NO122687B - - Google Patents

Download PDF

Info

Publication number
NO122687B
NO122687B NO167918A NO16791867A NO122687B NO 122687 B NO122687 B NO 122687B NO 167918 A NO167918 A NO 167918A NO 16791867 A NO16791867 A NO 16791867A NO 122687 B NO122687 B NO 122687B
Authority
NO
Norway
Prior art keywords
cleaning
stainless steel
aqueous solution
reactor
film
Prior art date
Application number
NO167918A
Other languages
Norwegian (no)
Inventor
Vern Weed R De
Original Assignee
Atomic Energy Commission
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atomic Energy Commission filed Critical Atomic Energy Commission
Publication of NO122687B publication Critical patent/NO122687B/no

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Fremgangsmåte og blanding for rensning av et av rustfritt stål bestående kjølesystem i en kjernereaktor. Method and mixture for cleaning a stainless steel cooling system in a nuclear reactor.

Nærværende oppfinnelse vedrdrer en fremgangsmåte og en blanding som er bestemt for anvendelse ved rensning av flater av rustfritt stål slik som det forekommer i kjolesystemet i atomreaktorer. Med rensning menes i denne forbindelse det å fjerne en radioaktiv forurensning fra metallflater. Fremgangsmåten ifolge oppfinnelsen er også effektiv for å fjerne sterkt vedheftende radioaktive filmer som dannes på flater av rustfritt stål, som langvarig har vært utsatt for varmt vann som inneholder radioisotoper. Den kan også anvendes for å fjerne mindre vedheftende radioaktive filmer som dannes på karbonstål, zirkoniumlegering, messing, bronse og andre metaller. Samtidig forårsakes ingen forstyrrende korrosjon på noen av disse metaller. The present invention relates to a method and a mixture which is intended for use in cleaning surfaces of stainless steel such as occurs in the mantle system in nuclear reactors. In this context, cleaning means removing radioactive contamination from metal surfaces. The method according to the invention is also effective for removing strongly adherent radioactive films that form on surfaces of stainless steel, which have been exposed to hot water containing radioisotopes for a long time. It can also be used to remove less adherent radioactive films that form on carbon steel, zirconium alloy, brass, bronze and other metals. At the same time, no disturbing corrosion is caused on any of these metals.

Hovedformålet med oppfinnelsen er å rengjdre kjernéréåktorens The main purpose of the invention is to clean the nuclear actuator

>:kg61esystem,:,.hvil'ket hovedsakelig, er fremstilt av rustfritt stål. De radioaktive korrosjonsfilmer som er karakteristiske for ■kjgernereaktorer^.sqm, k-j\ol.es,rme.d.Jresirkulerende vann, skal periodisk, f jernes.rfqr;.at, man .ska-li,,kunne opprettholde ;>kdnt:akt og kontinuerlig, drift. For disse systemer kan' rehses.j'"'målmansut vikle metoder som er. egnet for anvendelse i systemet. Disse fremgangsmåter må oppfylle visse kriterier, som skal nærmere omtales nedenfor. >:kg61esystem,:,.which is mainly made of stainless steel. The radioactive corrosion films which are characteristic of nuclear reactors, sq m, k-j\ol.es,rme.d.Jcirculating water, must be periodically, f jernes.rfqr;.that, one .should-li,,be able to maintain ;>kdnt: act and continuous, operation. For these systems, managers can develop methods that are suitable for use in the system. These methods must meet certain criteria, which will be discussed in more detail below.

Fordvrig kan det henvises til" de metoder" "som er beskrevet for rensning av metalloverflater i de amerikanske patenter nr. 2.793.190 og nr. 3.013.909 samt britisk patent nr. 836.570:. Otherwise, reference can be made to "the methods" described for cleaning metal surfaces in American patents no. 2,793,190 and no. 3,013,909 as well as British patent no. 836,570:.

