NO120978B - - Google Patents

Download PDF

Info

Publication number
NO120978B
NO120978B NO2702/69A NO270269A NO120978B NO 120978 B NO120978 B NO 120978B NO 2702/69 A NO2702/69 A NO 2702/69A NO 270269 A NO270269 A NO 270269A NO 120978 B NO120978 B NO 120978B
Authority
NO
Norway
Prior art keywords
cross
weight
agent
linking
thickener
Prior art date
Application number
NO2702/69A
Other languages
Norwegian (no)
Inventor
L Udy
H Jessop
G Thornley
Original Assignee
Intermountain Res & Eng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intermountain Res & Eng filed Critical Intermountain Res & Eng
Publication of NO120978B publication Critical patent/NO120978B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B47/00Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
    • C06B47/14Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase comprising a solid component and an aqueous phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Colloid Chemistry (AREA)
  • Noodles (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Vandig sprengstoff av gel- eller grøttypen Aqueous explosive of the gel or mush type

inneholdende sterkt tverrbundne fortyknings- containing highly cross-linked thickening

midler samt fremgangsmåte til dets fremstilling. means and method for its production.

Foreliggende oppfinnelse vedrorer et vandig sprengstoff The present invention relates to an aqueous explosive

av gel- eller grottypen samt fremgangsmåte til dets fremstilling. of the gel or grotto type as well as the method for its production.

Sprengstoffer av den vandige grottypen blir ofte sensiti-vert med suspenderte, finfordelte partikler av brennstoffer og/eller sensitiveringsmidlér som ikke er loselige eller i det minste meget dårlig loselige i det vandige medium. Sistnevnte kan bestå utelukk-ende av vann, eller kan være en vandig opplosning inneholdende vannloselige organiske væsker såsom glykoler, alkoholer, aldehyder, Explosives of the aqueous grot type are often sensitized with suspended, finely divided particles of fuels and/or sensitizers which are not soluble or at least very poorly soluble in the aqueous medium. The latter can consist exclusively of water, or can be an aqueous solution containing water-insoluble organic liquids such as glycols, alcohols, aldehydes,

amider, etc, spesielt etylenglykol, formamid og lignende. Sensitiveringsmidlene er av forskjellig type, f.eks. finfordelt aluminium, amides, etc, especially ethylene glycol, formamide and the like. The sensitizers are of different types, e.g. finely divided aluminium,

små selveksplosive partikler av TNT, RDX og/eller andre eksplosivstoffer, heri innbefattet roksvakt krutt, karbonholdige materialer small self-explosive particles of TNT, RDX and/or other explosives, including inert powder, carbonaceous materials

såsom finfordelt gilsonitt eller bituminost kull, og kan videre innbefatte vannloselige brennstoffer såsom sukker og andre karbohydrater. Små mengder fint aluminiumpulver kan brukes sammen med storre mengder forskjellige brennstoffer, og groter inneholdende forskjellige andre brennstoffer, heri innbefattet svovel, er blitt meget anvendt i de senere år. Disse eksplosive suspensjoner har vanligvis vært fortykket for å holde partiklene i suspensjon og Oke motstanden overfor grunn-vanninntrengning ved å anvende kolloidale materialer eller geldannende midler såsom mel eller stivelse, f.eks. hvetemel, tapiokastivelse og lignende, celluloseholdige/ fortykningsmidler, eller mer vanlig ved å anvende forskjellige naturlige og syntetiske gummier. Galactomannan-gummier såsom guargummi har vært meget anvendt. Tverrbinding ved hjelp av visse metallforbindelser har i denne forbindelse vært kjent for å være avhengig av pH-faktoren. Man har nå funnet en alternativ og bedre måte for å oppnå den foronskede tverrbinding uten å anvende en slik tidligere nodvendig pH-regulering. such as finely divided gilsonite or bituminous coal, and may further include water-insoluble fuels such as sugar and other carbohydrates. Small quantities of fine aluminum powder can be used together with larger quantities of different fuels, and larger ones containing various other fuels, including sulphur, have been widely used in recent years. These explosive suspensions have usually been thickened to keep the particles in suspension and to increase the resistance to groundwater penetration by using colloidal materials or gelling agents such as flour or starch, e.g. wheat flour, tapioca starch and the like, cellulosic/thickening agents, or more commonly by using various natural and synthetic gums. Galactomannan gums such as guar gum have been widely used. Cross-linking by means of certain metal compounds has been known in this connection to be dependent on the pH factor. An alternative and better way has now been found to achieve the desired cross-linking without using such previously necessary pH regulation.

Man har funnet det mulig å oppnå en meget effektiv tverrbinding med meget små mengder av fortykningsmidler og endog mindre mengder av tverrbindingsmidler uten tilsetning av baser eller endog forsok på å holde groten eller suspensjonens pH innen grenser varierende fra 6 til 7> slik det tidligere har vært nodvendig. It has been found possible to achieve a very effective cross-linking with very small amounts of thickening agents and even smaller amounts of cross-linking agents without the addition of bases or even attempts to keep the pH of the slurry or suspension within limits varying from 6 to 7> as has previously been the case necessary.

Ifolge foreliggende oppfinnelse er det nå tilveiebragt et vandig sprengstoff av gel- eller grottypen omfattende en flytende fase, basert på vekten av den totale sammensetning, av 10 - 25 vektprosent vann inneholdende i opplosning fra 10 til 60% av et sterkt oksyderende salt, et fortykningsmiddel for nevnte fase omfattende fra 0.01 til 5 % av et organisk kolloidalt fortykningsmiddel, kjennetegnet ved at det inneholder fra spor og opp til 1 % av et oksydasjons-reduksjons-tverrbindingsmiddel for nevnte fortykningsmiddel. According to the present invention, an aqueous explosive of the gel or grot type has now been provided comprising a liquid phase, based on the weight of the total composition, of 10 - 25 weight percent water containing in solution from 10 to 60% of a strongly oxidizing salt, a thickening agent for said phase comprising from 0.01 to 5% of an organic colloidal thickener, characterized in that it contains from traces and up to 1% of an oxidation-reduction cross-linking agent for said thickener.

Videre er det tilveiebragt en fremgangsmåte til fremstilling av et slikt sprengstoff <p>g denne fremgangsmåte er kjennetegnet ved at en mindre mengde av et kolloidalt fortykningsmiddel forst inkorporeres i en vandig fase inneholdende et sterkt oksyderende salt, partikkelformet fast brennstoff eller sensitiveringsmiddel suspenderes i nevnte fase, hvoretter mindre enn 1 vektprosent, basert på vekten av dem totale sammensetning, av en kombinasjon av et tverrbindingsmateriale av den oksyderende salttype samt et hydroksylert organisk reduserende tverrbindingsmateriale tilsettes for å stabilisere fortykningsmidlet. Furthermore, a method is provided for the production of such an explosive <p>g this method is characterized by the fact that a small amount of a colloidal thickener is first incorporated into an aqueous phase containing a strongly oxidizing salt, particulate solid fuel or sensitizer is suspended in said phase , after which less than 1 percent by weight, based on the weight of their total composition, of a combination of an oxidizing salt type cross-linking material and a hydroxylated organic reducing cross-linking material is added to stabilize the thickener.

Av hensiktsmessighetsgrunner kalles foreliggende tverrbindingssystem et redox- eller oksydasjons-reduksjons-tverrbindingssystem, ettersom det innbefatter anvendelsen av to midler, hvorav det ene er et reduksjonsmiddel, mens det andre er et oksydasjonsmiddel. Disse midler anvendes i meget små mengder eller endog spor-mengder sammen med små mengder av en tverrbindende gummi,fortrinnsvis en galactoraannan såsom guargummi. Ved passende tidsjustering av redoxreaksjonen, kan sammensetningens sluttviskositet samt dens fortykningshastighet meget noye reguleres. En geldannet eller fortykket sprengstoffsammensetning kan således fremstilles med en passende viskositet for en kort tidsstabilitet, eller for lengre lagring, For convenience, the present crosslinking system is called a redox or oxidation-reduction crosslinking system, as it involves the use of two agents, one of which is a reducing agent, while the other is an oxidizing agent. These agents are used in very small amounts or even trace amounts together with small amounts of a cross-linking gum, preferably a galactora annan such as guar gum. By appropriately adjusting the time of the redox reaction, the composition's final viscosity and its thickening rate can be very carefully regulated. A gelled or thickened explosive composition can thus be prepared with a suitable viscosity for a short time stability, or for longer storage,

etc. alt etter onske, og geldannelseshastigheten kan reguleres meget r. ,i-n6yaktig. Den siste Aer spesielt viktig i forbindelse med pumpesy-stemer for eksplosivstoffer. Rksplosivstoffer med lav viskositet flyter meget lett og lar seg pumpe, men kan være for flytende til at brennstoff- og/eller sensitiveringspartiklene holdes i homogen dispersjon, det være seg fine aluminiumpartikler, karbonholdige partikler såsom pulverisert gilsonitt, kull, sukker og andre karbohydrater, etc. as desired, and the speed of gel formation can be regulated very precisely. The last A is particularly important in connection with pumping systems for explosives. Low-viscosity explosives flow very easily and can be pumped, but may be too liquid for the fuel and/or sensitizing particles to be kept in homogeneous dispersion, be it fine aluminum particles, carbonaceous particles such as powdered gilsonite, coal, sugar and other carbohydrates,

eller partikler av selveksplosivstoffer av den type som er nevnt ovenfor. or particles of self-explosive substances of the type mentioned above.

