cm . In all trials, the oil feed amount is 155 kg per hour, except for trials 16V and 17V where the oil feed amount is 157 kg per hour. In the column headings, H20/0 denotes the weight ratio between R^O and oil, O/C denotes the oxygen/carbon atomic ratio, SOF denotes specific oil consumption in liters per liter of H2 plus CO produced, the temperature denotes the outlet gas temperature in C, RF denotes the reduction ratio and C denotes carbon in the product gas. The letters "D" and "V" after the experiment number indicate whether H20 is supplied as steam or water, respectively.

Forsøkene 10D, 11D og l6D har passende reduksjonsforhold og karboninnhold, men er utilfredsstillende på grunn av den høye gene-ratortemperatur. Forsøk 12V, 12D, 15V, 15D, 17V og 17D har ikke tilfredsstillende reduksjonsforhold. Forsøk 13V gir også for høyt karboninnhold. Man vil se at forsøk 10V, 11V og 16V er tilfredsstillende idet generatortemperaturen er under 1649°C og produktgassens reduk-sj onsforhold og karboninnhold er minst 10 og ikke høyere enn 2 .%, respektivt . Runs 10D, 11D and 16D have suitable reduction ratios and carbon content, but are unsatisfactory due to the high generator temperature. Try 12V, 12D, 15V, 15D, 17V and 17D do not have satisfactory reduction ratios. Attempting 13V also gives too high a carbon content. It will be seen that tests 10V, 11V and 16V are satisfactory as the generator temperature is below 1649°C and the product gas's reduction ratio and carbon content are at least 10 and no higher than 2.%, respectively.

Claims (4)

1. Fremgangsmåte for fremstilling av en reduserende gass f.eks. til reduksjon av malmer, med et reduksjonsforhold på minst 10 og med minst 98 % av det tilstedeværende karbon i oksydform, hvor et normalt flytende hydrokarbon underkastes partiell forbrenning ved en tempera-1. Method for producing a reducing gas, e.g. for the reduction of ores, with a reduction ratio of at least 10 and with at least 98% of the carbon present in oxide form, where a normally liquid hydrocarbon is subjected to partial combustion at a temperature tur på under l6U9°C med en gass inneholdende fritt oksygen med en oksygenrenhet på minst 95 %, og hvor alt H20 som trenges til reaksjonen føres inn i reaksjonssonen i form av flytende vann, karakterisert ved at atomforholdet mellom fritt oksygen og karbon i hydrokarbonchargen er minst 1, vektforholdet mellom vann og hydrokarbon er mindre enn 0.25, og ved at trykket i reaksjonssonen 2 holdes under 7. kg/cm . trip of below l6U9°C with a gas containing free oxygen with an oxygen purity of at least 95%, and where all the H20 needed for the reaction is introduced into the reaction zone in the form of liquid water, characterized by the atomic ratio between free oxygen and carbon in the hydrocarbon charge being at least 1, the weight ratio between water and hydrocarbon is less than 0.25, and in that the pressure in the reaction zone 2 is kept below 7. kg/cm . 2. Fremgangsmåte ifølge krav 1, karakterisert ved at reduksjonsgassen benyttes til reduksjon uten mellomliggende behandling for å fjerne eller tilsette bestanddeler. 2. Method according to claim 1, characterized in that the reducing gas is used for reduction without intermediate treatment to remove or add components. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at oksygenet innføres i reaksjonssonen med en hastighet på minst 60 meter per sekund og olje samt vann innføres som en væskeblanding med en hastighet på under 30 meter per sekund, og at oksygenstrømmen bringes til å støte sammen med væskestrømmen. 3. Method according to claim 1 or 2, characterized in that the oxygen is introduced into the reaction zone at a speed of at least 60 meters per second and oil and water are introduced as a liquid mixture at a speed of less than 30 meters per second, and that the oxygen flow is brought to collide along with the fluid flow. 4. Fremgangsmåte ifølge krav 1-3, karakterisert ved at vektforholdet mellom vann og hydrokarbon er mellom 0.1 og 0.15.4. Method according to claims 1-3, characterized in that the weight ratio between water and hydrocarbon is between 0.1 and 0.15.
NO4442/70A 1969-11-25 1970-11-19 NO125730B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US87992669A 1969-11-25 1969-11-25