Et rerisemiddel må lose den radioaktive korroderende^film og fjerne den fra systemet. Store atomanlegg skiller seg ikke fra anlegg av andre typer. Således finnes de ved steder, hvor- ' • --: strdmningshastigheteri er lav eller hvor andre, .betingelser.for - . avsetning av partikkel formet materiale foreligger'-. De-paf^ik-^ kelformede materialer på disse steder må loses for å kunne fjernes effektivt. Et effektivt rensemiddel må lose og fjerne den radioaktive korroderende film, for hvis den bare fjernes fra rdroverflåtene og ikke oppldses, avsettes den på de steder hvor,strdmningshastigheten er lav eller andre betingelser for avsetning foreligger.<7->~-.<i>s.&<V>fe:KA recovery agent must loosen the radioactive corroding film and remove it from the system. Large nuclear plants do not differ from plants of other types. Thus, they are found at places where the flow velocity is low or where other, .conditions.for - . deposition of particulate material exists'-. De-paf^ik-^ kel-shaped materials in these places must be loosened to be able to be removed effectively. An effective cleaning agent must loosen and remove the radioactive corroding film, because if it is simply removed from the rdrover surfaces and not dissolved, it is deposited in the places where the flow rate is low or other conditions for deposition exist.<7->~-.<i> s.&<V>fe:K

Et godt rensemiddel må fjerne og lose opp de radioaktive filmer som dannes under langvarig og kontinuerlig drift (opptil' minst 2 eller 3,år). Det fremgår som sannsynlig fra dé begrensede data som er tilgjengelige i AEC-litteraturen, at rehsnihg: ikke er nddvendig oftere enn under usedvanlige omstendigheter eller krav. Det er dnskelig ved drift av energiprodftserendé" reak-'- '■ ;Vt.-- * SU* S;ii.:f-£fCaivy^On&if-■:i torer å, holde utkoblingstidehe ved et minimum, og dm mulig, oppnå 5, års kontinuerlig drift mellom rensningene. Det er der-for, et vesentlig krav å kunne fjerne disse i lopét * åv 1 ang' tid dannede filmer. A good cleaning agent must remove and dissolve the radioactive films that form during long-term and continuous operation (up to at least 2 or 3 years). It appears likely from the limited data available in the AEC literature that rehsnihg: is not necessary more often than under exceptional circumstances or requirements. It is desirable when operating energy production reactors to keep the switch-off time to a minimum, and if possible, achieve 5 years of continuous operation between cleanings.Therefore, it is an essential requirement to be able to remove these films formed over time.

Et tilfredsstillende rensemiddel må ikke være altfor korroder ende overfor materialene i primærsystemet. Reaktorsystemet er hovedsakelig bygget opp av et eller to materialer, men det finnes dog materialer av andre typer i systemet. 'Disse i små mengder forekommende materialer gjenfinnes i slike konstruksjons-detaljer som ventiler og prdvetagningsanordninger. Alle disse materialer må være forenbare med rensemidlet, hvis de kommer i direkte eller indirekte kontakt med oppldsningen, og dette er især tilfelle hvis komponentene er beliggende på kritiske steder. Som eksempler på slike kan nevnes kiken, ventilsetet eller spindelen i en avtapningsventil. A satisfactory cleaning agent must not be overly corrosive to the materials in the primary system. The reactor system is mainly made up of one or two materials, but there are materials of other types in the system. These materials, which occur in small quantities, are found in such construction details as valves and pressure-removal devices. All these materials must be compatible with the cleaning agent, if they come into direct or indirect contact with the solution, and this is especially the case if the components are located in critical locations. Examples of such can be mentioned the peephole, the valve seat or the spindle in a drain valve.

Den film som danner seg på flater av rustfritt stål i kjøle-systemet i vannkjdlte atomreaktorer, synes hovedsakelig å be-stå av magnetitt i blanding med oksyder av nikkel og krom. Radioaktive ioner i vannet adsorberes i denne film, slik at de ikke kan fjernes uten at filmen fjernes. Innenfor det her foreliggende industriområde er det kjent å rense de av rustfritt stål oppbyggede kjdlesystemer i kjernereaktorer ved behandling med alkalisk kaliumpermanganat fulgt av en behandling med oksalsyre. Tidligere kjente oksalsyreholdige oppldsninger har imidlertid hatt tendens til å avsette en sekundær film på flatene. Noen ganger har denne sekundære film form av en avsetning som'skiller seg ut på flatene innenfor de områder hvor strdmningshastigheten er lav, eller på de dode steder i kjøle-systemet. Denne sekundære film inneholder en vesentlig mengde radioaktivitet og dens dannelse opphever delvis rensningen. The film that forms on surfaces of stainless steel in the cooling system in water-cooled nuclear reactors appears to consist mainly of magnetite mixed with oxides of nickel and chromium. Radioactive ions in the water are adsorbed in this film, so that they cannot be removed without removing the film. Within the industrial area presented here, it is known to clean the stainless steel boiler systems in nuclear reactors by treatment with alkaline potassium permanganate followed by treatment with oxalic acid. Previously known solutions containing oxalic acid have, however, tended to deposit a secondary film on the surfaces. Sometimes this secondary film takes the form of a deposit which separates out on the surfaces within the areas where the flow rate is low, or in the dead spots in the cooling system. This secondary film contains a significant amount of radioactivity and its formation partially cancels the purification.

