NO123762B - - Google Patents

Download PDF

Info

Publication number
NO123762B
NO123762B NO2634/69A NO263469A NO123762B NO 123762 B NO123762 B NO 123762B NO 2634/69 A NO2634/69 A NO 2634/69A NO 263469 A NO263469 A NO 263469A NO 123762 B NO123762 B NO 123762B
Authority
NO
Norway
Prior art keywords
weight
manganese
weight percent
alloys
content
Prior art date
Application number
NO2634/69A
Other languages
Norwegian (no)
Inventor
P A Fisher
W Unsworth
Original Assignee
Magnesium Elektron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnesium Elektron Ltd filed Critical Magnesium Elektron Ltd
Publication of NO123762B publication Critical patent/NO123762B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Forging (AREA)
  • Continuous Casting (AREA)

Description

Magnesiumlegering. Magnesium alloy.

Foreliggende oppfinnelse vedrører en magnesium-grunnlegering med gode mekaniske egenskaper og som består av fra 6 til 12 vektsprosent. aluminium, fra 0 til 3, fortrinnsvis fra 0,25 til 1 vektsprosent sink, minst 0,5 vektsprosent mangan og minst 0,5 vektsprosent silisium, idet resten bortsett fra forurensninger er magnesium. The present invention relates to a magnesium base alloy with good mechanical properties and which consists of from 6 to 12 percent by weight. aluminum, from 0 to 3, preferably from 0.25 to 1 weight percent zinc, at least 0.5 weight percent manganese and at least 0.5 weight percent silicon, the remainder except for impurities being magnesium.

Hovedformålet med oppfinnelsen er å frembringe en legering som har forbedrete mekaniske egenskaper, særlig flytegrense, strekkstyrke og forlengelse for støpte legeringer ved normale at-mosfæretemperaturer og ved forhøyet© temperaturer. The main purpose of the invention is to produce an alloy which has improved mechanical properties, particularly yield strength, tensile strength and elongation for cast alloys at normal atmospheric temperatures and at elevated © temperatures.

Det er fra norsk søknad nr. 627/68 kjent en magnesiumlegering hvis hovedbestånddeler er 0,2 - 8,5 vektsprosent Al, 0,05 - 1,5 vektsprosent Si, 0-2 vektsprosent Mn, 0-2 vektsprosent Zn og resten i det vesentlige magnesium, idet mengden av silisium som er til stede er minst 0,35 vektsprosent når aluminium er til stede i en mengde av fra 5,5 til 8,5 vektsprosent, minst 0,2 vektsprosent når aluminium er til stede i en mengde av fra 3,0 til 5,5 vektsprosent, og minst 0,05 vektsprosent når aluminium er til stede i en mengde av fra 0,2 til 3,0 vektsprosent. It is known from Norwegian application no. 627/68 a magnesium alloy whose main constituents are 0.2 - 8.5 weight percent Al, 0.05 - 1.5 weight percent Si, 0-2 weight percent Mn, 0-2 weight percent Zn and the rest in the essential magnesium, the amount of silicon present being at least 0.35 percent by weight when aluminum is present in an amount of from 5.5 to 8.5 percent by weight, at least 0.2 percent by weight when aluminum is present in an amount of from 3.0 to 5.5 percent by weight, and at least 0.05 percent by weight when aluminum is present in an amount of from 0.2 to 3.0 percent by weight.

Videre er det fra britisk patent nr. 401.244 kjent en magne siumlege ring hvis hovedbestanddeler er 8 - 15 vektsprosent Al, 0,1 - 0,5 vektsprosent Mn, 0,35 - 1 vektsprosent Si og resten magnesium. Furthermore, British patent no. 401,244 discloses a magnesium ring whose main components are 8 - 15% by weight Al, 0.1 - 0.5% by weight Mn, 0.35 - 1% by weight Si and the remainder magnesium.

Disse to legeringer har imidlertid ikke vist seg å løse de problemer som foreliggende oppfinnelses formål er rettet mot. However, these two alloys have not been shown to solve the problems which the object of the present invention is aimed at.

