NO121630B - - Google Patents

Download PDF

Info

Publication number
NO121630B
NO121630B NO213568A NO213568A NO121630B NO 121630 B NO121630 B NO 121630B NO 213568 A NO213568 A NO 213568A NO 213568 A NO213568 A NO 213568A NO 121630 B NO121630 B NO 121630B
Authority
NO
Norway
Prior art keywords
steel
specified
content
carbon content
steels
Prior art date
Application number
NO213568A
Other languages
Norwegian (no)
Inventor
P Loevland
P Tenge
Original Assignee
Uddeholms Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE805067A external-priority patent/SE330616B/xx
Priority claimed from SE352868A external-priority patent/SE338869B/xx
Application filed by Uddeholms Ab filed Critical Uddeholms Ab
Publication of NO121630B publication Critical patent/NO121630B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Description

Rustfritt og sveisbart martensittisk stål. Stainless and weldable martensitic steel.

Det er kjent at rustfrie martensittiske kromstål kan It is known that stainless martensitic chromium steels can

få god sveisbarhet ved legering med nikkel og senkning av karboninnholdet til under ca. 0,10 %. Stålene er luftherdnende. Den martensittiske struktur som fås ved herdning, går ved anlopning over til en blandestruktur bestående av martensitt og nydannet austenitt med martensitt-innholdet som dominerende. Stål av denne type betegnes derfor også som martensitt-austenittiske. get good weldability by alloying with nickel and lowering the carbon content to below approx. 0.10%. The steels are air hardening. The martensitic structure that is obtained by hardening, during tempering, changes to a mixed structure consisting of martensite and newly formed austenite with the martensite content being dominant. Steel of this type is therefore also referred to as martensite-austenitic.

I den martensitt-austenittiske strukturtilstand har stålene hOy strekk- og hrudd-grense, god forlengelse og stor slagseighet. Sveisbarheten er meget god, noe som ifQlge en teori tilskrives det relativt store innslag av austenitt. Stålene kan In the martensite-austenitic structural state, the steels have a high tensile and fracture limit, good elongation and high impact toughness. The weldability is very good, which according to one theory is attributed to the relatively large content of austenite. The steels can

sveises uten for- og eftervarmning. De har god varmefasthet. welded without pre- and post-heating. They have good heat resistance.

Et kommersielt stål av denne type har sammensetningen 0,05 % C, 12,5 # Cr, 3,8 % Ni, 0,5 % Mo. Et annet har sammensetningen 0,08 # C, 13 # Cr, 6 # Ni, 1,5 % Mo. A commercial steel of this type has the composition 0.05% C, 12.5 # Cr, 3.8% Ni, 0.5% Mo. Another has the composition 0.08 # C, 13 # Cr, 6 # Ni, 1.5% Mo.

Den foreliggende oppfinnelse gjelder en forbedring av den ovenfor omtalte ståltype, som kan karakteriseres ved ana-lysen 11 - 15 % Cr, max 3,5 % Mo, max 8 % Mn og max 7 % Ni og med et samlet innhold av Mn + Ni » 3 - 12 %• Ståltypen er nærmere bestemt ved at legeringsbestanddelene er avpasset slik i forhold til hverandre at 1,1 • C<r>ekv - <Ni>ekv er hSyst 11, hvor C<r>ekv <-><#> Cr + # Mo + 1,5 % Si og <Ni>ekv - $ Ni + 0,3 % Mn ♦ The present invention concerns an improvement of the above-mentioned type of steel, which can be characterized by the analysis 11 - 15% Cr, max 3.5% Mo, max 8% Mn and max 7% Ni and with a total content of Mn + Ni » 3 - 12%• The type of steel is determined in more detail by the fact that the alloy components are matched in relation to each other so that 1.1 • C<r>eq - <Ni>eq is hSyst 11, where C<r>eq <-><# > Cr + # Mo + 1.5% Si and <Ni>eq - $ Ni + 0.3% Mn ♦

30 (% C + % N). 30 (% C + % N).