Oppfinnelsen vedrdrer således en fremgangsmåte ved rensning av et av rustfritt stål bestående kjølesystem i en atomreaktor, hvilket system har vært anvendt for langvarig sirkulasjon av varmt vann under reaktorens drift, hvor man ved rensningen forst bringer en varm, alkalisk vandig oppldsning av kaliumpermanganat til å sirkulere i systemet, og fremgangsmåten erkarakterisert vedat man deretter bringer til sirkulasjon i systemet en varm, vandig oppldsning av fdlgende sammensetning: Ingen sekundære filmer eller avsetninger ble dannet. Det skal bemerkes at behandlingen var særlig effektiv på de prover som oppviste hoye, opprinnelige aktiviteter. The invention thus relates to a method for cleaning a cooling system consisting of stainless steel in a nuclear reactor, which system has been used for long-term circulation of hot water during the reactor's operation, where during the cleaning a warm, alkaline aqueous solution of potassium permanganate is first brought into circulation in the system, and the method is characterized in that a warm, aqueous solution of the following composition is then circulated in the system: No secondary films or deposits were formed. It should be noted that the treatment was particularly effective on the samples that showed high original activities.

Korrosjonsprove ble gjennomfort med prbvemodeller av forskjellige metaller. En korrosjonsprove ble gjennomfort med RDW-3 ved 80°C i 120 timer. Den totale korrosjon som skjedde på eksponerte provemodeller av karbonstål og rustfritt stål, var 0,0056 mm, henh. 0,00025 mm. En svakt gul film hadde avsatt seg på provemodellene av karbonstål, da proven var avsluttet. Opplosningen var klart gul uten noen utfelling. Corrosion tests were carried out with test models of different metals. A corrosion test was carried out with RDW-3 at 80°C for 120 hours. The total corrosion that occurred on exposed test models of carbon steel and stainless steel was 0.0056 mm, respectively. 0.00025 mm. A faint yellow film had settled on the carbon steel test models when the test was finished. The solution was clear yellow without any precipitation.

En annen korrosjonsprove ble utfort i 24 timer ved 8 2°C med et stort antall forskjellige materialer. De på denne måte oppnådde korrosjonsdata er gjengitt i tabell II. Korrosjonsangrepet på provemodellene av karbonstål eller rustfritt stål 440-A og 440-C oket med tiltagende eksponering, mens angrepet på gjenværende legeringer ikke oket etter det forste angrep. Angrepet på samtlige legeringer var meget svakt.. Det kraftigste angrep (0,005 mm) ble oppnådd på provemodellen av karbonstål Stellited A212. Punktangrep opptråtte ikke på noen av karbonstållegering-ene, men noen få angrepspunkter med diameter opptil 0,5 mm ble iakttatt på provemodellene av rustfritt stål 400. Another corrosion test was carried out for 24 hours at 82°C with a large number of different materials. The corrosion data obtained in this way are reproduced in table II. The corrosion attack on the carbon steel or stainless steel 440-A and 440-C test specimens increased with increasing exposure, while the attack on the remaining alloys did not increase after the initial attack. The attack on all alloys was very weak. The strongest attack (0.005 mm) was achieved on the test model of carbon steel Stellited A212. Pitting did not occur on any of the carbon steel alloys, but a few pits up to 0.5 mm in diameter were observed on the 400 stainless steel specimens.

