NO125573B - - Google Patents

Download PDF

Info

Publication number
NO125573B
NO125573B NO146470A NO146470A NO125573B NO 125573 B NO125573 B NO 125573B NO 146470 A NO146470 A NO 146470A NO 146470 A NO146470 A NO 146470A NO 125573 B NO125573 B NO 125573B
Authority
NO
Norway
Prior art keywords
catalyst
acid
approx
chlorine gas
nitrogen
Prior art date
Application number
NO146470A
Other languages
Norwegian (no)
Inventor
H Baader
W Opitz
A Jacobowsky
Original Assignee
Knapsack Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19691620805 external-priority patent/DE1620805A1/en
Application filed by Knapsack Ag filed Critical Knapsack Ag
Publication of NO125573B publication Critical patent/NO125573B/no

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

Fremgangsmåte til regenerering av en hydreringskatalysator. Method for regenerating a hydrogenation catalyst.

Oppfinnelsen vedrører en fremgangsmåte til regenerering av en katalysator anvendt for hydrerende deklorering av diklor--eddiksyre og/eller trikloreddiksyre til monokloreddiksyre og/eller eddiksyre og som inneholder metallisk palladium på kiselsyregel eller aktivlcull som bærer. The invention relates to a method for the regeneration of a catalyst used for the hydrating dechlorination of dichloroacetic acid and/or trichloroacetic acid to monochloroacetic acid and/or acetic acid and which contains metallic palladium on silicic acid gel or activated carbon as a carrier.

Ved fremstilling av monokloreddiksyre fra eddiksyre og klor dannes som biprodukter dikloreddiksyre og trikloreddiksyre. Disse biprodukter dekloreres på egnede katalysatorer med hydrogen til monokloreddiksyre og/eller eddiksyre. Som katalysator anvender man derved 0,5 til 2 vekt!? palladium på en bærer av kiselsyre eller aktivkull. In the production of monochloroacetic acid from acetic acid and chlorine, dichloroacetic acid and trichloroacetic acid are formed as by-products. These by-products are dechlorinated on suitable catalysts with hydrogen to monochloroacetic acid and/or acetic acid. As a catalyst, 0.5 to 2 weight!? palladium on a carrier of silicic acid or activated carbon.

Fra tysk patent nr. 910.778 er det ailerede kjent at slike katalysatorer som ved hydreringen etterhvert blir uvirksomme, lar seg regenerere ved hjelp av luft ved ca. 200 til 250°C direkte i katalysatorrommet. Derimot angis i tysk patent nr. 1.072.980 at den regenererte katalysator allerede blir inaktiv etter ca. lk dagers driftstid ved sterk harpiksdannelse og erfaringsmessig bare kan regenereres en til to ganger ved avbrenning av polymerisasjonspro-duktene. Ved fremgangsmåten ifølge sistnevnte patent inntrer det bare en liten harpiksdannelse og inaktivering av katalysatoren, således at en regenerering først er-.nØdvendig etter ca. 2 måneders driftstid. Hertil senker man temperaturen i katalysatorovnen til ca. 50°C uten å avbryte tilførselen av kloreddiksyredamper. From German patent no. 910,778 it is already known that such catalysts, which eventually become inactive during hydration, can be regenerated with the help of air at approx. 200 to 250°C directly in the catalyst room. In contrast, German patent no. 1,072,980 states that the regenerated catalyst already becomes inactive after approx. 1 day's operating time with strong resin formation and, according to experience, can only be regenerated once or twice by burning off the polymerization products. In the method according to the latter patent, only a small amount of resin formation and inactivation of the catalyst occurs, so that a regeneration is only necessary after approx. 2 months operating time. In addition, the temperature in the catalyst furnace is lowered to approx. 50°C without interrupting the supply of chloroacetic acid vapours.

