NO121681B - - Google Patents

Download PDF

Info

Publication number
NO121681B
NO121681B NO139970A NO139970A NO121681B NO 121681 B NO121681 B NO 121681B NO 139970 A NO139970 A NO 139970A NO 139970 A NO139970 A NO 139970A NO 121681 B NO121681 B NO 121681B
Authority
NO
Norway
Prior art keywords
transistor
transformer
oscillator
secondary winding
base
Prior art date
Application number
NO139970A
Other languages
Norwegian (no)
Inventor
J Dahl
K Johansson
Original Assignee
Ericsson Telefon Ab L M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ericsson Telefon Ab L M filed Critical Ericsson Telefon Ab L M
Publication of NO121681B publication Critical patent/NO121681B/no

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • H02M3/3385Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement with automatic control of output voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

Likespenningsomformer i særdeleshet for ladning av kondensatorer. DC voltage converter in particular for charging capacitors.

ladning av kondensatorer, omfattende en transistoroscillator med en transformator hos hvilken det til en sekundærvikling over en likeretter som er vendt på slik måte at strom flyter i en i oscillatoren inngående transistors sperretid, er koblet en kondensator som skal opplades, hvorved en annen sekundærvikling inngår i en tilbakekoblingskrets som er koblet til transistorens base. charging of capacitors, comprising a transistor oscillator with a transformer in which a capacitor to be charged is connected to a secondary winding above a rectifier which is reversed in such a way that current flows during the blocking time of a transistor included in the oscillator, whereby another secondary winding is included in a feedback circuit which is connected to the base of the transistor.

Ved en likespenningsomformer av nevnte type skjer energiover-føringen fra transformatoren til kondensatoren hurtigere jo hoyere kondensatorspenningen er, hvilket innebårer at kondensatorens oppladningstid er kortest mulig. Virkningsgraden i en slik selvsvingende kobling er imidlertid lav eftersom primærstrommen av-brytes av at transformatorkjernen mettes, hvorved induktansen i primærviklingen synker kraftig og strommen vokser hurtig til en hoy verdi innen primærstrommen gjennom den minskende tilbake-koblingen brytes. In the case of a direct voltage converter of the aforementioned type, the energy transfer from the transformer to the capacitor occurs faster the higher the capacitor voltage is, which means that the capacitor's charging time is as short as possible. The efficiency in such a self-oscillating coupling is, however, low because the primary current is interrupted by the transformer core being saturated, whereby the inductance in the primary winding drops sharply and the current rapidly increases to a high value before the primary current through the decreasing feedback circuit is broken.

I en likespenningsomformer av nevnte type vil transistoren i oscillatoren ikke sperre for transformatoren er mettet, hvilket medfbrer ommagnetiseringstap. In a direct voltage converter of the aforementioned type, the transistor in the oscillator will not block because the transformer is saturated, which entails remagnetization losses.

%Den lave virkningsgraden kan forbedres ved at styrepulsenes lengde tilpasses slik at kjernen ikke mettes. Anordningen gjores folgelig ikke selvsvingende. Repetisjonsfrekvensen for styre-pulsene må i dette tilfelle være så lav at transformatorkretsen rekker å omsette sin energi til kondensatoren også i begynnelsen av oppladningsforlopet, dvs. når kondensatorens spenning ennå er. lav og omsetningstiden lengre enn når kondensatoren er oppladet. Den totale oppladningstiden blir således lengre hos en slik oscillator enn hos en selvsvingende oscillator, slik at samtidig som virkningsgraden forbedres, forlenges oppladningstiden. %The low efficiency can be improved by adapting the length of the control pulses so that the core does not saturate. The device is therefore not made self-oscillating. The repetition frequency for the control pulses must in this case be so low that the transformer circuit manages to transfer its energy to the capacitor also at the beginning of the charging process, i.e. when the capacitor's voltage is still there. low and the turnover time longer than when the capacitor is charged. The total charging time is thus longer with such an oscillator than with a self-oscillating oscillator, so that while the efficiency is improved, the charging time is extended.