Samtidig er oppfinnelsen karakterisert ved at karboninnholdet er mindre enn 0,02 % og fortrinnsvis maksimalt 0,015 De forsSk som ligger til grunn for oppfinnelsen, har nemlig vist at disse ekstremt lave karboninnhold hos den omtalte ståltype helt uventet virker h&ynende på strekkgrensen i anlopet tilstand. Dessuten får stålet en så god seighet i uanlSpet tilstand at det meget godt kan anvendes i denne tilstand. Dette er av vesentlig betydning fordi den sone som efter sveisning er varmepåvirket, hovedsakelig vil bestå av uanlQpet martensitt. Ved hSyere karboninnhold blir denne relativt spr6d, så man må ty til eftervarme-behandling, noe som altså ikke kreves ved de lave karboninnhold i henhold til oppfinnelsen. Det lave karboninnhold bedrer også stålet når det gjelder korrosjon. En annen fordel ved de ekstremt lave karboninnhold er at stålet kan herdes fra lav temperatur (> 770° C) uten at der skjer karbidutsondring. Videre foreligger der ikke fare for korngrenseutsondring av kromkarbider ved luft-kjoling av tykkere dimensjoner, noe som kan inntreffe ved stål med karboninnhold over 0,03 Slike korngrenseutsondringer virker seighetssenkende og korrosjonsnedsettende. At the same time, the invention is characterized by the carbon content being less than 0.02% and preferably a maximum of 0.015. The research on which the invention is based has indeed shown that these extremely low carbon contents in the mentioned steel type have a completely unexpected effect on the tensile strength in the annealed state. In addition, the steel acquires such good toughness in an unapplied state that it can very well be used in this state. This is of significant importance because the zone which is affected by heat after welding will mainly consist of unapplied martensite. At higher carbon contents, this is relatively dispersed, so one must resort to post-heating treatment, which is therefore not required at low carbon contents according to the invention. The low carbon content also improves the steel when it comes to corrosion. Another advantage of the extremely low carbon content is that the steel can be hardened from a low temperature (> 770° C) without carbide precipitation occurring. Furthermore, there is no danger of grain boundary segregation of chromium carbides during air-cooling of thicker dimensions, which can occur with steel with a carbon content above 0.03. Such grain boundary segregation acts to reduce toughness and reduce corrosion.

Stålet if6lge oppfinnelsen kan herdes (normaliseres) fra temperaturer helt ned til 770° C og anlSpes innen temperatur-området 500 - 700° C. The steel according to the invention can be hardened (normalized) from temperatures as low as 770° C and applied within the temperature range 500 - 700° C.

Med hensyn til de dvrige elementer som skal inngå i ståltypen, kan sies: Krom har ingen merkbar innvirkning på martensittens fasthetsegenskaper, men må foreligge i innhold over 11 % av hensyn til korrosjonsfastheten. Altfor h6ye krominnhold farer til dannelse av deltaferritt, som b6r unngås på grunn av den resulteren-de anisotropi i egenskapene hos valset materiale, spesielt hvad slagseigheten angår. With regard to the other elements that must be included in the steel type, it can be said: Chromium has no noticeable effect on the martensite's strength properties, but must be present in a content above 11% for reasons of corrosion resistance. Excessively high chromium contents lead to the formation of delta ferrite, which should be avoided due to the resulting anisotropy in the properties of the rolled material, especially in terms of impact strength.

Nikkel.influerer på austenittmengden f6rst og fremst ved sin innvirkning på Ael~temperaturen. Nikkel senker Acl, og med stigende nikkelinnhold aker mengden av ny austenitt som dannes ved anlSpningen. Blandt annet av denne årsak blir strekkgrensen senket. Med utgangspunkt i dnsket om å ha et h8yt krominnhold (og eventuelt også h8yt molybdeninnhold) blandt annet av hensyn til korrosjonsfastheten uten dannelse av deltaferritt eller restaustenitt, begrenses det praktiske variasjensområde for nikkelinnholdet til 3 - 7 % når andre austenittdannere bare foreligger i små mengder. Nickel influences the amount of austenite primarily through its effect on the Al temperature. Nickel lowers Acl, and with increasing nickel content increases the amount of new austenite formed during the annealing. Among other reasons, the tensile strength is lowered. Based on the desire to have a high chromium content (and possibly also a high molybdenum content) among other things for reasons of corrosion resistance without the formation of delta ferrite or residual austenite, the practical range of variation for the nickel content is limited to 3 - 7% when other austenite formers are only present in small quantities.