Ved denne temperatur finner det ikke sted noen deklorering, men dampene kondenserer seg på katalysatoroverflaten, hvorved harpiksproduktene utvaskes ved hjelp av kloreddiksyrene. Harpiksene er oppløselige ved lave temperaturer i syrene således at regenereringens avslutning kan erkj.ennes på oppløsningens farging. Mens væsken først fremkommer mørkfarget, renner den etter ca. 2 til > timer omtrent fargeløst av. Øker man temperaturen nå igjen, så begynner igjen dekloreringen. Katalysatoren er imidlertid bare virk-som med sin fulle ytelse hver gang inntil 2 måneder når det ble anvendt ren eddiksyre. Kontaktforgiftningen er spesielt sterkt ut-preget når man til fremstilling av monokloreddiksyre anvender bil-ligere, forurensede eddiksyrer, som f.eks. allerede var blitt anvendt i andre fremgangsmåter som oppløsningsmidler eller var dannet ved acetylering av aminer med eddiksyreanhydrid. I dette tilfelle måtte katalysatoren regenereres ved uavbrutt drift hver uke. Enskjønt man på grunn av analytiske undersøkelser av produktet som skulle hydreres, kunne påvises spor av N-, J-, S- og tungmetallforbindelser, er fast-slåelsen av grunnen til lontaktforgiftningen hittil ikke lykkedes. At this temperature, no dechlorination takes place, but the vapors condense on the catalyst surface, whereby the resin products are washed out with the aid of the chloroacetic acids. The resins are soluble at low temperatures in the acids so that the end of the regeneration can be recognized by the color of the solution. While the liquid first appears dark in colour, it flows after approx. 2 to > hours about colorless off. If the temperature is now increased again, the dechlorination starts again. However, the catalyst is only effective with its full performance every time for up to 2 months when pure acetic acid was used. Contact poisoning is particularly pronounced when cheaper, contaminated acetic acids are used for the production of monochloroacetic acid, such as e.g. had already been used in other processes as solvents or had been formed by acetylation of amines with acetic anhydride. In this case, the catalyst had to be regenerated by continuous operation every week. Although, due to analytical investigations of the product to be hydrated, traces of N, J, S and heavy metal compounds could be detected, the determination of the reason for the lonact poisoning has so far not been successful.

Oppfinnelsen vedrører nå en fremgangsmåte til regenerering av en katalysator anvendt for hydrerende deklorering av dikloreddiksyre og/eller trikloreddiksyre til monokloreddiksyre og som inneholder metallisk palladium på. kiselsyregel eller aktivkull som bærer og er anordnet i en katalysatorovn idet fremgangsmåten er karakterisert ved at man etter avbrudd av dekloreringsprosessen fortrenger det i katalysatorovnen ennå tilstedeværende hydrogen med nitrogen, hvorpå man gjennom katalysatorovnen ved temperaturer mellom 50 og 200°C, spesielt mellom 100 og 170°C, leder en strøm av tørr klorgass inntil katalysatorens metning, frasuger klorgassen ved et trykk på ca. 700 til 750 torr og endelig fortrenger resterende klor med nitrogen. The invention now relates to a method for regenerating a catalyst used for the hydrating dechlorination of dichloroacetic acid and/or trichloroacetic acid to monochloroacetic acid and which contains metallic palladium on it. silicic acid regel or activated carbon which carries and is arranged in a catalyst furnace, the method being characterized by the fact that, after interruption of the dechlorination process, the hydrogen still present in the catalyst furnace is displaced with nitrogen, whereupon one passes through the catalyst furnace at temperatures between 50 and 200°C, especially between 100 and 170 °C, directs a stream of dry chlorine gas until the catalyst is saturated, sucks out the chlorine gas at a pressure of approx. 700 to 750 torr and finally displaces residual chlorine with nitrogen.

Den forgiftede katalysator metter man fortrinnsvis The poisoned catalyst is preferably saturated

i ca. 1 time med tørr klorgass og avsuger samtidig eller etterpå hydreringssonen i ca. 1 til 2 timer. Det er videre hensiktsmessig for about. 1 hour with dry chlorine gas and at the same time or afterwards exhaust the hydration zone for approx. 1 to 2 hours. It is also appropriate

å spyle hydreringssonen før og etter regenereringen med nitrogengass. to flush the hydration zone before and after the regeneration with nitrogen gas.

Regenereringen ifølge oppfinnelsen gjennomføres i detalj således at man avbryter tilførselen av den for hydrering og deklorering anvendte blanding, som består av eddiksyre, mono-, di- The regeneration according to the invention is carried out in detail so that the supply of the mixture used for hydration and dechlorination, which consists of acetic acid, mono-, di-

og trikloreddiksyre samt hydrogen til katalysatoren. Man fører nå and trichloroacetic acid as well as hydrogen to the catalyst. One is leading now