Tverrbindingsmidler såsom boraks er kjent, og det er videre kjent at det ofte er nodvendig å regulere oppløsningens alkalinitet for å opprettholde en stabil gelstruktur. Boraks-tverrbundne fortykningsmidler har vært meget anvendt, men de har vanligvis meget dårlige karakteristika med hensyn til partikkelsuspensjon, og dette er tilfelle endog i relativt tykke suspensjoner, ettersom de tverrbundne enheter synes å vandre og skifte plass inne i selve gelen. Dette frembringer sedimentasjon og lagdannelse av de suspenderte faste stoffer. Kn slik segregering ligger vanligvis utenfor tole-ransegrensene . Cross-linking agents such as borax are known, and it is further known that it is often necessary to regulate the alkalinity of the solution in order to maintain a stable gel structure. Borax cross-linked thickeners have been widely used, but they usually have very poor particle suspension characteristics, and this is the case even in relatively thick suspensions, as the cross-linked units seem to migrate and shift within the gel itself. This produces sedimentation and stratification of the suspended solids. Kn such segregation is usually outside the limits of tolerance.

Ved foreliggende oppfinnelse oppnås meget effektiv tverrbinding ved hjelp av relativt små mengder av gummi, fortrinnsvis en prehydratisert guargummi, uten tilsetning av baser, og vanligvis med en relativt lav pH i suspensjonen eller groten. Således anvendes meget små mengder av et tverrbindingssystem av den oksyderende-reduserende type. Oksyderingsmidlet kan være av den type som vanligvis anvendes for tverrbinding av gelatiner, f.eks. i fotoindustrien. Reduksjonsmidlet kan være en eller flere passende organiske syrer, f.eks. gallussyre, garvesyre og andre eller deres derivater, og som i seg selv har en tverrbindende aktivitet, spesielt når de anvendes i store mengder. I forbindelse med de mengder som anvendes i foreliggende oppfinnelse, vil imidlertid disse syrer i seg selv være ineffektive. Oksydasjonsmidler med en viss tverrbindende egenskap i seg selv, såsom natrium- eller kaliumkromat, kan brukes, men andre såsom H202 som ikke er i seg selv tverrbindende, kan også anvendes. Kromater og dikromater er vanligvis brukbare, og permanganater kan brukes. Kombinasjonen av et oksydasjonsmiddel og reduksjonsmiddel for tverrbindingen er langt mer effektiv enn et enkelt oksydasjonsmiddel. Man får fremstilt et mer stabilt system, bedre tilpasset for stabilisering av gelene og for å opprettholde de suspenderte partiklene i en homogen suspensjon. In the present invention, very effective cross-linking is achieved by means of relatively small amounts of gum, preferably a prehydrated guar gum, without the addition of bases, and usually with a relatively low pH in the suspension or groat. Thus, very small amounts of a cross-linking system of the oxidizing-reducing type are used. The oxidizing agent can be of the type usually used for cross-linking gelatins, e.g. in the photography industry. The reducing agent can be one or more suitable organic acids, e.g. gallic acid, tannic acid and others or their derivatives, and which in themselves have a cross-linking activity, especially when used in large quantities. However, in connection with the quantities used in the present invention, these acids will be ineffective in themselves. Oxidizing agents with a certain cross-linking property in themselves, such as sodium or potassium chromate, can be used, but others such as H 2 O 2 which are not in themselves cross-linking, can also be used. Chromates and dichromates are usually useful, and permanganates may be used. The combination of an oxidizing agent and reducing agent for the cross-linking is far more effective than a single oxidizing agent. A more stable system is produced, better adapted to stabilize the gels and to maintain the suspended particles in a homogeneous suspension.

I et forste eksempel ble det fremstilt en opplosning bestående av 31 • 5 vektdeler (basert på vekten av den fremstilte suspensjon) av ammoniumnitrat, 13«5 vektdeler natriumnitrat, 15 vektdeler vann og 0.15 vektdeler hydrert guargummi. For å inkorporere nevnte guargummi ("GG"), ble det anvendt 0.3 vektdeler etylenglykol ("EG"). Et slikt system fortykkes meget raskt og blir meget viskost i lopet av et kort tidsrom. Systemets viskositet avtar imidlertid betydelig etter ca. 3 timer og ofte noe raskere. Etter 24 timer kan viskositeten være så meget redusert at de suspenderte, sensitiverende partikler av aluminium, uopplSst nitrat, gilsonitt, etc, kan begynne å utsedimentere seg i ganske vesentlig grad. Denne senkning av viskositeten kan elimineres ved å oke mengden av guargummi, men dette kan på den annen side igjen skape et pumpeproblem, når suspensjonen eller groten skal pumpes gjennom en slange. I en sammensetning inneholdende fra 0.17 til 0.l8 deler guargummi per 100 deler suspensjon og tverrbundet som beskrevet ovenfor, blir viskositeten raskt så stor som det hensiktsmessig kan tolereres med et vanlig pumpe-system. In a first example, a solution consisting of 31.5 parts by weight (based on the weight of the prepared suspension) of ammonium nitrate, 13.5 parts by weight of sodium nitrate, 15 parts by weight of water and 0.15 parts by weight of hydrated guar gum was prepared. To incorporate said guar gum ("GG"), 0.3 parts by weight of ethylene glycol ("EG") was used. Such a system thickens very quickly and becomes very viscous over a short period of time. However, the viscosity of the system decreases significantly after approx. 3 hours and often somewhat faster. After 24 hours, the viscosity may be so greatly reduced that the suspended, sensitizing particles of aluminium, undissolved nitrate, gilsonite, etc., may begin to sediment to a fairly significant extent. This lowering of the viscosity can be eliminated by increasing the amount of guar gum, but this, on the other hand, can again create a pumping problem, when the suspension or groat has to be pumped through a hose. In a composition containing from 0.17 to 0.18 parts of guar gum per 100 parts of suspension and cross-linked as described above, the viscosity quickly becomes as great as can conveniently be tolerated with a conventional pumping system.

Det vil folgelig være hensiktsmessig og Onskelig å kunne stabilisere tverrbindingen på en slik måte, at man vil få opprett-holdt noe nær maksimal styrke i lengre tidsrom, spesielt hvor lange henstandstider eller lagring er på tale. Når borehull blir fylt og ladninger eksplodert i lopet av et par timer, er dette vanligvis ikke et problem, men i de tilfeller hvor det går flere dogn for de-tonering, er det spesielt viktig at den tverrbundne gel beholder sin form og struktur. It would therefore be appropriate and desirable to be able to stabilize the cross-linking in such a way that something close to maximum strength would be maintained for longer periods of time, especially where long grace periods or storage are involved. When boreholes are filled and charges detonated over the course of a few hours, this is usually not a problem, but in cases where detonation takes several days, it is particularly important that the cross-linked gel retains its shape and structure.

Ved å anvende den samme opplosning av de primære oksydasjonsmidler AN og SN, slik det er beskrevet ovenfor, ble det utfort en rekke prdver ved å anvende en såkalt torr forblanding av suspen-derbare sensitiverende materialer. I dette tilfelle ble forblandingen fremstilt av 6 deler pulverisert gilsonitt ("Gil"), 3 deler svovel, 0.3 deler meget fin aluminium av malingskvalitet, samt 1.7 deler av et noe grovere aluminium, betegnelse ,<r>C-99". Videre ble 28.5 vektdeler tort ammoniumnitrat tilsatt suspensjonen separat utenom forblandingen. I slike sammensetninger er guargummifortyk-ningsmidlet foropplost og meget godt hydrert i den oksyderende opplosning f or den torre forblanding og det supplerende torre oksydasjonsmiddel (AN i dette tilfelle) ble tilsatt suspensjonen. By using the same solution of the primary oxidizing agents AN and SN, as described above, a number of experiments were carried out by using a so-called dry premix of suspendable sensitizing materials. In this case, the premix was made from 6 parts powdered gilsonite ("Gil"), 3 parts sulphur, 0.3 parts very fine aluminum of paint quality, as well as 1.7 parts of a somewhat coarser aluminum, designation ,<r>C-99". Furthermore, 28.5 parts by weight of dry ammonium nitrate added to the suspension separately outside the premix. In such compositions, the guar gum thickener is predissolved and very well hydrated in the oxidizing solution before the dry premix and the supplementary dry oxidizing agent (AN in this case) was added to the suspension.