Mangan kan i en viss utstrekning erstatte nikkel, men stabiliserer ikke i like hOy grad austenitten med hensyn til deltaferritt-dannelse. Mangan senker heller ikke Acl like meget som nikkel. Blir imidlertid mengden av ferrittdannere i stålet, f8rst og fremst krom og molybden, holdt på lavt nivå, kan nikkel nesten helt erstattes med mangan. Ved at Acl ikke senkes like meget hos manganlegerte stål som hos nikkellegerte, blir der dannet mindre ny austenitt ved normale aniapningstemperaturer, Manganese can to a certain extent replace nickel, but does not stabilize the austenite to the same extent with regard to delta ferrite formation. Manganese also does not lower Acl as much as nickel. However, if the amount of ferrite formers in the steel, first and foremost chromium and molybdenum, is kept at a low level, nickel can be almost completely replaced with manganese. As Acl is not lowered as much in manganese-alloyed steels as in nickel-alloyed ones, less new austenite is formed at normal annealing temperatures,

så det blir mulig å få noe hayere fasthetsverdiero so it becomes possible to get somewhat higher firmness values

Molybden virker haynende på både strekk- og brudd-grense i aniapet tilstande Dessuten aker molybden anl8pnings-fastheten forsåvidt som spesielt strekkgrensen ved akende molybdeninnhold synker langsommere med aniapningstemperaturen. Molybdenum has a decreasing effect on both the tensile and fracture limits in annealed conditions. Furthermore, molybdenum increases the annealing strength, insofar as especially the tensile strength with increasing molybdenum content decreases more slowly with the annealing temperature.

Man har videre grunn til å anta at en forekomst av molybden There is further reason to assume that an occurrence of molybdenum

kreves for å utlese den vanskelig forklarlige fasthetshayning ved de ekstremt lave karboninnhold„ Noen tilsvarende effekt har nemlig ikke kunnet iakttas ved i og for seg kjente stål som ikke inneholder molybden, men som fordvrig stemmer overens med stålet ifaige oppfinnelsen hvad sammensetningen angår» is required in order to read out the difficult-to-explain increase in strength due to the extremely low carbon content" No corresponding effect has been observed with per se known steels which do not contain molybdenum, but which otherwise correspond to the steel according to the invention as far as composition is concerned"

Nitrogen aker fastheten og minsker seigheten hos Nitrogen increases the firmness and reduces the toughness of

stålet i herdet tilstand. the steel in the hardened state.

Stålet ifaige oppfinnelsen kan også få tilsatt andre legeringselementer i moderat innhold, som i en eller annen hen-seende bedrer dets egenskaper ytterligereo The steel according to the invention can also have other alloying elements added in a moderate content, which in one way or another improves its properties further.

Sålede* kan der red tilsetning ar bor i innhold melles 0,001 og 0,01 % oppnås en hdyning av strekk- og brudd-grensen, forbundet med en samtidig forbedring av slagseigheten. In this way*, where red addition is boron in content between 0.001 and 0.01%, a lowering of the tensile and breaking strength can be achieved, associated with a simultaneous improvement in impact strength.

I herdet tilstand hdynes strekk- og brudd-grensen samt for-lengelses- og kontraksjonsverdiene. In the hardened state, the tensile and fracture limits as well as the elongation and contraction values are reduced.

Niob og vanadium virker fasthetsdkende og kan til-settes i innhold av maksimalt 0,5 % hver* Deres kornforfinende inflydelse kan utnyttes meget effektivt ved at herdningen pa grunn av stålets ekstremt lave karboninnhold kan utfares fra en meget lav temperatur (ned til 770° C). Hermed kan fastheten akes ytterligere. Niobium and vanadium have a strength-enhancing effect and can be added in a maximum content of 0.5% each* Their grain-refining influence can be utilized very effectively by the fact that, due to the steel's extremely low carbon content, the hardening can be carried out from a very low temperature (down to 770° C ). With this, the firmness can be increased even further.

Slike stoffer som aluminium og titan synes å influere lite på fasthetsegenskapene. Dog virker aluminium utskillelses-herdende ved elding 450° C Substances such as aluminum and titanium seem to have little influence on the strength properties. However, aluminum has a precipitation-hardening effect when aged at 450° C

Stål i samsvar med oppfinnelsen skal være helt eller tilnærmelsesvis frie for deltaferritt, og legeringsbestanddelene Steel in accordance with the invention must be completely or nearly free of delta ferrite, and the alloy components

Cr Cr

bdr derfor avpasses slik i forhold til hverandre at 1,1 ekv - <Ni>ekv er h8yst 11, hvor<Cr>ekv - % Cr ♦ % Mo + 1,5 % Si og bdr are therefore adjusted in relation to each other such that 1.1 eq - <Ni>eq is at most 11, where <Cr>eq - % Cr ♦ % Mo + 1.5 % Si and

N<i>ekv - $ Ni ♦ 0,3 % Mn + 30 [% C + % N). N<i>eq - $ Ni ♦ 0.3% Mn + 30 [% C + % N).

