NO121908B - - Google Patents

Download PDF

Info

Publication number
NO121908B
NO121908B NO4253/68A NO425368A NO121908B NO 121908 B NO121908 B NO 121908B NO 4253/68 A NO4253/68 A NO 4253/68A NO 425368 A NO425368 A NO 425368A NO 121908 B NO121908 B NO 121908B
Authority
NO
Norway
Prior art keywords
reduction
nitrile
ether
aluminum hydride
reducing agent
Prior art date
Application number
NO4253/68A
Other languages
Norwegian (no)
Inventor
F Adolphs
Original Assignee
Bbc Ag Ch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bbc Ag Ch filed Critical Bbc Ag Ch
Publication of NO121908B publication Critical patent/NO121908B/no

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/20Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having deep-bar rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Induction Machinery (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Fremgangsmåte til fremstilling av aldehyder ved hydrolyse av aldimider som er fått ved reduksjon av nitriler. Process for the production of aldehydes by hydrolysis of aldimides obtained by reduction of nitriles.

Det er kjent at nitriler kan reduseres It is known that nitriles can be reduced

til aldiminer, som ved hydrolyse kan omdannes til de tilsvarende nitriler. Til denne reduksjon kan det anvendes forskjellige re-duksjonsmidler. Til fremstilling av umettede aldehyder er oppmerksomheten blitt henledet på litium-aluminiumhydrid som reduksjonsmiddel. Dette har nemlig den fordel at det ikke angriper de umettede bindinger. Det har dog i det nevnte tilfelle noen ulemper, slik at det har hatt mindre interesse å fremstille aldehyder av nitriler på denne måte. I enkelte tilfelle ble utbyt-tene mindre enn ventet. to aldimines, which can be converted to the corresponding nitriles by hydrolysis. Various reducing agents can be used for this reduction. For the production of unsaturated aldehydes, attention has been drawn to lithium aluminum hydride as a reducing agent. This has the advantage that it does not attack the unsaturated bonds. In the aforementioned case, however, it has some disadvantages, so that there has been less interest in producing aldehydes from nitriles in this way. In some cases, the yields were less than expected.

Oppfinnerne har funnet at det oppnås The inventors have found that it is achieved

gode utbytter av aldehyder, som hører til den blandet alifatisk-aromatiske, blandet alifatisk-alicykliske eller blandet alifatisk-heterocykliske rekke, hvis de tilsvarende nitriler reduseres med et dialkyl-aluminiumhydrid og det derved erholdte aldiminkompleks deretter hydrolyseres i vandig miljø. good yields of aldehydes, which belong to the mixed aliphatic-aromatic, mixed aliphatic-alicyclic or mixed aliphatic-heterocyclic series, if the corresponding nitriles are reduced with a dialkyl aluminum hydride and the resulting aldimine complex is then hydrolyzed in an aqueous environment.

Som eksempler på forbindelser som i; As examples of compounds such as in;

henhold til oppfinnelsen kan omdannes til; aldehyder kan nevnes benzoenitril, kanel-; syrenitril, (3-jonilyden-acetonitril og vita-<1 >min A-syrenitril. according to the invention can be converted into; aldehydes can be mentioned benzonitrile, cinnamon-; acid nitrile, (3-ionylidene acetonitrile and vita-<1 >min A-acid nitrile.