Man har nå funnet at de mekaniske egenskaper.til magnesium-aluminium-légeringer kan forbedres betydelig når man ved tilset-ting av silisium samtidig øker manganinnholdet. It has now been found that the mechanical properties of magnesium-aluminium alloys can be significantly improved when, by adding silicon, the manganese content is simultaneously increased.

Man har funnet at forbedrete mekaniske egenskaper kan oppnås ved å benytte et totalt innhold av mangan og silisium på fra 1,2 til 1,8 vektsprosent og et Mn/Si-forhold på 0,6 til 1,5. It has been found that improved mechanical properties can be obtained by using a total content of manganese and silicon of from 1.2 to 1.8 weight percent and a Mn/Si ratio of 0.6 to 1.5.

Man har funnet at med et totalt innhold av mangan og silisium på fra 1,2 til 1,8% forandrer de mekaniske egenskaper seg plutselig og kritisk ved Mn/Si-forholdet med et maksimum på omtrent 1,0. It has been found that with a total content of manganese and silicon of from 1.2 to 1.8%, the mechanical properties change suddenly and critically at the Mn/Si ratio with a maximum of about 1.0.

For å lette forståelsen av oppfinnelsen vises det til føl-gende fire diagrammer hvor: Fig. 1 viser Si-innholdets innvirkning på strekkegenskapene i en magne siumleger ing med 8% Al, 0,7^Mn og 0,5% Zn. Dette diagram viser at økende Si-innhold øker flytegrensen, men reduserer strekkbarheten. En legering med 0,5 - 1,4 vektsprosent Si har høy styrke og strekkbarhet. Fig. 2 viser Mn-innholdets innvirkning på strekkegenskapene for en magnesiumlegering med 8% Al, 0,75% Si og 0,5% Zn. Diagrammet viser at et Mn-innhold på 0,8 vektsprosent gir en topp for styrken og også god strekkbarhet. Videre fremgår det at ved mer enn 1,2 vektsprosent Mn avtar styrken. Fig. 3 viser Mn/Si-forholdets innvirkning på strekkegenskapene for en magnesiumlegering med 8% Al, 0,5% Zn. Diagrammet viser at kurven for 0,2% konvensjonell flytegrense har en skarp topp mellom omtrent 0,6 og 1,5 med maksimumspunkt mellom 0,75 og 1,5 To facilitate the understanding of the invention, reference is made to the following four diagrams where: Fig. 1 shows the effect of the Si content on the tensile properties in a magne siumleger ing with 8% Al, 0.7^Mn and 0.5% Zn. This diagram shows that increasing Si content increases the yield strength but decreases it the stretchability. An alloy with 0.5 - 1.4 weight percent Si has high strength and ductility. Fig. 2 shows the effect of the Mn content on the tensile properties for a magnesium alloy with 8% Al, 0.75% Si and 0.5% Zn. The diagram shows that a Mn content of 0.8% by weight gives a peak for the strength and also good ductility. Furthermore, it appears that at more than 1.2 weight percent Mn, the strength decreases. Fig. 3 shows the effect of the Mn/Si ratio on the tensile properties of a magnesium alloy with 8% Al, 0.5% Zn. The diagram shows that the curve for 0.2% conventional yield strength has a sharp peak between about 0.6 and 1.5 with a maximum point between 0.75 and 1.5

Fig. 4 viser innvirkningen av det totale Mn + Si-innhold Fig. 4 shows the influence of the total Mn + Si content

på strekkegenskapene i en magnesiumlegering med 8% Al og 0,5% Zn. on the tensile properties of a magnesium alloy with 8% Al and 0.5% Zn.

Diagrammet viser at en kurve for 0,2% konvensjonell.flytegrense ved varierende totalinnhold av mangan og silisium har en senkning fra 0,1 til omtrent 0,6 og deretter en økning med en skarp stigning over 0,6 med særlig høye verdier fra 1,2 til 1,8%. Videre viser diagrammet at de positive egenskaper avtar når den totale mengde av Mn + Si er større enn 1,8 vektsprosent. The diagram shows that a curve for 0.2% conventional yield strength with varying total content of manganese and silicon has a lowering from 0.1 to about 0.6 and then an increase with a sharp rise above 0.6 with particularly high values from 1 .2 to 1.8%. Furthermore, the diagram shows that the positive properties decrease when the total amount of Mn + Si is greater than 1.8% by weight.