Et for hayt samlet innhold spesielt av legerings-elementene Cr, Ni, Mo, Mn, C eller N kan f8re til uheldig rest-austenittdannelse efter herdning. For å kunne velge en stål-sammensetning som gir martensittisk struktur ved herdning « 10 % austenitt), er det hensiktsmessig å basere seg på faigende vei-ledende relasjon A too high overall content, especially of the alloying elements Cr, Ni, Mo, Mn, C or N, can lead to undesirable residual austenite formation after hardening. In order to be able to choose a steel composition that gives a martensitic structure upon hardening (10% austenite), it is appropriate to base oneself on the faking road-conducting relationship

77 - 3 (% Cr) - A#3 (JÉ Ni + % Mn - 0,40) - 0,9 (* Mo) - 72 {% C) - 53 (* M) > 0, hvor % Cr angir stålets krominnhold i vektprosent, % Ni stålets nikkelinnhold i vektprosent, o.s.v. 77 - 3 (% Cr) - A#3 (JÉ Ni + % Mn - 0.40) - 0.9 (* Mo) - 72 {% C) - 53 (* M) > 0, where % Cr indicates the steel's chromium content in weight percent, % Ni steel's nickel content in weight percent, etc.

Stålet ifaige oppfinnelsen egner seg spesielt for å anvendes hvor der dnskes god korrosjonsfasthet og h3y fasthet kombinert med god sveisbarhet. Stålet kan produseres i alle vanlige former for blikk, stang, rdr, bånd eller tråd, og også som stdpegods. Hensiktsmessige anvendelsesformål er blandt annet platekonstruksjoner som trykkbeholdere, turbinhus, transport-beholdere og oppbevaringstanker. The steel according to the invention is particularly suitable for use where good corrosion resistance and high strength combined with good weldability are required. The steel can be produced in all the usual forms of sheet metal, rod, rod, strip or wire, and also as standard goods. Appropriate applications include plate constructions such as pressure vessels, turbine housings, transport containers and storage tanks.

I det feigende vil der i tabellform bli gjort rede for et antall eksempler for stål med varierende sammensetning og behandlingsmåte. Den effekt som oppnås ifOlge oppfinnelsen, og som består i at det låre karboninnhold bedrer strekkgrensen hos stålet, såvel som denne effekts uventede karakter fremgår av fig. 1, som i diagramform viser karboninnholdets innvirkning på strekkgrensen ved stål anlOpet ved 600° C og med omtrent samme sammensetning forbvrig. In what follows, a number of examples for steel with varying composition and treatment methods will be explained in tabular form. The effect achieved according to the invention, which consists in the fact that the low carbon content improves the tensile strength of the steel, as well as the unexpected nature of this effect, can be seen from fig. 1, which shows in diagram form the effect of the carbon content on the tensile strength of steel annealed at 600° C and with approximately the same composition for the rest.

Fig. 2 viser på tilsvarende måte seighetens avhengighet av karboninnholdet for stål i herdet tilstand. Fig. 2 similarly shows the dependence of toughness on the carbon content for steel in the hardened state.

Den fOlgende tabell 1 angir sammensetningen for en serie av de viktigere prdvede stål som ligger til grunn for oppfinnelsen. The following table 1 indicates the composition of a series of the more important hardened steels that form the basis of the invention.

I tabell 2 er gjengitt stålenes strekkgrenseverdier og austenittinnhold for forskjellige anlOpningstemperaturer samt slagseighetsverdiene for stålene i uanlopet tilstand. Table 2 shows the steels' tensile limit values and austenite content for different annealing temperatures as well as the impact strength values for the steels in an unannealed state.

For stålene 1 - 14 undersakte man fasthetsegenskapene efter tre timers anlOpning ved 560, $ 80 og 600° C • Alt materiale som skulde anldpes ved en og samme temperatur, blev varmebehandlet samtidig, og prOvene blev fordelt på slump i ovnen. Slagseigheten (charpy -V) blev bestemt i herdet tilstand. Herdningen blev ut-fart fra lC-500 C i olje. For steels 1 - 14, the strength properties were examined after three hours of tempering at 560, $80 and 600° C. • All material that was to be tempered at one and the same temperature was heat treated at the same time, and the samples were distributed randomly in the furnace. The impact strength (charpy -V) was determined in the hardened state. Curing was carried out from 1C-500 C in oil.