Det er fordelaktig å utføre reduksjonen It is beneficial to perform the reduction

i fravær av surstoff, hvorfor den fortrinnsvis foretas i en kvelstoffatmosfære. Videre er det viktig at temperaturen holdes lav under reduksjonen. Mellom -=- 50° og + 50° C foregår reaksjonen bra. Videre er det å anbefale at det ikke anvendes noen større mengde reduksjonsmiddel enn den som be- in the absence of oxygen, which is why it is preferably carried out in a nitrogen atmosphere. Furthermore, it is important that the temperature is kept low during the reduction. Between -=- 50° and + 50° C, the reaction takes place well. Furthermore, it is recommended that no greater amount of reducing agent be used than that required

høves for å redusere nitrilgruppen slik at aldiminkomplekset dannes. Fortrinnsvis anvendes det til reduksjon av 1 mol nitril ca. 1 mol dialkyl-aluminiumhydrid. Ved andre mengdeforhold fåes det riktignok resultater, men utbytte av aldehyd etter hydrolysen av aldiminkomplekset er da mindre. is allowed to reduce the nitrile group so that the aldimine complex is formed. Preferably, it is used for the reduction of 1 mol of nitrile approx. 1 mole of dialkyl aluminum hydride. At other ratios, results are certainly obtained, but the yield of aldehyde after the hydrolysis of the aldimine complex is then less.

Meget gode resultater fåes ved reduksjon med dialkyl-aluminiumhydrid i hvilket antallet av kullstoffatomer i hver en-kelt av alkylgruppene ligger mellom 1 og 6, f. eks. dietyl-aluminiumhydrid, eller diisobutyl-aluminiumhydrid. Reduksjonen bør utføres i et inert oppløsningsmiddel, f. eks. i n-heksan, cykloseksan, benzol, toluol eller petroleter. Reaksjonen kan også utføres i alifatiske eller cykliske etere, f.eks. i dietyl-metyletyl-, diisopropyl- eller dipropyleter, i dioksan eller tetrahydrofuran. Very good results are obtained by reduction with dialkyl aluminum hydride in which the number of carbon atoms in each individual alkyl group is between 1 and 6, e.g. diethyl aluminum hydride, or diisobutyl aluminum hydride. The reduction should be carried out in an inert solvent, e.g. in n-hexane, cyclohexane, benzene, toluene or petroleum ether. The reaction can also be carried out in aliphatic or cyclic ethers, e.g. in diethyl-methylethyl-, diisopropyl- or dipropyl ether, in dioxane or tetrahydrofuran.

Reduksjonen er særlig av betydning for fremstilling av (3-jonyliden-acetaldehyd resp. vitamin A-aldehyd fra |3-jonyliden-acetonitril resp. vitamin A-syrenitril, hvor det i mellomtrinnet dannede aldiminkompleks blir hydrolysert. The reduction is particularly important for the production of (3-jonylidene-acetaldehyde or vitamin A-aldehyde from |3-jonylidene-acetonitrile or vitamin A-acid nitrile, where the aldimine complex formed in the intermediate step is hydrolysed.

Reaksjonsproduktet mellom nitril og reduksjonsmidlet kan ved tilsetning av fuktig eter spaltes til aldiminkomplekset. Aldiminkomplekset kan spaltes ved tilsetning av fortynnet, vandig syre. The reaction product between the nitrile and the reducing agent can be cleaved to the aldimine complex by the addition of moist ether. The aldimine complex can be cleaved by the addition of dilute, aqueous acid.

Utførelseseksempler: Execution examples:

1. Under utelukkelse av fuktighet blir, i en kvelstoffatmosfære og under stadig omrøring, en oppløsning av 21, 5 g (0,1 mol) [3-jonilyden-acetonitril i 150 ml cykloheksan, som er avkjølt til ca. 5° C, tilsatt en' likeledes avkjølt oppløsning av 14,2 g (0,1 mol) diisobutyl-aluminiumhydrid i cykloheksan. Etter at alt var tilsatt ble det om-rørt videre i y2 time ved hevet temperatur (ca. 35° C). Deretter ble reaksjonsblandingen avkjølt (0° C) og spaltet meget forsiktig ved tildrypping av fuktig dietyleter. Den dannede gel ble oppløst ved å syres med fortynnet H2SO+. Oppløsningen av reaksjonsproduktet ble skilt fra, vasket med vann, og tørket over Na2SOi. Oppløsnings-midlet ble avdestillert, og det rå (3-jonilyden-acetaldehyd ble destillert i vakuum. Kp. ved 0,01 mm Hg var 101—104° C. Det destillerte produkts absorpsjonsspektrum i etanol hadde to maksima, nemlig ved 275 og 325 mjx. Ekstinksjonen var 12 200 resp. 14 600. Med semikarbacid-acetat erholdtes det et fast stoff, som etter omkrystallise-ring fra benzol smeltet ved 193—196° C. 2. 14,05 g (0,05 mol) vitamin A-syrenitril ble på den i eks. 1 beskrevne måte redusert med 7,1 g (0,05 mol) diisobutyl-aluminiumhydrid. Etter at reaksjonsblandingen var blitt spaltet og syret med H2SO4 ble det organiske stoff ekstrahert og oppløs-ningen tørket overNa2S04.Deretter ble opp-løsningsmidlet avdestillert i vakuum. Det rå, oransjebrune vitamin A-aldehyd ble løst opp i etanol, og absorpsjonsspektrumet hadde et maksimum ved 382 mji e = 32 000. En del som ble reagert med semikarbacid-acetat ga det tilsvarende semi-karbazon. Etter to omkrystalliseringer var dette rent og smeltet ved 197° C. Absorpsjonsspektrumet i kloroform hadde et maksimum ved 385 m\ i e = 60 600. 3. 14,2 g (0,1 mol) di-isobutylalumini-umhydrid ble satt til en oppløsning av 10,3 g (0,1 mol) benzoenitril i petroleter. Reak-sjonstemperaturen var 20° C. Blandingen ble deretter omrørt i 15 min. ved + 10° C. Etter kjøling til -=- 20° C ble reaksjonsblandingen forsiktig spaltet ved tilsetning av en oppløsning av metanol i petroleter, fulgt av tilsetning av vann. Etter syring med fortynnet svovelsyre ble petroleteroppløsningen skilt fra, vasket med vann og tørket over Na2SOi. Når opp-løsningsmidlet ble fordampet, ble det til-bake 9,9 g benzaldehyd med kp. 176—180° C. 4. På samme måte som beskrevet i ek-sempel 3 ble en oppløsning av 6,45 g (0,05 mol) kanelsyrenitril i eter redusert ved -f- 30° C med en oppløsning av 4,3 g (0,05 mol) dietyl-aluminiumhydrid i eter. 1. Under the exclusion of moisture, in a nitrogen atmosphere and with constant stirring, a solution of 21.5 g (0.1 mol) of [3-ionylidene acetonitrile in 150 ml of cyclohexane, which has been cooled to approx. 5° C, added a similarly cooled solution of 14.2 g (0.1 mol) of diisobutyl aluminum hydride in cyclohexane. After everything had been added, it was stirred further for y2 hours at an elevated temperature (approx. 35° C). The reaction mixture was then cooled (0° C) and cleaved very carefully by adding moist diethyl ether dropwise. The gel formed was dissolved by acidifying with dilute H 2 SO + . The solution of the reaction product was separated, washed with water, and dried over Na 2 SO 1 . The solvent was distilled off, and the crude (3-ionylidene acetaldehyde was distilled in vacuum. Kp. at 0.01 mm Hg was 101-104° C. The absorption spectrum of the distilled product in ethanol had two maxima, namely at 275 and 325 mjx. The extinction was 12,200 and 14,600 respectively. With semicarbacid acetate a solid was obtained, which after recrystallization from benzene melted at 193-196° C. 2. 14.05 g (0.05 mol) vitamin A -acid nitrile was reduced with 7.1 g (0.05 mol) of diisobutyl aluminum hydride in the manner described in example 1. After the reaction mixture had been split and acidified with H2SO4, the organic matter was extracted and the solution dried over Na2SO4. the solvent was distilled off in vacuo. The crude, orange-brown vitamin A aldehyde was dissolved in ethanol, and the absorption spectrum had a maximum at 382 mji e = 32,000. A portion reacted with semicarbacid acetate gave the corresponding semicarbazone After two recrystallizations this was pure and melted at 197° C. Absorption The ns spectrum in chloroform had a maximum at 385 m\ in e = 60,600. 3. 14.2 g (0.1 mol) of diisobutylaluminum hydride was added to a solution of 10.3 g (0.1 mol) of benzonitrile in petroleum ether. The reaction temperature was 20° C. The mixture was then stirred for 15 min. at + 10° C. After cooling to -=- 20° C, the reaction mixture was carefully cleaved by the addition of a solution of methanol in petroleum ether, followed by the addition of water. After acidification with dilute sulfuric acid, the petroleum ether solution was separated, washed with water and dried over Na2SOi. When the solvent was evaporated, 9.9 g of benzaldehyde with b.p. 176-180° C. 4. In the same way as described in example 3, a solution of 6.45 g (0.05 mol) cinnamic nitrile in ether was reduced at -f- 30° C with a solution of 4.3 g (0.05 mol) of diethyl aluminum hydride in ether.