Ved å anvende en sammensetning av den type som er beskrevet ovenfor som en kontroll, ble en 50/50 opplosning av natriumdikromat (Na2Cr20y/H20) i vann og av kaliumantimontartrat K(Sb0)C^Hg0^. HgO tilsatt i varierende, men meget små mengder. I et tilfelle ble det også anvendt en mindre mengde boraks. I et annet tilfelle anvendte man en mindre mengde av et ligninsulfonat. I et ytterligere tilfelle anvendte man en syre såsom garvesyre eller gallussyre istedenfor tartratet. Resultatet av disse prover, noen innbefattende spesielle additiver, er vist i tabell 1. Begynnende fortykning er fortykningsgraden oppnådd etter 20 sekunders blanding og henstand, og de varierende grader av fortykning ble målt ved å slippe et kjegle-formet legeme inn i gelen for å oppnå inntrengning. En vilkårlig hardhetsskala ble bedomt visuelt, idet tallet 0 representerte til-synelatende fullstendig resistens overfor vannvasking, mens tallet 5 representerte i alt vesentlig ingen resistens overfor vann. Inn-trengningsmålingene ble vanligvis utfort ca. 3 minutter etterat materialene var blandet. Stabilitet eller tap av fortykkende effekt etter varierende tidsrom, er angitt under bemerkninger. Using a composition of the type described above as a control, a 50/50 solution of sodium dichromate (Na2Cr20y/H20) in water and of potassium antimony tartrate became K(Sb0)C^Hg0^. HgO added in varying but very small amounts. In one case, a smaller amount of borax was also used. In another case, a smaller amount of a lignin sulphonate was used. In a further case, an acid such as tannic acid or gallic acid was used instead of the tartrate. The results of these tests, some including special additives, are shown in Table 1. Initial thickening is the degree of thickening achieved after 20 seconds of mixing and standing, and the varying degrees of thickening were measured by dropping a cone-shaped body into the gel to obtain penetration. An arbitrary scale of hardness was judged visually, with the number 0 representing apparently complete resistance to water washing, while the number 5 represented essentially no resistance to water. The penetration measurements were usually carried out approx. 3 minutes after the materials were mixed. Stability or loss of thickening effect after varying periods of time is indicated under remarks.

Når fortykningsmidlet ble tilsatt tort slik som i forblandingen, synes man å få en noe bedre langtidsstabilitet, men det er nodvendig å anvende storre mengder gummi. Det ble utfort prOver ved å anvende en torr, men oljebelagt guargummi i forblandingen for å forsinke tverrblandingen noe, foruten at man inkorporerte begge "redox"-tverrbindingsmidlene i den torre forblanding. Resultatene heri innbefattet inntrengning ved anvendelse av standard pentrometer er vist i tabell II. When the thickener was added dry, as in the premix, a slightly better long-term stability seems to be obtained, but it is necessary to use larger quantities of rubber. It was tested using a dry but oiled guar gum in the premix to delay the crosslinking somewhat, in addition to incorporating both "redox" crosslinking agents into the dry premix. The results herein including penetration using the standard pentrometer are shown in Table II.

Når man anvendte ubelagt guargummi med oksydasjonsmidler og reduksjonsmidler i den torre blanding, så fikk man utfelt en uhydrert guargummi, så dette var utilfredsstillende. When uncoated guar gum was used with oxidizing agents and reducing agents in the dry mixture, an unhydrated guar gum was precipitated, so this was unsatisfactory.

I andre serier ble garvesyre brukt som reduksjonsmiddel istedenfor kaliumantimontartrat. Reaksjonen var noe langsommere enn angitt i tabell 1, men garvesyre er fullt ut tilfredsstillende sammen med natriumdikromat. Det er tilstrekkelig rask tverrbinding til å gi god vannresistens i en typisk suspensjon i lopet av ca. 20 sekun-der. Den er ca. 10 ganger raskere enn vinsyre. Når den imidlertid blir anvendt i oppløsninger som ble pumpet ved temperaturer under ca. 50°C, hvor fortykkingen skjer noe mer langsomt, så kan den være for langsom for visse anvendelser. Sett fra dette synspunktet er kaliumantimontartrat noe bedre enn garvesyre. Resultatene av garve-syreprovene er angitt i tabell III. In other series, tannic acid was used as reducing agent instead of potassium antimony tartrate. The reaction was somewhat slower than indicated in Table 1, but tannic acid is perfectly satisfactory together with sodium dichromate. There is sufficiently rapid cross-linking to provide good water resistance in a typical suspension over the course of approx. 20 seconds there. It is approx. 10 times faster than tartaric acid. However, when it is used in solutions that were pumped at temperatures below approx. 50°C, where thickening occurs somewhat more slowly, it may be too slow for certain applications. From this point of view, potassium antimony tartrate is somewhat better than tannic acid. The results of the tannic acid tests are given in Table III.

Andre brukbare reduseringsmidler innbefatter antimonlaktat, antimontartrat, tinnklorid, pyrogallol, katekol, fenol og resorcinol. Noen av disse vår mindre tilfredsstillende enn andre, men alle kunne brukes. Gallussyre viste en viss aktivitet i sammensetninger med en hoy pH på opptil 7-7, men sammensetninger som inneholdt denne syre hadde i alt vesentlig ingen vannresistens ved lavere pH. Other useful reducing agents include antimony lactate, antimony tartrate, stannous chloride, pyrogallol, catechol, phenol and resorcinol. Some of these were less satisfactory than others, but all could be used. Gallic acid showed some activity in compositions with a high pH of up to 7-7, but compositions containing this acid had essentially no water resistance at lower pH.

Gallus- og garvesyre var også meget tilfredsstillende i eksplosive suspensjoner blandet ved temperaturer over 45°C. Hvis man imidlertid anvendte lavere blandetemperaturer var deres fortyknings-hastigheter langsomme og utilfredsstillende i de tilfeller hvor det var nødvendig med rask fortykning. Det synes som om noen av de ovennevnte aromatiske hydroksylforbindelser, f.eks. katekol, gallussyre og pyrogallol kan være spesielt tilfredsstillende på grunn av at deres hydroksylgrupper befinner seg i ortostilling, dvs. nokså nær hverandre, men sammensetninger inneholdende disse forbindelser synes å miste sin • Gallic and tannic acids were also very satisfactory in explosive suspensions mixed at temperatures above 45°C. However, if lower mixing temperatures were used, their thickening rates were slow and unsatisfactory in those cases where rapid thickening was required. It seems that some of the above-mentioned aromatic hydroxyl compounds, e.g. catechol, gallic acid and pyrogallol can be particularly satisfactory because their hydroxyl groups are in the ortho position, i.e. fairly close to each other, but compositions containing these compounds seem to lose their •

i tverrbinding etter lagring hvis pH ikke holdes lav. For resorcinol og fenol er det ingen nærstående hydroksylgrupper, og de begynnende in cross-linking after storage if the pH is not kept low. For resorcinol and phenol there are no nearby hydroxyl groups, and the initial ones

resultater med disse forbindelser var ikke gode, men sluttstabili- results with these compounds were not good, but final stability

teten synes å være noe bedre i de tilfeller hvor ingen pH-regulering the teat seems to be somewhat better in those cases where there is no pH regulation

var involvert. was involved.

Det skal bemerkes at disse reduserende forbindelser er re- It should be noted that these reducing compounds are re-

lativt gode i systemer hvor gummien anvendes i den opprinnelige opplosning, men er fullstendig ubrukbare i de tilfeller hvor det ikke er noen gummi eller annet fortykningsmiddel i den oksyderende opplos- relatively good in systems where the rubber is used in the original solution, but are completely useless in cases where there is no rubber or other thickening agent in the oxidizing solution

ning. Gummi tilsatt sammen med tort partikkelformet brennstoff og andre faste stoffer synes ikke å hydrere og tverrbinde på samme måte. nothing. Rubber added together with dry particulate fuel and other solids does not appear to hydrate and crosslink in the same way.

Istedenfor å anvende guargummi som det eneste fortykningsmiddel, er det også mulig å anvende en mindre mengde guargummi sammen med et noe svakere fortykningsmiddel såsom tapiokastivelse eller andre stivelsestyper. Med de ovennevnte redox-tverrbindingssystemer er imidlertid en liten mengde guargummi opprinnelig i oppløsningen så. Instead of using guar gum as the only thickener, it is also possible to use a smaller amount of guar gum together with a somewhat weaker thickener such as tapioca starch or other types of starch. However, with the above redox cross-linking systems, a small amount of guar gum is initially in solution.

langt mer effektiv enn anvendelse av stivelse, så selv om sistnevnte forbindelser er billigere, så vil det vanligvis ikke være okonomisk at de anvendes i særlig hoy grad. Sammensetninger for anvendelse ved intermediære temperaturer synes a bli bedret endog mer enn sammensetninger for anvendelse i kaldt vær. I slike sammensetninger synes en anvendelse av tapiokamel eller stivelse og guargummi i den torre forblanding ikke.å ha noen særlig betydning. far more effective than the use of starch, so even if the latter compounds are cheaper, it will usually not be economical for them to be used to a particularly high degree. Compositions for use at intermediate temperatures seem to improve even more than compositions for use in cold weather. In such compositions, the use of tapioca flour or starch and guar gum in the dry premix does not seem to have any particular significance.