Formålet med oppfinnelsen er å eliminere ulempene hos disse to kjente anordninger og å tilveiebringe en kobling som har god virkningsgrad samt arbeider med en kortere oppladningstid. The purpose of the invention is to eliminate the disadvantages of these two known devices and to provide a coupling which has a good degree of efficiency and works with a shorter charging time.

Anordningen ifolge oppfinnelsen kjennetegnes slik det fremgår av patentkravets karakteriserende del. The device according to the invention is characterized as it appears from the characterizing part of the patent claim.

Oppfinnelsen skal nærmere beskrives nedenfor ved hjelp av et ut-fbrelseseksempel under henvisning til tegningen der The invention will be described in more detail below with the help of an exemplary embodiment with reference to the drawing therein

fig. 1 viser et koblingsskjema over en anordning ifolge oppfinnelsen, og fig. 1 shows a connection diagram of a device according to the invention, and

fig. 2 viser den i oscillatoren inngående transistorens kollektor-emitter-spenning som en funksjon av tiden. fig. 2 shows the collector-emitter voltage of the transistor included in the oscillator as a function of time.

I fig. 1 betegner T en transformator og V en transistor, hvilke inngår i en oscillator. Transistoren V er over transformatorens primærvikling T. koblet til en spenningskilde E. En forste sekundær vikl ing TJ, hos transformatoren er koblet over en diode D til en kondensator C som skal opplades. Oscillatorens tilbakekoblingskrets dannes av en forbindelse mellom transistorens V base og en andre sekundær vikl ing TJJ hos transformatoren. I denne tilbakekoblingskrets er det ifolge oppfinnelsen innkoblet en monostabil vippekrets MV. Med A betegnes en vilkårlig start-anordning, f.eks. en monostabil vippekrets som ved sin aktivering mater en puls til transistorens base for å starte svingningsforlopet. Svingningsforlopet skiller seg imidlertid fra svingningsforlopet hos en vanlig likespenningsomformer som arbeider som en regenerativ forsterker eller blocking-oscillator ved at mens transistoren hos en vanlig oscillator sperres når transformatorkjernen er mettet og transistoren aktiveres igjen efter transformatorens utladning, styres transistorens sperring i dette tilfelle ved hjelp av den monostabile vippekretsen MV. In fig. 1 denotes T a transformer and V a transistor, which are part of an oscillator. The transistor V is connected above the transformer's primary winding T to a voltage source E. A first secondary winding TJ of the transformer is connected via a diode D to a capacitor C which is to be charged. The oscillator's feedback circuit is formed by a connection between the transistor's V base and a second secondary winding TJJ of the transformer. In this feedback circuit, according to the invention, a monostable flip-flop circuit MV is connected. A denotes an arbitrary starting device, e.g. a monostable flip-flop circuit which, on its activation, feeds a pulse to the base of the transistor to start the oscillation cycle. However, the oscillation sequence differs from the oscillation sequence of a normal DC voltage converter that works as a regenerative amplifier or blocking oscillator in that, while the transistor of a normal oscillator is blocked when the transformer core is saturated and the transistor is activated again after the transformer discharges, the transistor's blocking in this case is controlled using the monostable flip-flop circuit MV.