Kanelsyrealdehydet ble i solert i form av dets fenylhydrazon (8,7 g). Smp. 163— 166° C. 5. På samme måte som beskrevet i ek-sempel 3 ble en oppløsning av 11,9 g (0,1 mol) furfuryliden-acetonitril i benzol redusert ved 10° C med en oppløsning av 14,2 g (0,1 mol) diisobutyl-aluminiumhydrid i benzol. The cinnamic aldehyde was isolated in the form of its phenylhydrazone (8.7 g). Temp. 163— 166° C. 5. In the same way as described in example 3, a solution of 11.9 g (0.1 mol) of furfurylidene acetonitrile in benzene was reduced at 10° C with a solution of 14.2 g (0.1 mole) of diisobutyl aluminum hydride in benzene.

Man fikk aldehydet i form av en gul-aktig olje som stivnet etter destillasjon (kp.ir, = 118—120° C). Det faste stoffs smp. var 48—50° C. Utbyttet var 10,4 g. The aldehyde was obtained in the form of a yellowish oil which solidified after distillation (bp.ir, = 118-120° C). The solid's m.p. was 48-50° C. The yield was 10.4 g.

Patentpåstander: Patent claims:

Claims (2)

1. Fremgangsmåte til fremstilling av aldehyder ved at et nitril med den almin-nelige formel R-A-CN, i hvilken formel R betyr et aromatisk, alifatisk eller hetero-cyklisk radikal og A betyr en mettet eller umettet alifatisk kullstoff kjede som inneholder 0—12 kullstoffatomer, reduseres og det dannede aldiminkompleks hydrolyseres i et vandig miljø, karakterisert ved at det som reduksjonsmiddel anvendes et dialkyl-aluminiumhydrid.1. Process for the production of aldehydes in that a nitrile with the general formula R-A-CN, in which formula R means an aromatic, aliphatic or heterocyclic radical and A means a saturated or unsaturated aliphatic carbon chain containing 0-12 carbon atoms, is reduced and the formed aldimine complex is hydrolysed in an aqueous environment, characterized in that a dialkyl aluminum hydride is used as reducing agent. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at reduksjonen utføres med ekvimolare mengder av nitril og reduksjonsmiddel, hvilket siste inneholder alkyl-grupper som hver har 1—6 kullstoffatomer, og at reduksjonen utføres ved en temperatur mellom -f- 50 og + 50° C, fortrinnsvis i et surstoff ritt miljø, samt i nærvær av et inert oppløsningsmiddel, f. eks. n-heksan, cykloheksan, benzol, toluol, petroleter, eller i en eter som f. eks. dietyl-, metyl-etyl-, diisopropyl-, dipropyl-eter, dioksan eller tetrahydrofuran.2. Process according to claim 1, characterized in that the reduction is carried out with equimolar amounts of nitrile and reducing agent, the latter containing alkyl groups each having 1-6 carbon atoms, and that the reduction is carried out at a temperature between -f- 50 and + 50° C, preferably in an oxygen-free environment, as well as in the presence of an inert solvent, e.g. n-hexane, cyclohexane, benzene, toluene, petroleum ether, or in an ether such as e.g. diethyl, methyl ethyl, diisopropyl, dipropyl ether, dioxane or tetrahydrofuran.
NO4253/68A 1967-10-27 1968-10-25 NO121908B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEB0095164 1967-10-27