For en anvendelse under varme forhold må blandingene van- For an application in hot conditions, the mixtures must be

ligvis være noe forskjellige fordi det kreves mindre folsomhet, foruten at man kan tolerere en hoyere temperatur hvor groten eller suspensjonen blir halvfast idet den avkjoles. I slike tilfeller kan mesteparten eller alt av det oksyderende salt fores inn i opples- probably be somewhat different because less sensibility is required, besides being able to tolerate a higher temperature where the grain or suspension becomes semi-solid as it cools. In such cases, most or all of the oxidizing salt can be fed into the

ningen ved at denne oppvarmes. En opplosning for en typisk varmværs-anvendelse kan fremstilles av 54 vektdeler (basert på den totale sammensetning) av ammoniumnitrat, 15 vektdeler natriumnitrat og 15 the thing by heating it up. A solution for a typical hot weather application can be made from 54 parts by weight (based on the total composition) of ammonium nitrate, 15 parts by weight of sodium nitrate and 15

deler vann. Denne blanding ble tilsatt 0.1 % vann/aluminiumreaksjons-inhibitor (ammoniumfosfat) og 0.3 % guargummi. Gummien var prehydrert og kan fores inn i losningen uten et dispergerende middel eller sammen med 0.5 deler etylenglykol. Den torre forblanding besto av 5 deler svovel, 5 deler pulverisert gilsonitt, 0.25 deler guargummi og 0.5 shares water. To this mixture was added 0.1% water/aluminum reaction inhibitor (ammonium phosphate) and 0.3% guar gum. The rubber was prehydrated and can be fed into the solution without a dispersing agent or together with 0.5 parts of ethylene glycol. The dry premix consisted of 5 parts sulphur, 5 parts powdered gilsonite, 0.25 parts guar gum and 0.5

deler finflaket aluminium. Som tort oksydasjonsmiddel ble det tilsatt tilstrekkelig ammoniumnitrat (AN) til at den totale blanding utgjorde 100 vektdeler. Dette tilsatte oksydasjonsmiddel hjelper å fortykke suspensjonen ytterligere. Ved å anvende en kombinasjon av 0.20 %. natriumdikromat og 0.02 % katekol for å tverrbinde gummien i oppløs-ningen, fikk man en sammensetning med god stabilitet. Gelen hadde god stabilitet med en sterk gummilignende tverrbinding. Hvis man parts finely flaked aluminium. Sufficient ammonium nitrate (AN) was added as a dry oxidizing agent so that the total mixture amounted to 100 parts by weight. This added oxidizing agent helps to further thicken the suspension. By applying a combination of 0.20%. sodium dichromate and 0.02% catechol to crosslink the rubber in the solution, a composition with good stability was obtained. The gel had good stability with a strong rubber-like crosslink. If one

istedenfor anvendte 2. 1%.tapiokamel med betegnelse "T-36", pluss 0. 2% guargummi betegnet "J-100" i den torre forblanding, samt 0.2 deler guargummi fordispergert i den opprinnelige opplosning, var fortykningsmidlet kostbarere foruten at resultatene var dårligere. Ved å anvende natriumnitrat fra Chile istedenfor kommersiell U.S. natriumnitrat (SN) som innbefatter mindre urenheter, synes imidlertid å inn-fore en svak tverrbinding. De totale omkostninger med hensyn til fortykningsmiddel og tverrbindingsmidler i disse suspensjoner eller groter ble redusert med fra 4-0 til 70$ ved å anvende et redox-system enten med katekol eller kaliumantimontartrat sammen med natriumdikromat. instead of using 2.1% tapioca flour designated "T-36", plus 0.2% guar gum designated "J-100" in the dry premix, as well as 0.2 parts guar gum dispersed in the original solution, the thickener was more expensive besides the results were worse. By using sodium nitrate from Chile instead of commercial U.S. however, sodium nitrate (SN), which contains minor impurities, appears to introduce a weak cross-link. The total cost of thickener and cross-linking agents in these suspensions or greater was reduced from $4-0 to $70 by using a redox system with either catechol or potassium antimony tartrate with sodium dichromate.

Intet supplerende oksydasjonsmiddel såsom AN eller SN ble tilsatt i torr form til to varmværsblandinger. I alle andre blandinger ble en del oksydasjonsmiddel tilsatt i torr partikkelform etterat forblandingen av brennstoffer var dispergert i oppløsningen. Det kan ellers være meget vanskelig å oppnå god dispersjon av disse materialer. Blandingene nr. 2 og 3 i tabell IV er betegnet for moderate temperaturer, mens nr. 4 °6 5 ©r for kalde temperaturforhold. No supplemental oxidizer such as AN or SN was added in dry form to two hot weather mixtures. In all other mixtures, some oxidizer was added in dry particle form after the premix of fuels had been dispersed in the solution. It can otherwise be very difficult to achieve good dispersion of these materials. Mixtures No. 2 and 3 in Table IV are designated for moderate temperatures, while No. 4 °6 5 ©r for cold temperature conditions.

• For de formål som er angitt i tabell IV, er de presise forbindelser eller mengder av ingredienser i forblandingen ikke særlig viktige. Fn typisk forblanding kan f.eks. inneholde svovel, gilsonitt eller malt bituminost kull og partikkelformet metallisk aluminium. De enkelte spesifikke forblåndinger synes ikke å påvirke tverrbindingen. Sammensetningene kan dels og dels ikke inneholde opptil 2 eller 2.5$ stivelse eller tapiokamel, og disse ingredienser kan påvirke gelens stabilitet. Sammensetning nr. 5 nedenfor er et eksempel på et system hvor man anvender en kombinasjon av tapiokamel sammen med en mindre mengde gummi i oppløsningen, og hvor begge er tverrbundet med boraks. • For the purposes indicated in Table IV, the precise compounds or amounts of ingredients in the premix are not particularly important. Fn typical premix can e.g. contain sulphur, gilsonite or ground bituminous coal and particulate metallic aluminium. The individual specific pretreatments do not seem to affect the cross-linking. The compositions may and may not contain up to 2 or 2.5% of starch or tapioca starch, and these ingredients may affect the stability of the gel. Composition No. 5 below is an example of a system where a combination of tapioca starch is used together with a small amount of gum in the solution, and where both are cross-linked with borax.

I blandingene nr. 1 og IA ble det ikke tilsatt noe tort oksydasjonsmiddel, mens man i nr. 2 og 3 tilsatte 12 til 14$ tort ammoniumnitrat, mens man i nr. 4 og 5 tilsatte fra 23 til 24$ tort ammoniumnitrat. Disse torre salter ble innrort samtidig med forblandingen. In the mixtures No. 1 and IA no dry oxidizing agent was added, while in Nos. 2 and 3 12 to 14% of dry ammonium nitrate was added, while in Nos. 4 and 5 from 23 to 24$ of dry ammonium nitrate was added. These dry salts were stirred in at the same time as the premix.

Man- oppnår betydelige omkostningsbesparelser ved å anvende det foreliggende oksyderende/reduserende tverrbindingssystem med mindre mengder gummi, spesielt når den sistnevnte er prehydrert i opplosning. En fortykning hvor man anvender ca. 0.25$ guargummi sammen med tverrbindende midler koster fra 40 til 70$ mindre enn en kombinasjon av gummi og stivelse i lignende sammensetninger, selv om enhetskostnadene Considerable cost savings are achieved by using the present oxidizing/reducing cross-linking system with smaller amounts of rubber, especially when the latter is prehydrated in solution. A thickening where approx. 0.25$ guar gum together with cross-linking agents costs from 40 to 70$ less than a combination of gum and starch in similar compositions, although the unit costs

med hensyn til stivelse, tapiokamel, etc. er langt mindre. with regard to starch, tapioca flour, etc. is far less.