av sikkerhetsgrunner nitrogen gjennom katalysatoren for å utdrive alt hydrogen, for at det ved regenereringen ikke kan danne seg klor-knållgassblanding. Spylingen med nitrogen er imidlertid, ingen ekstra belastning for fremgangsmåten, fordi denne sikkerhetsforholdsregel allikevel er nødvendig ved driftsstart og ved stopping av anlegget. Den forgiftede katalysator inneholder etter nitrogenspylingen ennå vedhengende rester av eddiksyre og kloreddiksyre, men er imidlertid fri for vann. Hydreringssonen består av en loddrett anordnet katalysatorovn av sølv. På grunn av fravær av vann angriper den nå nedenifra i hydreringssonen innstrømmende tørre klor verken ovnsveggens sølv eller det metalliske' palladium i- katalysatoren. Sistnevnte for-blir sort ved regenereringen. Ved svakt undertrykk frasuges kloret oppad fra hydreringssonen. Endelig utblåses resterende klor full-stendig med nitrogen nedenifra. Katalysatoren har nå igjen sin opp-rinnelige ytelse. for safety reasons, nitrogen through the catalyst to drive out all the hydrogen, so that no chlorine-burning gas mixture can form during the regeneration. The flushing with nitrogen is, however, no additional burden for the procedure, because this safety precaution is still necessary at the start of operation and when stopping the plant. After the nitrogen purge, the poisoned catalyst still contains residual residues of acetic acid and chloroacetic acid, but is however free of water. The hydrogenation zone consists of a vertically arranged catalyst furnace made of silver. Due to the absence of water, the dry chlorine now flowing in from below in the hydration zone attacks neither the silver of the furnace wall nor the metallic palladium in the catalyst. The latter remains black during regeneration. At low negative pressure, the chlorine is sucked upwards from the hydration zone. Finally, remaining chlorine is completely blown out with nitrogen from below. The catalyst now has its up-and-running performance again.

At regenereringen foregår i fravær av vann fremgår også av det faktum at i den fra hydreringssonen bortsugde klorgass-strøm finnes mindre mengder kloracetylklorid og acetylklorid, som må være dannet ved klorering av i katalysatoren inneholdt eddiksyre og monokloreddiksyre og som bare er bestandig Ved forhøyet trykk i fravær av vann. That the regeneration takes place in the absence of water is also evident from the fact that in the chlorine gas stream drawn off from the hydration zone there are smaller amounts of chloroacetyl chloride and acetyl chloride, which must have been formed by chlorination of the acetic acid and monochloroacetic acid contained in the catalyst and which are only stable at elevated pressure in absence of water.

Ved fremgangsmåten ifølge oppfinnelsen foregår tyde-ligvis ingen omdannelse av aktive reaksjonssentra på katalysatorens overflate. Antagelig overføres katalysatorgifter som er adsorbert på overflaten ved kloreringen i lett flyktige forbindelser og fjernes ved frasugning. Dette er overraskende fordi.den til hydrering anvendte blanding stammer fra kloreringsprosessen hvor den ble behand-let tilstrekkelig med klor. Sannsynligvis katalyserer hydrerings-katalysatoren kloreringen av katalysatorgiften. In the method according to the invention, apparently no conversion of active reaction centers takes place on the surface of the catalyst. Presumably, catalyst poisons that are adsorbed on the surface during the chlorination are transferred in easily volatile compounds and removed by suction. This is surprising because the mixture used for hydration originates from the chlorination process where it was treated with sufficient chlorine. Presumably the hydrogenation catalyst catalyzes the chlorination of the catalyst poison.