Ingen avsetning inntraff med RDW-3 i motsetning til den som er tilfelle med andre oksalsyreholdige opplosninger. Opplosningen var klart gul uten avsetning. No deposition occurred with RDW-3 in contrast to that which is the case with other oxalic acid containing solutions. The solution was clear yellow with no sediment.

Matte, grå passive oksyder ble dannet på provemodellene av karbonstål og rustfritt stål 400. Disse oksyder viste seg å be-skytte mot etterfølgende rustdannelse når proven ble spylt i varmt ledningsvann. Matt, gray passive oxides were formed on the sample models of carbon steel and stainless steel 400. These oxides proved to protect against subsequent rust formation when the sample was rinsed in hot tap water.

Prover ble også gjennomfort med provemodeller av zirkoniumlegering-2. Ingen korrosjon kunne iakttas på provemodellene av denne legering. Tests were also carried out with sample models of zirconium alloy-2. No corrosion could be observed on the test models of this alloy.

EKSEMPEL: 2 EXAMPLE: 2

RENSNING AV REAKTORREACTOR CLEANING

Det primære kjolesystem i en Plutonium Recycle Test Reactor ble drenert, hvoretter spylevannet ble pumpet igjennom. Til slutt ble spylevannet tappet av. Dette ble gjentatt flere ganger. Deretter ble en oppldsning av 3 % KMnO^og 10 % NaOH iblandet The primary jacket system in a Plutonium Recycle Test Reactor was drained, after which the flushing water was pumped through. Finally, the flushing water was drained. This was repeated several times. Then a solution of 3% KMnO^ and 10% NaOH was mixed

i systemet og pumpet i kretslop i 6 timer. Opplosningen ble holdt ved lOO til 105°C ved hjelp av en varmeutveksler i 2 timer av denne periode. Oppvarmningen og avkjolingen tok hver 2 timer. Systemet ble deretter skyllet gjentatte ganger med vann, inntil skyllevannet hadde pH mellom 10 og 11. in the system and pumped in circuit for 6 hours. The solution was maintained at 100 to 105°C using a heat exchanger for 2 hours of this period. The warm-up and cool-down took 2 hours each. The system was then rinsed repeatedly with water, until the rinse water had a pH between 10 and 11.

RDW-3 ble: deretter pumpet i kretslop i systemet i 3 timer. Opplosningen ble holdt ved 80°C i en time. Etter dette ble systemet gjennomskyllet med avionisert vann, inntil vannet hadde oppnådd en motstand på 10,000 ohm/cm. Resultatene er gjengitt i tabell RDW-3 was: then pumped in circulation in the system for 3 hours. The solution was kept at 80°C for one hour. After this, the system was flushed with deionized water, until the water had achieved a resistance of 10,000 ohm/cm. The results are reproduced in a table

III. III.

TrykkrdrenIe av zirkoniumlegering-2 var belagt med en film som inneholder forurensninger. Denne film forsvant fullstendig og man oppnådde en blank flate. Så vidt man vet, er dette det mest aktive rensningsmiddel for atomreaktorer, som noensinne er beskrevet. Zirconium alloy-2 pressure washers were coated with a film containing contaminants. This film disappeared completely and a glossy surface was obtained. As far as is known, this is the most active cleaning agent for nuclear reactors ever described.

Claims (2)

1. , Fremgangsmåte ved rensning av et av rustfritt stål bestående kjolesystem i en atomreaktor, hvilket system har vært anvendt for langvarig sirkulasjon av varmt vann under reaktorens drift, hvor man ved rensningen forst bringer en varm, alkalisk vandig oppldsning av kaliumpermanganat til å sirkulere i systemet, karakterisert ' ved at man deretter bringer til sirkulasjon i systemet en varm, vandig oppldsning av fdlgende sammensetning: 1., Procedure for cleaning a jacket system consisting of stainless steel in a nuclear reactor, which system has been used for long-term circulation of hot water during the reactor's operation, where during the cleaning a warm, alkaline aqueous solution of potassium permanganate is first brought to circulate in the system, characterized by the fact that a hot, aqueous solution of the following composition is then brought into circulation in the system: idet forholdet mellom to-basisk ammoniumcitrat og oksalsyre er minst 2: 1.with the ratio between dibasic ammonium citrate and oxalic acid being at least 2:1. 2. Vandig oppldsning for anvendelse ved utfdreise av fremgangsmåten ifolge krav 1, karakterisert ved at den har fdlgende sammensetning: 2. Aqueous solution for use when carrying out the method according to claim 1, characterized in that it has the following composition: idet forholdet mellom to-basisk ammoniumcitrat og oksalsyre er minst 2:1.the ratio between dibasic ammonium citrate and oxalic acid being at least 2:1.
NO167918A 1966-04-28 1967-04-27 NO122687B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US54648966A 1966-04-28 1966-04-28