Rent generelt innbefatter foreliggende oppfinnelse en anvendelse av to tverrbindingsreaktanter, et reduksjonsmiddel og det annet et oksydasjonsmiddel, i meget små mengder for å tverrbinde fortykningsmidlet i vandige geler. Forskjellige gummityper og stivelsestyper kan brukes uten at man trenger å ta særlig hensyn til sammen-setnings-pH. Systemet kan anvendes i forbindelse med.varierende geler og kolloider, heri innbefattet visse matvarer, såvel som eksplosive geler. Oppfinnelsen er spesielt anvendbar i forbindelse med sistnevnte. De oksydasjonsmidler og reduksjonsmidler som anvendes har begge en ten-dens til å være noe snerpende av karakter. De forstnevnte er typiske metallsalter såsom ammonium- og alkalimetalldikromater og permanganater. Reduksjonsmidlene er fortrinnsvis hydroksylbærende organiske forbindelser valgt fra alifatiske og aromatiske eller alkylaromatiske syrer og deres salter, spesielt de som inneholder en rekke hydroksylgrupper. Forbindelser som gallussyre, garvesyre, vinsyre eller hydroksylerte benzener såsom katekol eller 1,2-benzendiol er brukbare. Til-synelatende er hydroksylerte forbindelser, det være seg alifatiske eller aromatiske som har hydroksylgruppene i orto eller andre nære In general, the present invention includes the use of two crosslinking reactants, one a reducing agent and the other an oxidizing agent, in very small amounts to crosslink the thickening agent in aqueous gels. Different rubber types and starch types can be used without having to pay particular attention to the pH of the composition. The system can be used in connection with various gels and colloids, including certain foodstuffs, as well as explosive gels. The invention is particularly applicable in connection with the latter. The oxidizing agents and reducing agents used both have a tendency to be somewhat astringent in nature. The former are typical metal salts such as ammonium and alkali metal dichromates and permanganates. The reducing agents are preferably hydroxyl-bearing organic compounds selected from aliphatic and aromatic or alkylaromatic acids and their salts, especially those containing a number of hydroxyl groups. Compounds such as gallic acid, tannic acid, tartaric acid or hydroxylated benzenes such as catechol or 1,2-benzenediol are useful. Apparently, hydroxylated compounds, whether aliphatic or aromatic, having the hydroxyl groups in ortho or other close

■ stillinger, de beste. Dette kan muligens skyldes sterisk hindring, skjont dette ikke positivt er påvist. At gallussyre er bedre enn garvesyre kan skyldes at de tre hydroksylgruppene i benzenringen sit-ter meget nær hverandre. Saltene av disse forbindelser synes vanligvis å være like tilfredsstillende som syrene, og i visSe tilfeller ■ positions, the best. This could possibly be due to steric hindrance, although this has not been positively demonstrated. The fact that gallic acid is better than tannic acid may be due to the fact that the three hydroxyl groups in the benzene ring are very close to each other. The salts of these compounds generally appear to be as satisfactory as the acids, and in some cases

bedre. Det kan f.eks. nevnes at kaliumantimontartrat er bedre enn ren vinsyre, noe som antagelig skyldes de metaller som er involvert. Si-tronsyre med en enkel hydroksylgruppe synes å være mindre effektiv enn polyhydroksylerte organiske forbindelser, men noen av syrens salter kan brukes. better. It can e.g. it is mentioned that potassium antimony tartrate is better than pure tartaric acid, which is presumably due to the metals involved. Citric acid with a single hydroxyl group appears to be less effective than polyhydroxylated organic compounds, but some of the acid's salts can be used.

De fortykkede gelsammensetninger vil vanligvis være vandige oppløsninger av forskjellige vannloselige stoffer. For eksplosivstoffer vil vanligvis de oksyderende salter være i en vandig opplosning, og man anvender tilstrekkelig opplosning til at man får dan-net en kontinuerlig flytende fase i den ferdige sammensetning. Brenn-stoffet og sensitiveringsmidler, som ofte er partikkelformet av karakter og til en viss grad uopploste, blir så suspendert i den eksplosive gel eller grot slik at man oppnår en homogen fordeling. Disse energi-bidragende materialer bor brukes i slike mengder at man får en total The thickened gel compositions will usually be aqueous solutions of various water-insoluble substances. For explosives, the oxidizing salts will usually be in an aqueous solution, and sufficient solution is used so that a continuous liquid phase is formed in the finished composition. The fuel and sensitizers, which are often particulate in nature and to some extent undissolved, are then suspended in the explosive gel or grot so that a homogeneous distribution is achieved. These energy-contributing materials should be used in such quantities that you get a total

oksygenbalanse i den eksplosive gel innen ca. - 50 mer foretrukket oxygen balance in the explosive gel within approx. - 50 more preferred

innen - 20 %. De oksyderende salter som kan brukes kan innbefatte ethvert av de etterfølgende og kan brukes i mengder varierende fra 40 til.89.9 fortrinnsvis fra 45 til 65 vektprosent av den totale within - 20%. The oxidizing salts which may be used may include any of the following and may be used in amounts varying from 40 to 89.9 preferably from 45 to 65 percent by weight of the total

sammensetning: ammoniumnitrat, natriumnitrat, bariumnitrat og composition: ammonium nitrate, sodium nitrate, barium nitrate and

ammonium- og alkalimetallklorater og perklorater. Brennstoffene som utgjor hovedmengden av forblandingen og som er sensitiverende av natur, kan innbefatte en eller flere ingredienser heri innbefattet finmalt aluminiumpulver i meget små mengder, granulert eller flak-formet aluminium eller storre partikler enn ren malingskvalitet, i storre mengder svovel, dvs. opptil 10 % eller mer, karbonholdige ammonium and alkali metal chlorates and perchlorates. The fuels which make up the bulk of the premix and which are sensitizing in nature, may include one or more ingredients including finely ground aluminum powder in very small amounts, granulated or flake-shaped aluminum or larger particles than pure paint quality, in large amounts of sulfur, i.e. up to 10 % or more, carbonaceous

materialer såsom finmalt eller granulert gilsonitt, kull, koks, sot, sagflis, sukker og stivelser eller mel i mengder på opptil 10 eller 12 % eller endog mer. Som fortykningsmidler kan man anvende organiske meltyper og stivelsestyper og/eller galaktomannangummier eller deres ekvivalenter, heri innbefattet stoffer eller forbindelser som karboksymetylcellulose etc, enten hver for seg eller i kombinasjon, men fortrinnsvis bor i det minste en del av fortykningsmidlet være en galaktomannangummi, fortrinnsvis inkorporert i opplosningen og i hydratisert form, dvs. at fortykningsmidlet bor være <n>pre-inkorporert<n>, for den torre forblanding av brennstoffer og andre faste stoffer tilsettes. Når man anvender en meget fin kvalitet av aluminium, kan mengden være så liten som 0.1 % eller mindre, og den totale brennstoffmengde kan utgjore så meget som 40 % eller mer av den totale sammensetning. Opplosningsmidlet som vanligvis er en vandig opplosning eller en emulsjon av en organisk væske, fortrinnsvis en vannforenlig organisk væske, f.eks. lavere alifatiske alkoholer, glykoler, aminer eller amider såsom formamid eller lignende, utgjor fortrinnsvis fra 10 til 25 vektprosent av den totale gel materials such as finely ground or granulated gilsonite, coal, coke, soot, sawdust, sugar and starches or flour in amounts up to 10 or 12% or even more. As thickeners, you can use organic flour types and starch types and/or galactomannan gums or their equivalents, including substances or compounds such as carboxymethyl cellulose etc, either individually or in combination, but preferably at least part of the thickener should be a galactomannan gum, preferably incorporated in the solution and in hydrated form, i.e. that the thickener should be <n>pre-incorporated<n>, to which dry premix of fuels and other solids are added. When using a very fine grade of aluminum, the amount can be as little as 0.1% or less, and the total fuel amount can be as much as 40% or more of the total composition. The solvent which is usually an aqueous solution or an emulsion of an organic liquid, preferably a water-compatible organic liquid, e.g. lower aliphatic alcohols, glycols, amines or amides such as formamide or the like, preferably comprise from 10 to 25% by weight of the total gel

eller grot. Fortykningsmidler og tverrbindingsmidler vil vanligvis utgjore minst 0.01 og fortrinnsvis fra 0.05 til 5 % av den totale sammensetning, men det fortykkende materiale kan i seg selv bare være tilstede som spor eller i mengder så små som 0.0001 % eller mindre, eller opptil 1 % i visse tilfeller. or caved in. Thickening agents and cross-linking agents will usually constitute at least 0.01 and preferably from 0.05 to 5% of the total composition, but the thickening material itself may only be present in trace amounts or in amounts as small as 0.0001% or less, or up to 1% in certain instances.