Når transistoren V går over fra ledende til sperrende tilstand, forefinnes energi lagret i transformatoren T. Denne energi overfores til kondensatoren C via dioden D, og når diodestrommen har avtatt til null, sperrer dioden. Transformatoren inneholder nå ikke noe energi, og spenningen over transformatorens andre sekundærvikling TJJ er minsket til null. Hittil skiller funksjonen seg ikke fra en konvensjonell likespenningsomformers. Ved at den monostabile vippen er innkoblet i oscillatorens tilbakekoblingskrets, vil imidlertid transistorens tilbakeføring til ledende tilstand i dette tilfelle skje ved hjelp av den monostabile vippekretsens medvirkning. Den monostabile vippekretsen er innstilt på slik måte at den aktiveres når spenningen i trans-formatorviklingen T'^ har sunket til en bestemt verdi, f.eks. null. Ved aktivering av den monostabile vippekretsen åpnes transistoren V slik at svingningsforlopet kan påbegynnes, og holdes åpen i så lang tid som transistorens base mottar et signal fra vippen MV. Lengden av dette åpningssignal fra vippekretsen MV er valgt på slik måte at transistoren holdes ledende i en kortere tid enn den tid som skulle være nodvendig for å sperre transistoren ved metning av transformatoren, slik at transforma-tortapene unngås. Når således strommen opphorer på grunn av transistorens sperring, overfores den i transformatoren lagrede energi til kondensatoren C. When the transistor V goes from conducting to blocking state, energy is stored in the transformer T. This energy is transferred to the capacitor C via the diode D, and when the diode current has decreased to zero, the diode blocks. The transformer now contains no energy, and the voltage across the transformer's second secondary winding TJJ is reduced to zero. So far, the function does not differ from that of a conventional DC voltage converter. As the monostable flip-flop is connected in the oscillator's feedback circuit, however, the transistor's return to the conducting state will in this case take place with the aid of the monostable flip-flop circuit's involvement. The monostable flip-flop circuit is set in such a way that it is activated when the voltage in the transformer winding T'^ has dropped to a certain value, e.g. zero. When the monostable flip-flop circuit is activated, the transistor V is opened so that the oscillation sequence can begin, and is kept open for as long as the base of the transistor receives a signal from the flip-flop MV. The length of this opening signal from the flip-flop circuit MV is chosen in such a way that the transistor is kept conducting for a shorter time than the time that would be necessary to block the transistor when the transformer saturates, so that the transformer losses are avoided. Thus, when the current ceases due to the blocking of the transistor, the energy stored in the transformer is transferred to the capacitor C.

1 fig. 2 som er et diagram over transistorens V kollektor-emitter-spenning som funksjon av tiden, betegner t sden tid ilopet av hvilken den monostabile vippekretsen MV avgir åpningssignal til transistoren V. Med t betegnes den tid ilopet av hvilken transistoren V er sperret og som ifolge eksemplet tilsvarer transformatorens utladningstid ilopet av hvilken energi overfores til -kondensatoren C. Spenningen E i diagrammet er oscillatorens matningsspenning, og spenningstidsflåtene A og B som er et mål på energiinnholdet i transformatoren, må være like store under lagring av energi i transformatoren T som under overfbring av energi. I diagrammet er også med strekede linjer antydet den tidsperiode t' efter hvilken transistoren skulle sperres hvis.. 1 fig. 2 which is a diagram of the collector-emitter voltage of the transistor V as a function of time, t denotes the time ilope during which the monostable flip-flop circuit MV emits an opening signal to the transistor V. By t is denoted the time ilope during which the transistor V is blocked and which the example corresponds to the transformer's discharge time during which energy is transferred to the -capacitor C. The voltage E in the diagram is the oscillator's supply voltage, and the voltage time floats A and B, which are a measure of the energy content in the transformer, must be as large during energy storage in the transformer T as during transfer of energy. In the diagram, dashed lines also indicate the time period t' after which the transistor should be blocked if..

det var transformatorens metning som bestemte sperringen. Tids-periodene t er like i begge tilfelle. it was the transformer's saturation that determined the blocking. The time periods t are the same in both cases.

Claims (1)