Publications (1)

Publication Number Publication Date
NO122687B true NO122687B (en) 1971-07-26

Family

ID=24180661

Family Applications (1)

Application Number Title Priority Date Filing Date
NO167918A NO122687B (en) 1966-04-28 1967-04-27

Country Status (9)

Country Link
US (1) US3496017A (en)
BE (1) BE696994A (en)
CH (1) CH468697A (en)
DE (1) DE1621670A1 (en)
ES (1) ES339132A1 (en)
GB (1) GB1130068A (en)
IL (1) IL27663A (en)
NO (1) NO122687B (en)
SE (1) SE321130B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3664870A (en) * 1969-10-29 1972-05-23 Nalco Chemical Co Removal and separation of metallic oxide scale
US3873362A (en) * 1973-05-29 1975-03-25 Halliburton Co Process for cleaning radioactively contaminated metal surfaces
US4063962A (en) * 1976-04-07 1977-12-20 General Atomic Company Method and apparatus for cleaning nuclear fuel elements
CA1064626A (en) * 1977-06-09 1979-10-16 Majesty (Her) In Right Of Canada As Represented By Atomic Energy Of Cana Da Limited Deposit suppression in the core of water-cooled nuclear reactors
US4460479A (en) * 1978-09-14 1984-07-17 Mulder Gerard W Method for polishing, deburring and descaling stainless steel
US4226640A (en) * 1978-10-26 1980-10-07 Kraftwerk Union Aktiengesellschaft Method for the chemical decontamination of nuclear reactor components
US4217192A (en) * 1979-06-11 1980-08-12 The United States Of America As Represented By The United States Department Of Energy Decontamination of metals using chemical etching
US4470920A (en) * 1981-05-11 1984-09-11 Custom Research And Development Metal oxide remover for stainless steels
EP0071336B1 (en) * 1981-06-17 1986-03-26 Central Electricity Generating Board Process for the chemical dissolution of oxide deposits
US4476047A (en) * 1982-03-22 1984-10-09 London Nuclear Limited Process for treatment of oxide films prior to chemical cleaning
US4452643A (en) * 1983-01-12 1984-06-05 Halliburton Company Method of removing copper and copper oxide from a ferrous metal surface
US4587043A (en) * 1983-06-07 1986-05-06 Westinghouse Electric Corp. Decontamination of metal surfaces in nuclear power reactors
US4668303A (en) * 1983-08-04 1987-05-26 Exxon Research And Engineering Company Method of preventing stress corrosion in a bellows expansion joint
DE3413868A1 (en) * 1984-04-12 1985-10-17 Kraftwerk Union AG, 4330 Mülheim METHOD FOR CHEMICAL DECONTAMINATION OF METAL COMPONENTS OF CORE REACTOR PLANTS
US4654170A (en) * 1984-06-05 1987-03-31 Westinghouse Electric Corp. Hypohalite oxidation in decontaminating nuclear reactors
BE904139A (en) * 1986-01-30 1986-05-15 Lemmens Godfried PROCESS FOR THE DECONTAMINATION OF RADIOACTIVALLY CONTAMINATED MATERIALS.
GB8613522D0 (en) * 1986-06-04 1986-07-09 British Nuclear Fuels Plc Technetium decontamination
GB2220005A (en) * 1988-06-28 1989-12-28 Borsodi Vegyi Komb Process for removing oxide layer and scale from metals and metal alloys
US5205999A (en) * 1991-09-18 1993-04-27 British Nuclear Fuels Plc Actinide dissolution
US5257296A (en) * 1991-10-25 1993-10-26 Buford Iii Albert C Steam generator chemical solvent mixing system and method
FR2699936B1 (en) * 1992-12-24 1995-01-27 Electricite De France Process for dissolving oxides deposited on a metal substrate.
US5468303A (en) * 1994-02-25 1995-11-21 Zt Corporation Rust, corrosion, and scale remover
US5640703A (en) * 1994-04-18 1997-06-17 British Nuclear Fuels Plc Treatment of solid wastes
US5591270A (en) * 1995-07-31 1997-01-07 Corpex Technologies, Inc. Lead oxide removal method
US5678232A (en) * 1995-07-31 1997-10-14 Corpex Technologies, Inc. Lead decontamination method
US5814204A (en) * 1996-10-11 1998-09-29 Corpex Technologies, Inc. Electrolytic decontamination processes
CN100577893C (en) * 2005-12-23 2010-01-06 中国辐射防护研究院 Electrolytic decontaminating method for removing radioactive contaminant from metal surface
US20100072059A1 (en) * 2008-09-25 2010-03-25 Peters Michael J Electrolytic System and Method for Enhanced Radiological, Nuclear, and Industrial Decontamination
TWI496894B (en) * 2009-04-30 2015-08-21 World Resources Co Process for recovering metals and metal compounds from mined ore and other metal-bearing raw source materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB763547A (en) * 1953-11-10 1956-12-12 Atomic Energy Authority Uk Improvements in or relating to detergent compositions effective in removing radioactive contamination
US2793190A (en) * 1954-04-15 1957-05-21 Du Pont Corrosion-inhibition of oxalic acid
US2959555A (en) * 1956-09-28 1960-11-08 Dow Chemical Co Copper and iron containing scale removal from ferrous metal
US3013909A (en) * 1960-03-31 1961-12-19 Guyon P Pancer Method of chemical decontamination of stainless steel nuclear facilities