I forhold til den i tysk patent nr. 1.072.980 om-talte metode for katalysatorregenerering har foreliggende oppfinnelse et betraktelig teknisk fremskritt: 1) Regenereringen kan foregå ved samme temperatur som hydreringen (f.eks. 115°C), en senkning av temperaturen i katalysatorovnen (hydreringssonen) til 50°C er ikke nødvendig. 2) Det samlede tidstap for regenereringen ved klorer-ingsfremgangsmåten ifølge oppfinnelsen utgjør 1 til 2 timer. Derimot krever avkjøling av hydreringssonen fra 110 til l40°C ned til 50°C 3 til 4 timer, utvaskingen av den forgiftede katalysator 2 til 3 timer og den etterfølgende oppvarmning fra 50°C til 110 til 140°C igjen 3 til -timer, dvs. det samlede tidstap for regenerering av 500 liter katalysator utgjorde tidligere 8 til 11 timer. 3) Ved fremgangsmåten ifølge oppfinnelsen ødelegges •katalysatorgiften ved hjelp av klor og suges bort ved svakt undertrykk. De ødelagte mengder utgjør ved 500 liter katalysator bare 2 til 3 kg organisk stoff/time, ytterligere tap opptrer ikke. I forhold til dette anrikes ifølge tysk patent nr. 1.072.980, spalte 4, linj.e 4 til 21, den oppløste katalysatorgift enten over ledningene 16, 17, 1, 2, 3 i væsken som skal dekloreres eller det må fjernes med utvaskningsvæsken over ledning 18. Dette betyr imidlertid tap av den samlede mengde av syreblanding som skal dekloreres, som i løpet av 2 til 3 timer innføres i hydreringssonen. Ved en katalysa-tormengde på 500 liter er dette pr. time 200 til 400 kg. In relation to the method for catalyst regeneration mentioned in German patent no. 1,072,980, the present invention has a considerable technical advance: 1) The regeneration can take place at the same temperature as the hydrogenation (e.g. 115°C), a lowering of the temperature in the catalyst furnace (hydration zone) to 50°C is not necessary. 2) The overall loss of time for the regeneration in the chlorination method according to the invention amounts to 1 to 2 hours. In contrast, cooling the hydration zone from 110 to 140°C down to 50°C requires 3 to 4 hours, the leaching of the poisoned catalyst 2 to 3 hours and the subsequent heating from 50°C to 110 to 140°C again 3 to -hours, i.e. the total time loss for regeneration of 500 liters of catalyst previously amounted to 8 to 11 hours. 3) In the method according to the invention, the •catalyst poison is destroyed with the help of chlorine and sucked away under slight negative pressure. With 500 liters of catalyst, the destroyed amounts amount to only 2 to 3 kg of organic matter/hour, further losses do not occur. In relation to this, according to German patent no. 1,072,980, column 4, lines 4 to 21, the dissolved catalyst poison is enriched either over the lines 16, 17, 1, 2, 3 in the liquid to be dechlorinated or it must be removed with the washing liquid over line 18. However, this means loss of the total amount of acid mixture to be dechlorinated, which is introduced into the hydration zone in the course of 2 to 3 hours. With a catalyst quantity of 500 litres, this is per hour 200 to 400 kg.

Eksempel. Example.

En hydreringsreaktor av sølv med et innhold på 500 liter katalysator (210 kg, bestående av 207,6 kg kiselsyregel og 2,4 kg Pd) beskikkes ved 110 til 140°C pr. time med 280 liter av en flytende blanding av monokloreddiksyre, dikloréddiksyre, trikloreddiksyre og eddiksyre samt med 800 m^ hydrogen. Syreblandingen inneholder ca. 15 vekt% eddiksyre, ca. 45 vekt$ monokloreddiksyre, 38 vekt# dikloréddiksyre og 2 vekt% trikloreddiksyre. Ved hydrering får man et reaksjonsprodukt som dessuten hare består av 83 vekti? monokloreddiksyre og 17 vekt% eddiksyre. Etter en driftstid på ca. 5 dager øker innholdet av dikloréddiksyre til 2%. Etter 6 dager er det allerede 4$, etter 7 dager 8% dikloréddiksyre i produktet, katalysatoren er forgiftet. A silver hydration reactor with a content of 500 liters of catalyst (210 kg, consisting of 207.6 kg silicic acid regel and 2.4 kg Pd) is coated at 110 to 140°C per hour with 280 liters of a liquid mixture of monochloroacetic acid, dichloroacetic acid, trichloroacetic acid and acetic acid and with 800 m^ of hydrogen. The acid mixture contains approx. 15% by weight acetic acid, approx. 45% by weight of monochloroacetic acid, 38% by weight of dichloroacetic acid and 2% by weight of trichloroacetic acid. During hydration, a reaction product is obtained which also hare consists of 83 wt. monochloroacetic acid and 17% by weight acetic acid. After an operating time of approx. 5 days, the content of dichloroacetic acid increases to 2%. After 6 days it is already 4$, after 7 days 8% dichloroacetic acid in the product, the catalyst is poisoned.

Den loddrett anordnede hydreringsreaktor omkoples The vertically arranged hydration reactor is switched

nå til fortrengning av hydrogenet med nitrogen og beskikkes deretter now to the displacement of the hydrogen with nitrogen and is then deposited

ved 100 til 170°C nedenifra i ca. 1 time med klor. Samtidig suger man bort kloret og de flyktige kloreringsprodukter oppad inntil 2 timer med svakt undertrykk (750 til 500 mm Hg). Deretter fortrenger man kloret med nitrogen og innkopler reaktoren igjen i hydreringsprosessen. Den har nå igjen sin fulle ytelse således at det fåes et dikloreddiksyrefritt reaksjonsprodukt. at 100 to 170°C from below for approx. 1 hour with chlorine. At the same time, the chlorine and the volatile chlorination products are sucked away for up to 2 hours with a slight negative pressure (750 to 500 mm Hg). The chlorine is then displaced with nitrogen and the reactor is switched on again in the hydration process. It now has its full performance again so that a dichloroacetic acid-free reaction product is obtained.