Stålene 21 og A - C blev herdet fra 850° C i luft og aniepet i tre timer i luft ved 600° C samt - for stål 21 - dessuten ved 58O<0> C. Stålene A-C blev herunder behandlet samtidig, mens stål 21 blev behandlet ved en annen anledning. Stål 21 blev også eldebehandlet ved 450° C, noe som gav en meget h8y fasthet, men også lav seighet (1,0 % austenitt). Steels 21 and A - C were hardened from 850° C in air and quenched for three hours in air at 600° C and - for steel 21 - also at 580<0> C. The steels A-C were treated below at the same time, while steel 21 was dealt with on another occasion. Steel 21 was also aged at 450° C, which gave a very high strength, but also low toughness (1.0% austenite).

Samtlige stål har vært dobbeltpr8vet hvad fastheten angår, mens det ved undersdkelsen av slagseigheten blev anvendt tre-dobbelt prdve. Verdiene i tabell 2 «r middelverdier. Den mid-lere forskjell mellem strekkgrenseverdiene ved dobbeltprOvningen for alle i tabell 2 oppfarte stål i aniepet tilstand er 0,7 kp/mm . All steels have been double-tested in terms of strength, while a triple test was used when testing impact strength. The values in table 2 are mean values. The average difference between the tensile limit values in the double test for all the steels listed in Table 2 in the unopened state is 0.7 kp/mm.

Diagrammet på fig. 1 anskueliggjdr strekkgrensens avhengighet av karboninnholdet for pr8ver som var herdet og aniepet til 600° C, den eneste varmebehandling som blev anvendt på samtlige prSver. Denne varmebehandling har også resultert i at stålene varierer moderat når det gjelder målte austenittinnhold, som alle ligger innen intervallet 15 - 40 % og dermed oppfyller det tidligere nevnte kriterium. The diagram in fig. 1 shows the dependence of the tensile strength on the carbon content for samples that were hardened and annealed to 600° C, the only heat treatment that was applied to all samples. This heat treatment has also resulted in the steels varying moderately in terms of measured austenite content, all of which lie within the interval 15 - 40% and thus meet the previously mentioned criterion.

Av diagrammet fremgår at den naturlige tendens som består From the diagram it appears that the natural tendency that persists

i at fastheten synker med karboninnholdet, plutselig blir brudt ved et karboninnhold på ca. 0,02 # for isteden helt overraskende å skifte til en sterkt oppadgående tendens. in that the firmness decreases with the carbon content, is suddenly broken at a carbon content of approx. 0.02 # instead of completely surprisingly changing to a strong upward trend.

At den Qkede fasthet ikke vinnes på bekostning av for-ringet seighet, er belyst på fig. 2, som i diagramform anskuelig-gj8r slagseighetens avhengighet av karboninnholdet for stål i herdet, men ikke anlopet tilstand. That the Qked firmness is not gained at the expense of reduced toughness is illustrated in fig. 2, which in diagram form shows the impact toughness's dependence on the carbon content for steel in the hardened, but not annealed state.

Samtlige prosentverdier når det gjelder legerings-bestanddeler, angir vektprosent. All percentage values when it comes to alloy components indicate percentage by weight.

Claims (9)