Disse legeringer er egnet for sandstøpning, kokillestøpning og trykkstøpning. Den oppnåelige forbedring illustreres av de følgende verdier for 0,2% konvensjonell flytegrense uttrykt i kg/ cm^, oppnådd ved sandstøpte prøver ved 180°C i 16 timer. These alloys are suitable for sand casting, die casting and die casting. The achievable improvement is illustrated by the following values for 0.2% conventional yield strength expressed in kg/cm^, obtained from sand cast samples at 180°C for 16 hours.

Det er funnet at aldring kan benyttes for å forbedre egenskapene, og det er kjent at aldringskarakteristikkene til magnesium-aluminium-legeringer er avhengige, i det minste delvis-, åv alumi-niuminnholdet. Følgelig er det ønskelig å sikre at det er til-strekkelig aluminium til stede til å gi aldringsvirkning. Med økende aluminiuminnhold vil imidlertid formbarheten bli.nedsatt, It has been found that aging can be used to improve the properties, and it is known that the aging characteristics of magnesium-aluminum alloys are dependent, at least in part, on the aluminum content. Consequently, it is desirable to ensure that sufficient aluminum is present to produce an aging effect. However, with increasing aluminum content, the formability will be reduced,

og den tillatelige mengde med aluminium ligger derfor mellom 6 og 12 vektsprosent, fortrinnsvis fra 7 til 10%. and the permissible amount of aluminum is therefore between 6 and 12% by weight, preferably from 7 to 10%.

Nærværet av aluminium reduserer oppløseligheten for mangan The presence of aluminum reduces the solubility of manganese

i den flytende magnesiumlegering, og dersom skadelige manganrike partikkelgrupper skal unngås, er det nødvendig å styre manganinnholdet innenfor visse grenser. in the liquid magnesium alloy, and if harmful manganese-rich particle groups are to be avoided, it is necessary to control the manganese content within certain limits.

I legeringen ifølge, den foreliggende oppfinnelse vil det normalt være manganrike partikler. Hittil har man forsøkt å unngå slike partikler for å unngå bearbeidingsvanskéligheter, men i praksis har operatørene ikke rapportert om vanskeligheter ved bear-beidingen av legeringer ifølge den foreliggende oppfinnelse. In the alloy according to the present invention there will normally be manganese-rich particles. Until now, attempts have been made to avoid such particles in order to avoid processing difficulties, but in practice the operators have not reported any difficulties when processing alloys according to the present invention.

Tilsvarende må silisiuminnholdet styres innenfor bestemte grenser for å minimalisere se læringsproblemene. Correspondingly, the silicon content must be controlled within certain limits to minimize the learning problems.

Det foretrekkes at Si og Mn er minst 0,5% hver, for eksempel fra 0,55 til 1,4%. Mn-innholdet bør fortrinnsvis være fra 0,55 til 1,4, for eksempel fra 0,8 til 1,2%. Totalinnholdet av mangan og silisium er dertil 1,2 til 1,8%, for eksempel fra 1,5 til 1,8%. Forholdet mellom Mn og Si kan hensiktsmessig holdes i området fra 0,6 til 1,5, fortrinnsvis fra 0,75 til 1,5. Sink kan tilsettes for å forbedre støpharheten og fortrinnsvis 1 en mengde fra 0,25 til 1,0%. It is preferred that Si and Mn are at least 0.5% each, for example from 0.55 to 1.4%. The Mn content should preferably be from 0.55 to 1.4, for example from 0.8 to 1.2%. The total content of manganese and silicon is also 1.2 to 1.8%, for example from 1.5 to 1.8%. The ratio between Mn and Si can suitably be kept in the range from 0.6 to 1.5, preferably from 0.75 to 1.5. Zinc may be added to improve casting hardness and preferably in an amount of from 0.25 to 1.0%.