Publications (1)

Publication Number Publication Date
NO125730B true NO125730B (en) 1972-10-23

Family

ID=25375161

Family Applications (1)

Application Number Title Priority Date Filing Date
NO4442/70A NO125730B (en) 1969-11-25 1970-11-19

Country Status (15)

Country Link
JP (1) JPS554683B1 (en)
AT (1) AT359039B (en)
BE (1) BE759376A (en)
DE (1) DE2057098B2 (en)
DK (1) DK132215C (en)
ES (1) ES385852A1 (en)
FI (1) FI55043C (en)
FR (1) FR2072368A5 (en)
GB (1) GB1270079A (en)
LU (1) LU62137A1 (en)
NL (1) NL154174B (en)
NO (1) NO125730B (en)
SE (1) SE370535B (en)
YU (1) YU34644B (en)
ZA (1) ZA707830B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2253385C2 (en) * 1972-10-31 1985-07-25 Texaco Development Corp., White Plains, N.Y. Burners for the production of synthesis gas
BE800354A (en) * 1973-05-30 1973-09-17 Centre Rech Metallurgique METHOD AND DEVICE FOR MANUFACTURING HOT REDUCING GAS.
JPS58134010U (en) * 1982-03-04 1983-09-09 三菱電機株式会社 Terminal support device for draw-out electrical equipment

Also Published As

Publication number Publication date
GB1270079A (en) 1972-04-12
DE2057098A1 (en) 1971-06-03
BE759376A (en) 1971-05-24
ZA707830B (en) 1972-03-29
DE2057098B2 (en) 1973-06-07
NL7017194A (en) 1971-05-27
YU34644B (en) 1979-12-31
ES385852A1 (en) 1973-05-01
AT359039B (en) 1980-10-10
NL154174B (en) 1977-08-15
FR2072368A5 (en) 1971-09-24
SE370535B (en) 1974-10-21
FI55043C (en) 1979-05-10
DK132215B (en) 1975-11-10
LU62137A1 (en) 1970-11-25
FI55043B (en) 1979-01-31
DK132215C (en) 1976-04-20
JPS554683B1 (en) 1980-01-31
ATA1062970A (en) 1980-03-15
YU287570A (en) 1979-07-10

Similar Documents

Publication Publication Date Title
US3607157A (en) Synthesis gas from petroleum coke
US3544291A (en) Coal gasification process
US4141696A (en) Process for gas cleaning with reclaimed water and apparatus for water reclamation
US4205963A (en) Process for gas cleaning with reclaimed water and apparatus for water reclamation
US3607156A (en) Hydrogen and carbon monoxide from slurries of solid carboniferous fuels
US20090206007A1 (en) Process and apparatus for upgrading coal using supercritical water
US3715301A (en) Multi-hydrotorting of coal
US4099383A (en) Partial oxidation process
US3639261A (en) Process for the generation of synthesis gas from oil
US3097081A (en) Production of synthesis gas
US4205962A (en) Process for gas cleaning with reclaimed water
US3620700A (en) Recovery of entrained carbon in synthesis gas
JPS5844601B2 (en) Bubunsanganiyorgouseigasno seizouhouhou
US4007019A (en) Production of clean synthesis or fuel gas
CA1059319A (en) Production of clean fuel gas
NO127703B (en)
US3846095A (en) Reducing gas generation
US4411670A (en) Production of synthesis gas from heavy hydrocarbon fuels containing high metal concentrations
US4141695A (en) Process for gas cleaning with reclaimed water
EP0005138B1 (en) Process for producing synthesis gas with wash water purification and novel flash column for use in said process
US4007018A (en) Production of clean synthesis or fuel gas
NO125730B (en)
US3531265A (en) Synthesis gas purification
US4402709A (en) Simultaneous production of clean dewatered and clean saturated streams of synthesis gas
US3957960A (en) Method for recovering sulfur from ammonia-containing acid gas streams