1. Rustfritt og sveisbart martensittisk stål inneholdende for-uten jern, karbon og forurensninger hvor Mn + Ni = 3 - 12%, karakterisert ved at karboninnholdet er mindre enn 0,02$,og at legeringsbestanddelene er avpasset Cr Ni slik i forhold txl hverandre at 1,1 • ekv - ekv er høyst 11, hvor1. Stainless and weldable martensitic steel containing with or without iron, carbon and impurities where Mn + Ni = 3 - 12%, characterized by the fact that the carbon content is less than 0.02$, and that the alloy components are matched Cr Nine so in relation txl each other that 1.1 • eq - eq is at most 11, where 2. Stål som angitt i krav 1,karakterisert ved at karboninnholdet er maksimalt 0,015 %.2. Steel as specified in claim 1, characterized in that the carbon content is a maximum of 0.015%. 3.. Stål som angitt i krav 2, karakterisert ved at karboninnholdet er ca. 0,007 %•3.. Steel as specified in claim 2, characterized in that the carbon content is approx. 0.007%• 4.. Stål som angitt i et av de foregående krav, karakterisert ved at det inneholder 3 - 7 % Ni.4.. Steel as specified in one of the preceding claims, characterized in that it contains 3 - 7% Ni. 5. Stål som angitt i et av de foregående krav, karakterisert ved at det inneholder 0,5 - 3% Mo.5. Steel as specified in one of the preceding claims, characterized in that it contains 0.5 - 3% Mo. 6. Stål som angitt i et av de foregående krav, karakterisert ved at det inneholder 2 - 8 % Mn.6. Steel as specified in one of the preceding claims, characterized in that it contains 2 - 8% Mn. 7. Stål som angitt i et av de foregående krav, karakterisert ved at dets analyse oppfyller betingelsen7. Steel as specified in one of the preceding claims, characterized in that its analysis fulfills the condition 8. Fremgangsmåte til fremstilling av stål som angitt i krav 1, med økt seighet i herdet tilstand og høynet strekkgrense i anløpet tilstand, karakterisert ved at stålet herdes fra en temperatur over 770°C og anløpes ved en temperatur mellom 500 og 700°C.8. Process for the production of steel as stated in claim 1, with increased toughness in the hardened state and increased tensile strength in the annealed state, characterized in that the steel is hardened from a temperature above 770°C and is tempered at a temperature between 500 and 700°C. 9. Fremgangsmåte som angitt i krav 8,karakterisert ved at anløpningen utføres ved ca. 600°C.9. Method as stated in claim 8, characterized in that the tempering is carried out at approx. 600°C.
NO213568A 1967-06-08 1968-05-30 NO121630B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE805067A SE330616B (en) 1967-06-08 1967-06-08
SE352868A SE338869B (en) 1968-03-18 1968-03-18

Publications (1)

Publication Number Publication Date
NO121630B true NO121630B (en) 1971-03-22

Family

ID=26654459

Family Applications (1)

Application Number Title Priority Date Filing Date
NO213568A NO121630B (en) 1967-06-08 1968-05-30

Country Status (4)

Country Link
CH (1) CH519026A (en)
DE (1) DE1758474B1 (en)
NL (1) NL6807996A (en)
NO (1) NO121630B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015112215A1 (en) * 2015-07-27 2017-02-02 Salzgitter Flachstahl Gmbh High-alloy steel, in particular for the production of hydroformed tubes and method for producing such tubes from this steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT150612B (en) * 1934-06-27 1937-09-10 Boehler & Co Ag Geb Process for welding non-austenitic iron and iron alloys or steel and steel alloys.

Also Published As

Publication number Publication date
DE1758474B1 (en) 1972-07-27
NL6807996A (en) 1968-12-09
CH519026A (en) 1972-02-15

Similar Documents

Publication Publication Date Title
EP2481826B1 (en) High-strength and high-toughness cast steel material and method for producing the same
US20080264524A1 (en) High-Strength Steel and Metal Bolt Excellent In Character of Delayed Fracture
US3044872A (en) Steel alloy composition
US4295769A (en) Copper and nitrogen containing austenitic stainless steel and fastener
US6743305B2 (en) High-strength high-toughness precipitation-hardened steel
JPS5861219A (en) High tensile tough steel with superior delayed rupture resistance
JPS60184665A (en) Low-alloy steel for pressure vessel
US3347663A (en) Precipitation hardenable stainless steel
US3342590A (en) Precipitation hardenable stainless steel
EP0333422A1 (en) Austenitic stainless steel
US4194909A (en) Forgeable nickel-base super alloy
CN111108225B (en) Steel sheet and method for producing same
NO121630B (en)
JPS625986B2 (en)
NO149851B (en) AUSTENITIC STAINLESS STEEL.
JPS5853711B2 (en) Nickel-chromium-molybdenum-based high strength, high toughness thick wall steel for pressure vessels
US4405389A (en) Austenitic stainless steel casting alloy for corrosive applications
US4605449A (en) Process for producing a rolled steel product having high weldability, a high yield strength and a good notch impact toughness at very low temperatures
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
NO153531B (en) PROCEDURE FOR PURIFICATION OF A CYANOIC ACID REACTION MIXED BY PYROLYSE OF UREA AND / OR THE BUREAU IN AN INERT SOLVENT.
JPS5942745B2 (en) Non-thermal heat working Cr-Mo steel with excellent strength and toughness
JPS6140032B2 (en)
JPS6250547B2 (en)
JP3861137B2 (en) High-strength mechanical structural steel and its manufacturing method
US20060153730A1 (en) Cu-ni-mn-al alloys