Publications (1)

Publication Number Publication Date
NO121908B true NO121908B (en) 1971-04-26

Family

ID=6987997

Family Applications (1)

Application Number Title Priority Date Filing Date
NO4253/68A NO121908B (en) 1967-10-27 1968-10-25

Country Status (5)

Country Link
AT (1) AT278168B (en)
CH (1) CH474185A (en)
DE (1) DE1613039A1 (en)
FR (1) FR1587577A (en)
NO (1) NO121908B (en)

Also Published As

Publication number Publication date
FR1587577A (en) 1970-03-20
AT278168B (en) 1970-01-26
CH474185A (en) 1969-06-15
DE1613039A1 (en) 1971-01-07

Similar Documents

Publication Publication Date Title
Stork et al. Synthesis and Reactions of Glycidonitriles. Transformation into α-Haloacyl Compounds and Aminoalcohols
US2515304A (en) Hydrolysis of 2,5-dihydrofurans to produce unsaturated dicarbonyl compounds
CN106631732B (en) Synthetic method of 4-hydroxy-2-butanone
US4228093A (en) (11Z,13Z)-11,13-Hexadecadiyn-1-ol and (11Z,13Z)-11,13-hexadecadien-1-ol and trimethylsilyl ethers thereof
Papadopoulos et al. Reactions of phenyl isocyanate and phenyl isothiocyanate with indole and metal derivatives of indole
NO121908B (en)
Papadopoulos et al. Reactions of Phenyl Isocyanate with some metal derivatives of pyrrole
US2987550A (en) Process for the manufacture of c14 aldehyde
US3869507A (en) Preparation of 5-fluoro-2-methyl-1-(p-methylsulfinylbenzylidene)-indenyl-3-acetic acid
SU516341A3 (en) Method for preparing substituted benzophenones
US4136124A (en) Manufacture of dialkyl-ketals
Wallingford et al. Alkyl Carbonates in Synthetic Chemistry. VI. Condensation with α-Hydroxy Amides. A New Method for Preparing 2, 4-Oxazolidinediones1
US2993056A (en) Production of the 1-6-lactone of 6-hydroxy-8-acetoxy-octanoic acid
US3359314A (en) Process for preparing alpha hydroxy oximes
US2688023A (en) 5-(3-cyanopropyl) hydantoin and its preparation and use to prepare 5-(4-aminobutyl) hydantoin
JPH02292263A (en) Production of 1-methyl-3-alkyl-5-pyrazole carboxylate
US4213905A (en) Preparation of 5-aroyl-1-loweralkylpyrrole-2-acetic acid salts
US4266067A (en) Process for preparing thiophene derivatives
GILMAN et al. Preparation of Dimethylphenyl-and Methyldiphenylsilanecarboxylic Acids and Some of Their Derivatives
CA1097366A (en) Process for the manufacture of a furancarboxylic acid anilide
US3390153A (en) Process for preparing 4-methyl-5-alkoxy oxazoles
US3352879A (en) Metal chelates of hydantoins and their use in making 5-substituted hydantoins
US2492414A (en) Process for producing methylol derivatives of pyrrole
US3165532A (en) Hemiacetal ester production
US2654760A (en) Preparation of 4-methyl-5-(beta-hydroxyethyl)-thiazole