Ved gjentatt regenerering ble det ikke iakttatt noe fall i katalysatorytelsen. Upon repeated regeneration, no drop in catalyst performance was observed.

Claims (2)

1. Fremgangsmåte til regenerering av en katalysator anvendt for hydrerende deklorering av dikloréddiksyre og/eller trikloreddiksyre til monokloreddiksyre, og som inneholder metallisk palladium på kiselsyregel eller aktivkull som bærer og er anordnet i en katalysatorovn, karakterisert ved at man etter avbrudd av dekloreringsprosessen fortrenger det i katalysatorovnen ennå tilstedeværende hydrogen med nitrogen, hvorpå man gjennom katalysatorovnen ved temperaturer mellom 50 og 200°C, spesielt mellom 100 og 170°C, leder en strøm av tørr klorgass inntil katalysatorens metning, frasuger klorgassen ved et trykk på ca. 700 til 750 torr og endelig fortrenger resterende klor med nitrogen.1. Process for the regeneration of a catalyst used for the hydrating dechlorination of dichloroacetic acid and/or trichloroacetic acid to monochloroacetic acid, and which contains metallic palladium on silicic acid regel or activated carbon which supports and is arranged in a catalyst furnace, characterized in that, after interruption of the dechlorination process, it is displaced in the catalyst furnace still present hydrogen with nitrogen, after which a stream of dry chlorine gas is led through the catalyst furnace at temperatures between 50 and 200°C, especially between 100 and 170°C until the catalyst is saturated, the chlorine gas is sucked off at a pressure of approx. 700 to 750 torr and finally displaces residual chlorine with nitrogen. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at man gjennom katalysatorovnen i ca. 1 time fører en strøm tørr klorgass og avsuger klorgassen samtidig eller deretter i ca. 1 til 2 timer.2. Method according to claim 1, characterized in that one passes through the catalyst furnace for approx. 1 hour, a stream carries dry chlorine gas and extracts the chlorine gas at the same time or afterwards for approx. 1 to 2 hours.
NO146470A 1969-04-24 1970-04-17 NO125573B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19691620805 DE1620805A1 (en) 1965-02-18 1969-04-24 Petroleum wax mass

Publications (1)

Publication Number Publication Date
NO125573B true NO125573B (en) 1972-10-02

Family

ID=5682497

Family Applications (1)

Application Number Title Priority Date Filing Date
NO146470A NO125573B (en) 1969-04-24 1970-04-17

Country Status (1)

Country Link
NO (1) NO125573B (en)

Similar Documents

Publication Publication Date Title
JP3106411B2 (en) Method for producing 1,4-cyclohexanedicarboxylic acid
SU584763A3 (en) Method of purifying polymethylenepolyphenylpolyisocyanate
NO143045B (en) APPLIANCE FOR CROCHETING A FISHING LINE.
US2149671A (en) Process for purifying carbon black which has been formed on ironcontaining contacts
US5177268A (en) Hydrodehalogenation of aromatic compounds
US4851556A (en) Process for the preparation of epoxidized polybutadienes
NO125573B (en)
Field et al. Promoted molybdena-alumina catalysts in ethylene polymerization
US4069302A (en) Purification of sulfur
US3652455A (en) Process for regenerating a hydration catalyst
NO136393B (en)
US4147859A (en) Process for removal of chloroform and carbon tetrachloride from chlorinated polyvinyl chloride
US3140244A (en) Removal of volatile organic materials from aqueous hydrochloric acid
KR960007736B1 (en) Method of removing carbonyl compound in inlet gas
CN107324334B (en) Method for producing phosgene from diphosgene or triphosgene
US3896182A (en) Process for preparing vinyl chloride by the pyrolysis of 1,2-dichloro-ethane
NO328970B1 (en) Recovery of metals from olefin-hydroformylation reactions
US2658088A (en) Chlorination of ethylene in dilute mixtures
KR960004871B1 (en) Purification of 1,1,-dichloro-1-fluoroethane
US4629816A (en) Process for the production of 2,3-dichlorobutadiene-(1,3)
US4549993A (en) Purification of crude, liquid organosulfonyl chloride
US4263269A (en) Removal of organic contaminants from aqueous hydrochloric acid
US4066514A (en) Recovery of nitrated compounds from water by distillation
US3125608A (en) Purification of vinyl chloride
US2894045A (en) Production of chlorinated ethylene