Et annet aspekt ved foreliggende oppfinnelse angår en gjennomluftning av suspensjonen eller groten for å regulere dens tetthet og dens folsomhet overfor detonasjon. Det har tidligere vært foreslått å tilsette luft og andre gasser til lignende sammensetninger. I mange tilfeller vil også noe gass, da. spesielt luft, innfanges ved en normal fremstilling av suspensjonen. Se i denne forbindelse US patent nr. 3 382 117. Det har også vært foreslått å tilsette gassutviklende forbindelser, f.eks. peroksyder, nitriter., karbonater, etc. Another aspect of the present invention relates to aeration of the suspension or groat to regulate its density and its susceptibility to detonation. It has previously been proposed to add air and other gases to similar compositions. In many cases, there will also be some gas, then. especially air, is captured by a normal preparation of the suspension. See in this connection US patent no. 3 382 117. It has also been proposed to add gas-evolving compounds, e.g. peroxides, nitrites., carbonates, etc.

I forbindelse med ovennevnte oksydasjons-reduksjonsfor-tykningsmidler, er det visse fordeler ved anvendelse av spesielle gassutviklende additiver i små mengder. En anvendelse av en liten mengde salpetersyrling for å utvikle nitrogen ved dekomponering ar således ikke bare effektiv for gjennomluftning av suspensjonen, men den bidrar også til å stabilisere det fortykkede system. Nitrogen er inert, og i motsetning til karbondioksyd er det ikke løselig i den vandige væske som utgjor suspensjonens kontinuerlige fase. Når gassen utvikles fra -reaktanter som alle er loselige i den flytende fase, vil de utviklede gassbobler være meget små og ville lett bli innfanget i suspensjonen, spesielt når væsken er svakt fortykket for man tilsetter brennstoffer eller sensitiveringsmidler, f.eks. aluminium- eller karbonholdige partikler, eller endog partikler av selveksplosivstoffer såsom TNT, RDX, roksvakt krutt, etc. In connection with the above-mentioned oxidation-reduction thickeners, there are certain advantages to the use of special gas-evolving additives in small quantities. The use of a small amount of nitric acid to develop nitrogen during decomposition is thus not only effective for aerating the suspension, but it also helps to stabilize the thickened system. Nitrogen is inert, and unlike carbon dioxide, it is not soluble in the aqueous liquid which forms the continuous phase of the suspension. When the gas is evolved from -reactants which are all soluble in the liquid phase, the evolved gas bubbles will be very small and would easily be trapped in the suspension, especially when the liquid is slightly thickened because fuels or sensitizers are added, e.g. aluminum or carbon-containing particles, or even particles of self-explosive substances such as TNT, RDX, smokeless gunpowder, etc.

Salpetersyrling, ammoniumnitrit etc. er reduksjonsmidler Nitric acid, ammonium nitrite etc. are reducing agents

i sure oppløsninger. I suspensjoner eller dispersjoner med lav pH vil de følgelig hjelpe til ved tverrbindingen av guargummien, stiv-elsen eller andre andre lignende fortykningsmidler. in acidic solutions. In suspensions or dispersions with a low pH, they will consequently help in the cross-linking of the guar gum, the starch or other similar thickeners.

Salpetersyrling eller ammoniumnitrit kan tilsettes suspensjonen direkte, eller kan tilsettes dens vandige fase for man tilsetter partikkelformede faste stoffer. I basiske oppløsninger er nitriter som f.eks. ammoniumnitrit ganske stabile og det utvikles ingen gass. Det synes å være ren salpetersyrling fremstilt ved en dekomponering av ammoniumnitrit eller andre nitriter, som frembringer den forønskede utvikling av nitrogen. En utvikling av gass i basiske oppløsninger fra salter som f.eks. ammoniumnitrit og andre metallnitriter, kan således oppnås ved bare å surgjore oppløsningen, dvs. å redusere pH ved tilsetning av salpetersyre. Andre syrer såsom saltsyre eller svovelsyre kan brukes, men salpetersyre er foretrukket fordi den bidrar med energi som et kraftig oksydasjonsmiddel for eventuelle tilstedeværende brennstoffer. Nitric acid or ammonium nitrite can be added to the suspension directly, or can be added to its aqueous phase for adding particulate solids. In basic solutions, nitrites such as ammonium nitrite is quite stable and no gas is evolved. It appears to be pure nitric acid produced by a decomposition of ammonium nitrite or other nitrites, which produces the desired evolution of nitrogen. A development of gas in basic solutions from salts such as ammonium nitrite and other metal nitrites, can thus be obtained by simply acidifying the solution, i.e. reducing the pH by adding nitric acid. Other acids such as hydrochloric acid or sulfuric acid can be used, but nitric acid is preferred because it contributes energy as a powerful oxidizing agent for any fuels present.

Dekomponering av salpetersyrling kan akselereres ved anvendelse av urea eller tiourea. En anvendelse av slike forbindelser er et ytterligere trekk ved foreliggende oppfinnelse. Den følgende reaksjon antas å finne sted: Reaksjonen skjer noe raskere ved å anvende tiourea (HgNC-SNH2) istedenfor urea. Dette har også en annen fordel. Tiourea kan tilfores opplosningen for man fremstiller selve suspensjonen, og for-bindelsen har den egenskap at den stabiliserer og noe bedrer gummiens fortykkende effekt i opplosningen, dvs. at gummien i opplosningen opprettholder sin viskositet bedre med en tilsetning av små mengder tiourea. Decomposition of nitric acid can be accelerated by the use of urea or thiourea. A use of such compounds is a further feature of the present invention. The following reaction is assumed to take place: The reaction occurs somewhat faster by using thiourea (HgNC-SNH2) instead of urea. This also has another advantage. Thiourea can be added to the solution for preparing the suspension itself, and the compound has the property that it stabilizes and somewhat improves the rubber's thickening effect in the solution, i.e. that the rubber in the solution maintains its viscosity better with the addition of small amounts of thiourea.

Salpetersyrling (HNO^) dannes direkte i suspensjonene ved å tilsette nitritsalter til den sure suspensjon. I praksis vil dette nitrit bli tilsatt ved at det blandes i forblandingen eller ved å tilfore det som en separat komponent ved selve fremstillingen. Opp-losningens pH justeres på den sure side, dvs. fra 5*5 til 3. Ved visse betingelser vil nitritet danne salpetersyrling som deretter dekomponerer og danner nitrogengass. Hvis blandingens pH er relativt lav, dvs. ca. 3, og oppløsningens temperatur er relativt hoyt, dvs. ca. 65°C eller hoyere, så vil salpetersyrlingen dekomponere uten tilsetning av tiourea. Ved hoyere pH og/eller lavere temperaturer vil imidlertid nitrogenutviklingshastigheten kunne reguleres ved en tilsetning av tiourea, spesielt når denne er tilsatt opplosningen. Man har funnet det meget effektivt å tilsette nitritet ved hjelp av konsentrerte oppløsninger av ammoniumnitrit, som tilsettes forblandingen. Den mengde vann som tilfores forblandingen på denne måte, synes ikke i særlig hoy grad å fukte forblandingen. Alterna-tivt kan nitritopplosninger tilsettes selve blandetrakten idet suspensjonen fremstilles. Denne fremgangsmåte har den fordel at man har bedre kontroll over tettheten fra borehull til borehull. Nitrit-konsentrasjoner av størrelsesorden fra 0.01 til 1.0 % kan brukes for å fremstille de foronskede tettheter. Nitric acid (HNO^) is formed directly in the suspensions by adding nitrite salts to the acidic suspension. In practice, this nitrite will be added by mixing it into the premix or by adding it as a separate component during the production itself. The pH of the solution is adjusted on the acidic side, i.e. from 5*5 to 3. Under certain conditions, the nitrite will form nitric acid which then decomposes and forms nitrogen gas. If the pH of the mixture is relatively low, i.e. approx. 3, and the temperature of the solution is relatively high, i.e. approx. 65°C or higher, then the nitric acid will decompose without the addition of thiourea. However, at higher pH and/or lower temperatures, the rate of nitrogen evolution can be regulated by adding thiourea, especially when this is added to the solution. It has been found very effective to add the nitrite by means of concentrated solutions of ammonium nitrite, which are added to the premix. The amount of water that is added to the premix in this way does not appear to moisten the premix to a particularly high degree. Alternatively, nitrite solutions can be added to the mixing funnel itself while the suspension is being prepared. This method has the advantage that you have better control over the density from borehole to borehole. Nitrite concentrations of the order of magnitude from 0.01 to 1.0% can be used to produce the phoronsed densities.

Når ureanitrat brukes istedenfor tiourea eller urea, så When urea nitrate is used instead of thiourea or urea, so

er det viktig at man ikke senker oppløsningens pH, fordi ureanitrit allerede har sur karakter. it is important not to lower the pH of the solution, because urea nitrite already has an acidic character.

Det er et meget fordelaktig forhold mellom nitriter eller salpetersyrling, dikromater, gallussyre og tiourea i et system av den type som er beskrevet ovenfor, og da som en funksjon av pH spesielt i suspensjoner som inneholder etylenglykol og kalsiumnitrat. There is a very advantageous relationship between nitrites or nitric acid, dichromates, gallic acid and thiourea in a system of the type described above, and then as a function of pH especially in suspensions containing ethylene glycol and calcium nitrate.