Likespenningsomformer i særdeleshet for ladning av kondensatorer, omfattende en transistoroscillator med en transformator (T) hos hvilken det til en sekundærvikling (TJ,) over en likeretter (D)DC voltage converter in particular for charging capacitors, comprising a transistor oscillator with a transformer (T) in which to a secondary winding (TJ,) over a rectifier (D) som er vendt på slik måte at strom flyter i en i oscillatoren inngående transistors (V) sperretid, er koblet en kondensator (C) som skal opplades, hvorved en annen sekundærvikling (TJJ) inngår •which is turned in such a way that current flows during the blocking time of a transistor (V) included in the oscillator, a capacitor (C) is connected to be charged, whereby another secondary winding (TJJ) is included • i en tilbakekoblingskrets som er koblet til transistorens (V) base, karakterisert ved at for å.gjore oscillatorens sperretidspunkt uavhengig av transformatorens (T)■ metning, er det i oscillatorens tilbakekoblingskrets mellom j 'transformatoren (T) og transistorens (V) base innkoblet en mono» stabil vippekrets (MV) som aktiveres har spenningen over nevnte;in a feedback circuit which is connected to the base of the transistor (V), characterized in that, in order to make the blocking time of the oscillator independent of the saturation of the transformer (T), it is connected in the feedback circuit of the oscillator between the transformer (T) and the base of the transistor (V) a mono" stable flip-flop (MV) which is activated has the voltage above said; andre sekundærvikling (T") har minsket til under en bestemt verdi og mater et åpningssignal til transistorens (V) basé-for å gjoresecond secondary winding (T") has decreased below a certain value and feeds an opening signal to the base of the transistor (V) to make transistoren ledende, samt at den monostabile vippekretsen (MV) er innstilt på slik måte at åpningssignalet er kortere enn den tid som er nodvendig for at transistoren (V) skal sperres ved transformatorens (T) metning.the transistor conducting, and that the monostable flip-flop circuit (MV) is set in such a way that the opening signal is shorter than the time required for the transistor (V) to be blocked when the transformer (T) is saturated.
NO139970A 1969-04-15 1970-04-14 NO121681B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE527769A SE330209B (en) 1969-04-15 1969-04-15

Publications (1)

Publication Number Publication Date
NO121681B true NO121681B (en) 1971-03-29

Family

ID=20266123

Family Applications (1)

Application Number Title Priority Date Filing Date
NO139970A NO121681B (en) 1969-04-15 1970-04-14

Country Status (10)

Country Link
JP (1) JPS498576B1 (en)
AT (1) AT300125B (en)
CH (1) CH521050A (en)
DE (1) DE2016002C3 (en)
DK (1) DK122048B (en)
FR (1) FR2041174B1 (en)
GB (1) GB1298520A (en)
NL (1) NL163387C (en)
NO (1) NO121681B (en)
SE (1) SE330209B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL104941C (en) * 1957-02-26

Also Published As

Publication number Publication date
GB1298520A (en) 1972-12-06
DE2016002A1 (en) 1971-01-07
JPS498576B1 (en) 1974-02-27
FR2041174B1 (en) 1974-05-03
NL7004619A (en) 1970-10-19
DE2016002C3 (en) 1975-05-22
AT300125B (en) 1972-07-10
FR2041174A1 (en) 1971-01-29
DE2016002B2 (en) 1973-04-26
NL163387C (en) 1980-08-15
CH521050A (en) 1972-03-31
NL163387B (en) 1980-03-17
SE330209B (en) 1970-11-09
DK122048B (en) 1972-01-10

Similar Documents

Publication Publication Date Title
US3541420A (en) Voltage converter and regulator
NO138426B (en) DEVICE FOR THE DEVELOPMENT OF RADIO FREQUENCY SIGNALS SUBJECT TO MAGNETIC PULSE COMPRESSION
NO136123B (en)
US3206694A (en) Synchronized inverter circuit
GB1131959A (en) Inverter circuit
NO121681B (en)
GB740952A (en) Improvements in magnetic core storage devices
US3204123A (en) Monostable pulse generating circuit unresponsive to power supply fluctuations and having fast reset time
NO117383B (en)
US3496476A (en) Pulser
US2883563A (en) Magnetic pulse doubling circuit
SU123768A1 (en) Method for controlling key triode of one-pass shift register on magnetic cores and device for performing method
US2955233A (en) Ignitron control circuits
GB1202410A (en) Regulated direct voltage to direct voltage power supply
SU128898A1 (en) Blocking generator
SU182766A1 (en) relaxation generator
US3069633A (en) Blocking oscillation circuit
SU113277A1 (en) Serial thyratron inverter
US3121800A (en) Pulse generating circuit
US2798168A (en) Magnetic amplifier and flip-flop circuit embodying the same
US3621371A (en) Current pulse stabilizer for variable loads
SU117663A1 (en) Contactless relay
SU111719A1 (en) An indicator device of a static state of a circuit with two stable equilibrium states
GB1004324A (en) Logic circuit
US3090921A (en) Microwave pulsing circuit