Disse legeringer kan aldres ved temperaturer i området 100-250°C, fortrinnsvis 150-200°0. Aldringstidén vil avhenge av tem-peraturen og vil ligge i området fra 4 til- 48 timer. En typisk aldringsbehandling vil vare 16 timer i 180°G. These alloys can be aged at temperatures in the range 100-250°C, preferably 150-200°C. The aging time will depend on the temperature and will range from 4 to 48 hours. A typical aging treatment will last 16 hours at 180°G.

Etter aldringen blir støpegodeet avkjølt i luft eller alternativt bråkjølt i vaiin, olje eller et annet egnet medium. After ageing, the casting is cooled in air or alternatively quenched in wax, oil or another suitable medium.

legeringer som inneholder mindre enn 6% aluminium er ikke egnet for den foreliggende oppfinnelse, siden det ikke gir de nødvendige verdier for flytegrense og strekkstyrke. alloys containing less than 6% aluminum are not suitable for the present invention, since they do not provide the required values for yield strength and tensile strength.

Legeringene ifølge den foreliggende oppfinnelse fremstilles fortrinnsvis ved først å fremstille en legering av Mn-Si-Al (og eventuelt sink) og deretter å tilsette de ønskete mengder mangan, for eksempel som manganklorid. Alternativt kan en Al-Mn-legering benyttes. Silisium kan tilsettes som en Al-Si-legering. The alloys according to the present invention are preferably produced by first producing an alloy of Mn-Si-Al (and optionally zinc) and then adding the desired amounts of manganese, for example as manganese chloride. Alternatively, an Al-Mn alloy can be used. Silicon can be added as an Al-Si alloy.

legeringer med særlig gode mekaniske egenskaper har følgende sammensetninger: alloys with particularly good mechanical properties have the following compositions:

De aktuelle områder for disse legeringer vil være: The relevant areas for these alloys will be:

To legeringer (legeringer C og D) som ikke faller inn under oppfinnelsen ble også undersøkt. Disse hadde følgende sammensetning: 9,1% Al, 0,12% Mn, 0,94% Si, 0,54% Zn, Mn/Si-forhold 0,13 og 8,7% Al, 0,5% Mn, 0,02% Si, 0,5% Zn, Mn/Si-forhold 25. Two alloys (alloys C and D) which do not fall within the scope of the invention were also examined. These had the following composition: 9.1% Al, 0.12% Mn, 0.94% Si, 0.54% Zn, Mn/Si ratio 0.13 and 8.7% Al, 0.5% Mn, 0.02% Si, 0.5% Zn, Mn/Si ratio 25.

Egenskapene til kokillestøpte prøvestengér ved normale at-mosfære temperaturer var: The properties of die-cast test bars at normal atmospheric temperatures were:

Legeringen ifølge foreliggende oppfinnelse er i et diagram sammenliknet med legeringen ifølge norsk søknad nr. 627/68. The alloy according to the present invention is compared in a diagram with the alloy according to Norwegian application no. 627/68.

Pigi 5 viser 0,2% konvensjonell flytegrense for tre magne-siumlegeringer ved forhøyete temperaturer. Legeringene har føl-gende sammensetninger: Kurvene merket "x" og' "+" er kjente legeringer ifølge norsk patentsøknad nr. 627/68 og kurven merket "o" er legeringen ifølge oppfinnelsen. Som det fremgår av diagrammetj har legeringen ifølge oppfinnelsen hedre verdier for flytegrensen enn legeringene ifølge søknad nr. 627/68, bortsett fra temperaturer over 195°0 hvor verdien for flytegrensen blir lavere enn for en av de andre legeringer. Men ved disse høye temperaturer er flytegrensen ubrukbar lav for alle tre legeringer. Verdien for den konvensjonelle flytegrense er også ved romtemperatur bedre for legeringen ifølge oppfinnelsen enn for de to legeringer den er sammenliknet med; Figure 5 shows the 0.2% conventional yield strength for three magnesium alloys at elevated temperatures. The alloys have the following compositions: The curves marked "x" and "+" are known alloys according to Norwegian patent application no. 627/68 and the curve marked "o" is the alloy according to the invention. As can be seen from diagram tj, the alloy according to the invention has higher values for the yield point than the alloys according to application no. 627/68, except for temperatures above 195°0 where the value for the yield point becomes lower than for one of the other alloys. But at these high temperatures, the yield strength is unusably low for all three alloys. The value for the conventional yield strength is also better at room temperature for the alloy according to the invention than for the two alloys with which it is compared;