I sammensetninger med lav pH, dvs. mindre enn /\.. 0, vil 0.014 % KNOo i blandingene 'A og B nedenfor, gi en sluttetthet på 0.55 g/cm-<5> ved atmosfærisk trykk, og en tetthet på 1.21 og 1.26 g/cm<J >henholdsvis ved et trykk på 7 kg per cm p. Ved lav pH vil gallussyren ikke være nodvendig i det fortykkende system, fordi det sure salt KNOg virker som reduksjonsmiddel slik at man får en raskt begynnende fortykning. Tiourea i mengder på 0.05 % frembringer en passende gass- In low pH compositions, i.e. less than /\.. 0, 0.014% KNOo in mixtures 'A and B below will give a final density of 0.55 g/cm-<5> at atmospheric pressure, and a density of 1.21 and 1.26 g/cm<J >respectively at a pressure of 7 kg per cm p. At low pH, the gallic acid will not be necessary in the thickening system, because the acidic salt KNOg acts as a reducing agent so that thickening begins quickly. Thiourea in amounts of 0.05% produces a suitable gas-

utviklingshastighet. speed of development.

Ved hoy pH, dvs. fra 4.0 og opptil 5.5, vil 0.014 % KN02 gi blanding A en sluttetthet på O.63 g/cm^, mens det er nodvendig med 0.5 % for å gi blanding B den samme tetthet ved atmosfærisk trykk. Ved et trykk på 7 kg/cm2 vil 0.5 % KNOg gi en sluttetthet på 1.22 og 1«34 g/cm-^ henholdsvis for blanding A og blanding B. Ved hoy pH vil gallussyre i en konsentrasjon av størrelsesorden på 0.05 % være nodvendig for å få en raskt begynnende fortykning.. At high pH, i.e. from 4.0 and up to 5.5, 0.014% KN02 will give mixture A a final density of 0.63 g/cm^, while 0.5% is necessary to give mixture B the same density at atmospheric pressure. At a pressure of 7 kg/cm2, 0.5% KNOg will give a final density of 1.22 and 1«34 g/cm-^ respectively for mixture A and mixture B. At high pH, gallic acid in a concentration of the order of 0.05% will be necessary for to get a rapid onset of thickening..

Det ble fremstilt serier av sammensetninger ved å anvende vandige opplosninger av ammoniumnitrat, natriumriitrat, og/eller kalsiumnitrat som oksydasjonsmiddel med en mindre mengde guargummi dispergert i etylenglykol for å fortykke den flytende fase, fortrinnsvis for man tilsatte de partikkelformede brennstoffer. De flytende materialer og ingrediensene i hovedopplosningen er gitt i tabell V-A. I to tilfeller ble det tilsatt en mindre mengde salpetersyre. Hvis intet annet er angitt, er prosentsatsene angitt som vektprosent. Series of compositions were prepared by using aqueous solutions of ammonium nitrate, sodium nitrate, and/or calcium nitrate as an oxidizing agent with a small amount of guar gum dispersed in ethylene glycol to thicken the liquid phase, preferably for adding the particulate fuels. The liquid materials and ingredients of the master solution are given in Table V-A. In two cases, a smaller amount of nitric acid was added. If nothing else is stated, the percentages are stated as a percentage by weight.

Brennstoffene og sensitiveringsmidlene såvel som gassutviklende og gelstabiliserende ingredienser er vist i tabell V-B. I de fleste tilfeller anvendte man mindre mengder tiourea.. I sammensetningene E, F, G, H, I og J<*> ble tetthetene angitt i g/ cm? som 1.10, I. l6, 1.17, 1.07, 1.08 og 1.07 henholdsvis. I sammensetningene K og L utgjorde aluminiumen en blanding bestående av 0.13 vektprosent finflaket aluminium belagt med stearinsyre, 1.1 % forstovet aluminium og II. 2 % malt aluminium. The fuels and sensitizers as well as gas-evolving and gel-stabilizing ingredients are shown in Table V-B. In most cases, smaller amounts of thiourea were used. In the compositions E, F, G, H, I and J<*>, the densities were stated in g/cm? as 1.10, I. l6, 1.17, 1.07, 1.08 and 1.07 respectively. In the compositions K and L, the aluminum was a mixture consisting of 0.13% by weight finely flaked aluminum coated with stearic acid, 1.1% atomized aluminum and II. 2% painted aluminium.

Blandingene A og B hadde en pH i opplosning mellom 4.0 og 5.5. Disse blandinger var lett skumaktige suspensjoner med tettheter etter sedimentasjon på 0.6l og O.69 g/cm-<5> henholdsvis. Ved 7 kg/cnr var tetthetene oket til 1.20 og I.30 henholdsvis. Begge detonerte i 6.2 cm diameters ladninger ved 5°C under et trykk på 7 kg/cm<2>, noe som omtrent tilsvarer trykket i bunnladningen i et borehull med en dybde på ca. 30 meter. Sammensetningene A og B ovenfor viser god vannresistens og hadde konsistenser som vil motstå inntrengning av oppslemmede materialer meget raskt etter plasering i et borehull. Mixtures A and B had a pH in solution between 4.0 and 5.5. These mixtures were slightly foamy suspensions with densities after sedimentation of 0.6l and 0.69 g/cm-<5> respectively. At 7 kg/cnr, the densities were increased to 1.20 and 1.30 respectively. Both detonated in 6.2 cm diameter charges at 5°C under a pressure of 7 kg/cm<2>, which roughly corresponds to the pressure in the bottom charge in a borehole with a depth of approx. 30 meters. Compositions A and B above show good water resistance and had consistencies that will resist penetration of slurried materials very quickly after placement in a borehole.

Blandingene C og D innbefattet et nitritsalt som en kilde for gassformig nitrogen for tetthetsregulering. Dette materiale tjente også som et reduksjonsmiddel for et fortykningssystem av den type som er diskutert ovenfor. Salpetersyre ble brukt for å senke pH til ca. 3*0, noe som frembragte salpetersyrling in situ. Dette er en reduserende komponent. Den tilsatte tiourea fikk en del av Mixtures C and D included a nitrite salt as a source of gaseous nitrogen for density control. This material also served as a reducing agent for a thickening system of the type discussed above. Nitric acid was used to lower the pH to approx. 3*0, which produced nitric acid in situ. This is a reducing component. The added thiourea received part of

salpetersyrlingen til å dekomponere, hvorved man fikk frigjort nitro- the nitric acid to decompose, whereby nitro-

gengass. Tettheten ved atmosfærisk trykk var O.65 til O.67, og oket til 1.21 til 1.26 g/cn<r> under et trykk på 7 kg/cm . Natriumnitrit eller ammoniumnitrit er like godt egnet istedenfor kaliumnitrit, regas. The density at atmospheric pressure was 0.65 to 0.67, and increased to 1.21 to 1.26 g/cn<r> under a pressure of 7 kg/cm . Sodium nitrite or ammonium nitrite are equally suitable instead of potassium nitrite,

eller salpetersyre kan tilsettes direkte. or nitric acid can be added directly.

Blandingene A og B var mindre sure enn C og D, slik at ni- Mixtures A and B were less acidic than C and D, so that ni-

tritets reduserende effekt var mindre. For å lette fortykningen an- trite's reducing effect was less. To facilitate the thickening an-

vendte man derfor en mindre mengde av et annet reduksjonsmiddel av den type som er nevnt ovenfor (gallussyre eller en annen hydroksy- a smaller amount of another reducing agent of the type mentioned above (gallic acid or another hydroxy

1enolforbindelse). 1enol compound).

Blandingene E til J viser anvendelsen av dikromat, nitrit Mixtures E to J show the use of dichromate, nitrite

(eller salpetersyrling),gallussyre og tiourea. Det skal spesielt bemerkes at kombinasjonen av nitrit ©g tiourea oker effektiviteten av det ovennevnte redox-tverrbindingssystem. I tillegg får man ut- (or nitric acid), gallic acid and thiourea. It should be particularly noted that the combination of nitrite and thiourea increases the efficiency of the above redox cross-linking system. In addition, you get out-

viklet gass (Ng) for tetthetsregulering. Typisk vil alle disse pro- coiled gas (Ng) for density regulation. Typically, all of these pro-

dukter detonere i 12.5 cra kolonner ved 15°C. Følsomheten kan meget lett justeres ved å anvende mer eller mindre finmalt aluminium. can detonate in 12.5 cra columns at 15°C. The sensitivity can be adjusted very easily by using more or less finely ground aluminium.

Vanligvis er gallussyre foretrukket, men garvesyre, pyro- Generally, gallic acid is preferred, but tannic acid, pyro-

gallol, katekol etc. kan brukes, såvel som antimonforbindelser av den type som er nevnt ovenfor. gallol, catechol etc. can be used, as well as antimony compounds of the type mentioned above.