Also Published As

Publication number Publication date
CH468697A (en) 1969-02-15
GB1130068A (en) 1968-10-09
DE1621670A1 (en) 1971-06-24
BE696994A (en) 1967-09-18
SE321130B (en) 1970-02-23
IL27663A (en) 1970-10-30
ES339132A1 (en) 1968-12-01
US3496017A (en) 1970-02-17

Similar Documents

Publication Publication Date Title
NO122687B (en)
US4587043A (en) Decontamination of metal surfaces in nuclear power reactors
US4789406A (en) Method and compositions for penetrating and removing accumulated corrosion products and deposits from metal surfaces
JP3014448B2 (en) Metal oxide dissolving agent
US4731124A (en) Application technique for the descaling of surfaces
US4190463A (en) Method of removing iron oxide deposits from heat transfer surfaces
US4476047A (en) Process for treatment of oxide films prior to chemical cleaning
EP0164988B1 (en) Method of decontaminating metal surfaces
Mudali Materials for hostile corrosive environments
US2981643A (en) Process for descaling and decontaminating metals
US3096220A (en) Corrosion protection of aluminum
US3523825A (en) Cleaning composition and method of using same
Dooley et al. Don't let those boiler tubes fail again
JPH0566999B2 (en)
KR20010108013A (en) Method for nuclear power plant decontamination
JPS602389B2 (en) Chemical cleaning method for steel parts
Alquist Discussion:“Chemical Removal of Copper From Boilers”(Call, RG, and Webb, WL, 1951, Trans. ASME, 73, pp. 125–129)
Cardwell Discussion:“Chemical Removal of Copper From Boilers”(Call, RG, and Webb, WL, 1951, Trans. ASME, 73, pp. 125–129)
Call et al. Closure to “Discussions of ‘Chemical Removal of Copper From Boilers’”(1951, Trans. ASME, 73, pp. 129–132)
Edeleanu Avoidance of Stress Corrosion in Austenitic Steel Equipment
Gadiyar et al. Chemical cleaning, decontamination and corrosion
CN117139269A (en) Method for removing hydroxyapatite in chemical cleaning of boiler of thermal power plant
Clad Corrosion of research reactor aluminium clad spent fuel in water
Jones Electrochemical corrosion of alloy 600 in secondary water
Ayres DECONTAMINATION STUDIES FOR N REACTOR.