Legeringen ifølge den foreliggende oppfinnelse kan også benyttes for bearbeidete produkter, for eksempel valsete plater, ekstruderte produkter og smidde produkter. The alloy according to the present invention can also be used for processed products, for example rolled plates, extruded products and forged products.

Alle prosenter er regnet etter vekt. All percentages are calculated by weight.

Claims (5)

1. Magnesiumlegering med gode mekaniske egenskaper, bestående av fra 6 til 12 vektsprosent aluminium, fra 0 til 3, fortrinnsvis fra 0,25 til 1,0 vektsprosent sink, minst 0,5 vektsprosent mangan og minst 0,5 vektsprosent silisium, idet resten, bortsett fra forurensninger, er magnesium, karakterisert ved at det samlete innhold av mangan og silisium er fra 1,2 til 1,8 vektsprosent og at Mn/Si-forholdet.er fra 0,6 til 1,5.1. Magnesium alloy with good mechanical properties, consisting of from 6 to 12 weight percent aluminum, from 0 to 3, preferably from 0.25 to 1.0 weight percent zinc, at least 0.5 weight percent manganese and at least 0.5 weight percent silicon, the remainder , apart from impurities, is magnesium, characterized in that the total content of manganese and silicon is from 1.2 to 1.8 percent by weight and that the Mn/Si ratio is from 0.6 to 1.5. 2. Magnesiumlegering i samsvar med krav 1, karakterisert ved at Mn/Si-forholdet er fra 0,75 til 1,5.2. Magnesium alloy in accordance with claim 1, characterized in that the Mn/Si ratio is from 0.75 to 1.5. 3. Magnesiumlegering i samsvar med krav 1 eller 2, karakterisert ved at manganinnholdet er minst 0,55 vektsprosent.3. Magnesium alloy in accordance with claim 1 or 2, characterized in that the manganese content is at least 0.55% by weight. 4. Magnesiumlegering i samsvar med krav 1 eller 2, karakterisert ved at manganinnholdet er fra 0,8 til 1,2 vektsprosent og silisiuminnholdet er fra. 0,55 til 1,4 vektsprosent.4. Magnesium alloy in accordance with claim 1 or 2, characterized in that the manganese content is from 0.8 to 1.2% by weight and the silicon content is from. 0.55 to 1.4% by weight. 5. Magnesiumlegering i samsvar med krav 1 og som inneholder 7 til 9 vektsprosent aluminium, 0 til 3 vektsprosent sink, 0,6 til 1,2 vektsprosent mangan og 0,6 til 1,2 vektsprosent silisium, karakterisert ved at Mn/Si-forholdet er fra 0,8 til 1,4.5. Magnesium alloy in accordance with claim 1 and containing 7 to 9 weight percent aluminum, 0 to 3 weight percent zinc, 0.6 to 1.2 weight percent manganese and 0.6 to 1.2 weight percent silicon, characterized in that Mn/Si- the ratio is from 0.8 to 1.4.
NO2634/69A 1968-06-26 1969-06-25 NO123762B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB30395/68A GB1239822A (en) 1968-06-26 1968-06-26 Magnesium base alloys

Publications (1)

Publication Number Publication Date
NO123762B true NO123762B (en) 1972-01-10

Family

ID=10307012

Family Applications (1)

Application Number Title Priority Date Filing Date
NO2634/69A NO123762B (en) 1968-06-26 1969-06-25

Country Status (5)