Gassutviklingsmidlet kan være hydrogenperoksyd eller et kar- The gas generating agent can be hydrogen peroxide or a car-

bonat, men nitriter eller salpetersyrling er foretrukket fordi disse medvirker i tverrbindingsmekanismen for gummien eller stivelsesfor- bonat, but nitrites or nitric acid are preferred because these contribute to the cross-linking mechanism for the rubber or starch formation

tykningsmidlet. Nesten ethvert nitritsalt kan brukes. Ammonium-, the thickener. Almost any nitrite salt can be used. Ammonium,

natrium- eller kaliumnitrit er lettest å bruke og foretrekkes vanlig- sodium or potassium nitrite is easiest to use and is usually preferred-

vis av denne grunn. show for this reason.

Blandingene K og L ovenfor er identiske bortsett fra at Mixtures K and L above are identical except that

sistnevnte sammensetning ikke inneholder tiourea. Av denne grunn var tverrbindingen mindre effektiv og dens vannresistens var lavere enn det som vanligvis er onskelig. the latter composition does not contain thiourea. For this reason, the cross-linking was less effective and its water resistance was lower than is usually desirable.

Det er innlysende at de forskjellige ingredienser kan brukes It is obvious that the different ingredients can be used

i varierende mengdeforhold og at erstatninger og forskyvninger av in- in varying quantity ratios and that replacements and displacements of in-

grediensene kan utfores uten at man derved forlater oppfinnelsens in- the ingredients can be carried out without thereby abandoning the invention's in-

tensjon. tension.

Claims (6)

1. Vandig sprengstoff av gel- eller grottypen omfattende en flytende fase, basert på vekten av den totale sammensetning, av 1,0-25 vektprosent vann inneholdende i opplosning fra 10 til 60 % av et sterkt oksyderende salt, et fortykningsmiddel for nevnte fase omfatt-1. Aqueous explosive of the gel or grout type comprising a liquid phase, based on the weight of the total composition, of 1.0-25% by weight of water containing in solution from 10 to 60% of a strong oxidizing salt, a thickening agent for said phase comprising - ende fra 0.01 til ^ % av et organisk kolloidalt fortykningsmiddel, karakterisert ved at det inneholder fra spor og opp til 1 % åv et oksydasjons-reduksjons-tverrbindingsmiddel for nevnte fortykningsmiddel. end from 0.01 to ^% of an organic colloidal thickener, characterized in that it contains from traces and up to 1% of an oxidation-reduction cross-linking agent for said thickener. 2. Sprengstoff ifolge krav 1, karakterisert2. Explosives according to claim 1, characterized .ved at det kolloidale fortykningsmiddel er en galaktomannangummi og ved at oksydasjons-reduksjonsmidlet er en kombinasjon av en krom-forbindelse og en hydroksylert organisk forbindelse anvendt i mengder fra 0.0001 til 1 vektprosent. .in that the colloidal thickening agent is a galactomannan gum and in that the oxidizing-reducing agent is a combination of a chromium compound and a hydroxylated organic compound used in amounts from 0.0001 to 1 percent by weight. 3. Sprengstoff ifolge krav 2, karakterisert ved at tverrbindingsmidlet er en kombinasjon av natriumdikromat og kaliumantimontartrat. 3. Explosive according to claim 2, characterized in that the cross-linking agent is a combination of sodium dichromate and potassium antimony tartrate. 4* Sprengstoff ifolge krav l-3>karakterisert ved at tverrbindingsmidlet omfatter en forbindelse som inneholder en polyhydroksylert benzenringkjerne. 4* Explosive according to claim 1-3> characterized in that the cross-linking agent comprises a compound containing a polyhydroxylated benzene ring core. 5. Sprengstoff ifolge krav 1-4»karakterisert ved at det også inneholder et gassutviklende middel, fortrinnsvis salpetersyrling eller et salt derav, samt en liten mengde urea, ureanitrat eller tiourea, for dekomponering av det gassutviklende middel. 5. Explosive according to claims 1-4" characterized in that it also contains a gas-evolving agent, preferably nitric acid or a salt thereof, as well as a small amount of urea, urea nitrate or thiourea, for decomposition of the gas-evolving agent. 6. Fremgangsmåte til fremstilling av et vandig sprengstoff av gel- eller grottypen, karakterisert ved at en mindre mengde av et kolloidalt fortykningsmiddel forst inkorporeres i en vandig fase inneholdende et sterkt oksyderende salt, partikkelformet fast brennstoff eller sensitiveringsmiddel suspenderes i nevnte fase, hvoretter mindre enn 1 vektprosent, basert på vekten av den totale sammensetning, av en kombinasjon av et tverrbindingsmateriale av den oksyderende salttype samt et hydroksylert organisk reduserende tverrbindingsmateriale tilsettes for å stabilisere fortykningsmidlet.6. Method for producing an aqueous explosive of the gel or grout type, characterized in that a small amount of a colloidal thickener is first incorporated into an aqueous phase containing a strong oxidizing salt, particulate solid fuel or sensitizer is suspended in said phase, after which less than 1 percent by weight, based on the weight of the total composition, of a combination of an oxidizing salt type cross-linking material and a hydroxylated organic reducing cross-linking material is added to stabilize the thickener.
NO2702/69A 1969-04-16 1969-06-27 NO120978B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81677069A 1969-04-16 1969-04-16

Publications (1)

Publication Number Publication Date
NO120978B true NO120978B (en) 1970-12-28

Family

ID=25221567

Family Applications (1)

Application Number Title Priority Date Filing Date
NO2702/69A NO120978B (en) 1969-04-16 1969-06-27

Country Status (11)

Country Link
AT (1) AT295370B (en)
BE (1) BE740176A (en)
BR (1) BR6911843D0 (en)
CH (1) CH568254A5 (en)
ES (1) ES369170A1 (en)
FR (1) FR2039199A1 (en)
IL (1) IL32681A (en)
NO (1) NO120978B (en)
PH (1) PH11777A (en)
SE (1) SE424633B (en)
YU (1) YU32865B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2201269A1 (en) * 1972-10-03 1974-04-26 Dow Chemical Co Cast explosive compsn - contg inorganic oxidising salt and thiourea
RU2521637C2 (en) * 2011-03-14 2014-07-10 Иван Владимирович Бригадин Water-containing explosive powder

Also Published As

Publication number Publication date
PH11777A (en) 1978-07-05
CH568254A5 (en) 1975-10-31
AT295370B (en) 1971-12-27
BR6911843D0 (en) 1973-02-20
FR2039199A1 (en) 1971-01-15
DE1939138B2 (en) 1975-11-20
ES369170A1 (en) 1971-06-01
IL32681A0 (en) 1970-11-30
YU32865B (en) 1975-10-31
DE1939138A1 (en) 1970-11-26
BE740176A (en) 1970-04-13
YU187469A (en) 1975-04-30
IL32681A (en) 1973-03-30
SE424633B (en) 1982-08-02

Similar Documents

Publication Publication Date Title
US4055449A (en) Aqueous blasting composition with crystal habit modifier
US3886010A (en) Stabilized and aerated blasting slurry containing thiourea and a nitrite gassing agent
EP0194775B1 (en) Stable nitrate/slurry explosives
US4426238A (en) Blasting composition containing particulate oxidizer salts
US4486317A (en) Stabilization of thickened aqueous fluids
US3790415A (en) Chemical foaming and sensitizing of water-bearing explosives with hydrogen peroxide
US3485686A (en) Aqueous explosive slurry containing oxidizer-reducer cross-linking agent
US3660181A (en) Blasting slurry compositions containing calcium nitrate and method of preparation
US4401490A (en) Melt explosive composition
US3465675A (en) Process of blasting with thickened slurried inorganic oxidizer salt-alcohol water explosive mixtures
KR850001665B1 (en) Stabilization of water-hearing explosives having a thickened contineous aqueous phase
US4456492A (en) Melt explosive composition
US3453158A (en) Fueled inorganic oxidizer salt aqueous explosive composition containing independently dispersed gas bubbles and method of making same
NO120978B (en)
US3713917A (en) Blasting slurry compositions contain-ing calcium nitrate and method of preparation
US4128442A (en) Emulsified methanol containing explosive composition
US4026738A (en) Stabilized, foamed water gel explosives and method
US3457127A (en) Explosive composition containing an additional product of urea and nitric acid and method of preparing same
CA1166852A (en) Permissible slurry explosive
US4032375A (en) Blasting composition containing calcium nitrate and sulfur
US4198253A (en) Explosive compositions containing sulphonated guar gum derivatives
US3784421A (en) Slurry explosives cross-linked with a compound of tellurium vi
USRE28848E (en) Blasting slurry compositions containing calcium nitrate and method of preparation
US3312578A (en) Slurried blasting explosives with cross-linking delay agent
PL169556B1 (en) Safe or admissible epiosive and method of making same