Country Link
US (1) US3630726A (en)
DE (1) DE1932459A1 (en)
FR (1) FR2014233A1 (en)
GB (1) GB1239822A (en)
NO (1) NO123762B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675157A (en) * 1984-06-07 1987-06-23 Allied Corporation High strength rapidly solidified magnesium base metal alloys
US5055254A (en) * 1989-10-05 1991-10-08 Timminco Limited Magnesium-aluminum-zinc alloy
WO1995012002A1 (en) * 1993-10-25 1995-05-04 Vladimir Georgievich Smelikov High strength alloy
EP0665299B1 (en) * 1993-12-17 2000-03-08 Mazda Motor Corporation Magnesium alloy cast material for plastic processing, magnesium alloy member using the same, and manufacturing method thereof
RU2215056C2 (en) * 2001-12-26 2003-10-27 Открытое акционерное общество "АВИСМА титано-магниевый комбинат" Magnesium-based alloy and a method for preparation thereof
WO2003062481A1 (en) * 2002-01-03 2003-07-31 Jsc 'avisma Titanium-Magnesium Works' Magnesium-based alloy
WO2003057935A1 (en) * 2002-01-11 2003-07-17 Jsc 'avisma Titanium-Magnesium Works' Magnesium-based alloy
CN107287539B (en) * 2017-09-03 2019-01-04 福州思琪科技有限公司 A kind of heat treatment process of Mg alloy castings

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1959913A (en) * 1932-01-29 1934-05-22 Dow Chemical Co Magnesium base forging alloy
US1946069A (en) * 1933-07-10 1934-02-06 Dow Chemical Co Magnesium base die casting alloys
US2264310A (en) * 1940-03-09 1941-12-02 Dow Chemical Co Magnesium base alloy
US2264308A (en) * 1940-03-09 1941-12-02 Dow Chemical Co Magnesium base alloy
US3240593A (en) * 1961-06-02 1966-03-15 Knapsack Ag Corrosion resistant magnesium alloys having a grain-refined structure

Also Published As

Publication number Publication date
FR2014233A1 (en) 1970-04-17
DE1932459A1 (en) 1970-01-02
US3630726A (en) 1971-12-28
GB1239822A (en) 1971-07-21

Similar Documents

Publication Publication Date Title
EP0124286B1 (en) Aluminium alloys
Robson Microstructural evolution in aluminium alloy 7050 during processing
US7252723B2 (en) AlCuMg alloys with high damage tolerance suitable for use as structural members in aircrafts
CN106414782B (en) 6XXX aluminium alloy
RU2659529C2 (en) 2xxx series aluminum lithium alloys
NO161866B (en) ALUMINUM ALLOYS.
CA1169268A (en) A1-mg-si extrusion alloy
US5630889A (en) Vanadium-free aluminum alloy suitable for extruded aerospace products
US5652063A (en) Sheet or plate product made from a substantially vanadium-free aluminum alloy
NO123762B (en)
TR201814631T1 (en) Al-mg-si-based hardenable aluminum alloy.
NO764316L (en)
JPS62158851A (en) Lithium-containing aluminum base alloy
US3993476A (en) Aluminum alloy
EP3368702A1 (en) Improved wrought 7xxx aluminum alloys, and methods for making the same
JPS60121249A (en) Stress corrosion resistant aluminum base alloy
US5800927A (en) Vanadium-free, lithium-free, aluminum alloy suitable for sheet and plate aerospace products
US3762916A (en) Aluminum base alloys
US5665306A (en) Aerospace structural member made from a substantially vanadium-free aluminum alloy
US3146096A (en) Weldable high strength magnesium base alloy
Trudonoshyn et al. Features of structure formation and changes in the mechanical properties of cast Al-Mg-Si-Mn alloy with the addition of (Ti+ Zr)
US11186899B2 (en) Magnesium-zinc-manganese-tin-yttrium alloy and method for making the same
GB2137227A (en) Aluminium-Lithium Alloys
US4149882A (en) Magnesium alloys
US1911078A (en) Aluminum alloy