NO120965B - - Google Patents

Info

Publication number
NO120965B
NO120965B NO14729063A NO14729063A NO120965B NO 120965 B NO120965 B NO 120965B NO 14729063 A NO14729063 A NO 14729063A NO 14729063 A NO14729063 A NO 14729063A NO 120965 B NO120965 B NO 120965B
Authority
NO
Norway
Prior art keywords
solution
lead
chromium
electrolysis
electrolytic
Prior art date
Application number
NO14729063A
Other languages
Norwegian (no)
Inventor
W Bublitz
Original Assignee
Minnesota Mining & Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining & Mfg filed Critical Minnesota Mining & Mfg
Publication of NO120965B publication Critical patent/NO120965B/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/08Simple coacervation, i.e. addition of highly hydrophilic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/124Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
    • B41M5/165Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components characterised by the use of microcapsules; Special solvents for incorporating the ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Color Printing (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

Fremgangsmåte til å fjerne blyforurensninger fra en kromholdig sulfatoppløsning. Process for removing lead contaminants from a chromic sulfate solution.

Den foreliggende oppfinnelse angår en fremgangsmåte til å fjerne blyforurensninger fra The present invention relates to a method for removing lead contamination from

oppløsninger som anvendes ved elektrolytisk solutions used in electrolytic

utvinning av krom, spesielt kromholdige sul-fatoppløsninger som anvendes som cellemating extraction of chromium, especially chromium-containing sulphate solutions which are used as cell feed

i kromelektrolyse. in chromium electrolysis.

Anoder av bly og andre blyholdige deler Lead anodes and other lead-containing parts

som røreutstyr, slangeopphetere, blyfittings og such as stirring equipment, hose heaters, lead fittings and

liknende, brukes meget i apparatur for elektro-lyseutvinning av krom. Disse materialer vil similar, is widely used in equipment for the electrolytic extraction of chromium. These materials will

forurense elektrolyten og medføre blyforurensning i det utfelte metalliske krom. Når elektrolytisk utfelt krom, som er forurenset med bly, contaminate the electrolyte and cause lead contamination in the precipitated metallic chromium. When electrolytically precipitated chromium, which is contaminated with lead,

anvendes i legeringer med høyt krominnhold, used in alloys with a high chromium content,

opptrer det uunngåelig sprekker under varm-valsing av legeringen. Tilstedeværelse av blyforurensninger i elektrolytisk krom er faktisk cracks inevitably occur during hot-rolling of the alloy. Presence of lead impurities in electrolytic chromium is actual

så kritisk, at fabrikanter av legeringer med so critical, that manufacturers of alloys with

høyt krominnhold tolererer maksimalt 0,003 % high chromium content tolerates a maximum of 0.003%

bly. Dessuten senker tilstedeværelsen av blyforurensninger strømutbyttet ved elektrolysen i betydelig grad. lead. In addition, the presence of lead contaminants significantly lowers the current yield during electrolysis.

Det er derfor hovedformålet med den foreliggende oppfinnelse å skaffe en fremgangsmåte for virkelig fjernelse av blyforurensninger i oppløsninger som anvendes for kromelektrolyse. It is therefore the main purpose of the present invention to provide a method for the actual removal of lead contamination in solutions used for chromium electrolysis.

Andre formål og fordeler ved oppfinnelsen vil fremgå av den følgende beskrivelse. Other purposes and advantages of the invention will be apparent from the following description.

Tegningen viser et arbeidsskjema for en syklisk fremgangsmåte for elektrolytisk utvinning av krom, ved hvilken blyf jernemetoden i henhold til oppfinnelsen er anvendt. The drawing shows a working diagram for a cyclic method for the electrolytic extraction of chromium, in which the lead removal method according to the invention is used.

Den sykliske prosess for elektrolysefremstil-ling av krom som er beskrevet i U. S. patent The cyclic process for the electrolytic production of chromium described in U.S. Pat

2.650.192 anvender i rekkefølge utluting, filtrering, kondisjonering, krystallisering, annen filtrering, modning, tredje filtrering, og oppløs- 2,650,192 uses, in order, leaching, filtration, conditioning, crystallization, second filtration, maturation, third filtration, and dissolving

ning før den resulterende rensede oppløsning føres inn i den elektrolytiske celle. Disse trinn er antydet ved rektanglene 1, 2, 3, 4, 5, 10, 11 og 12 på arbeidsskjemaet. Dessuten anvendes det andre rensetrinn under tilbakeføringen av oppløsningen. ning before the resulting purified solution is fed into the electrolytic cell. These steps are indicated by rectangles 1, 2, 3, 4, 5, 10, 11 and 12 on the worksheet. In addition, the second cleaning step is used during the return of the solution.

Oppfinnerne har funnet at oppløsningen av kromalunkrystaller som erholdes i en slik syklisk prosess med fordel kan behandles i henhold til oppfinnelsen før innføringen i elektrolysecellen, slik at man praktisk talt oppnår fullstendig fjernelse av alle inneholdte blyforurensninger. The inventors have found that the solution of chromalum crystals obtained in such a cyclic process can be advantageously treated according to the invention before introduction into the electrolysis cell, so that practically complete removal of all contained lead contaminants is achieved.

Som vist på tegningen blir kromalunkrystaller oppløst i vann og oppløsningens pH reguleres til en verdi mellom 1,0 og 2,25, ved hvilken det praktisk talt ikke finner sted noen hydrolyse. Denne pH-regulering kan skaffes ved til-setning av ammoniakk, bariumhydroksyd eller hvilken som helst' annen base som ikke vil innvirke uheldig på den senere utfellingen av krom. Den behandlede oppløsning innføres i en elektrolytisk celle av diafragmatypen, hvor den elektrolyseres under anvendelse av mere enn 9,25 amp.timer pr. liter oppløsning. Dette trinn er antydet ved rektangel 12 a på arbeidsskjemaet. Etter elektrolyseringen blir den blyholdige rest filtrert fra oppløsningen og oppløs-ningen innføres på vanlig måte i katalyttrom-met i den elektrolytiske celle. Dette filtrerings-trinn er antydet ved rektangel 12 b på arbeidsskjemaet. As shown in the drawing, chrome alum crystals are dissolved in water and the pH of the solution is adjusted to a value between 1.0 and 2.25, at which practically no hydrolysis takes place. This pH regulation can be obtained by adding ammonia, barium hydroxide or any other base which will not adversely affect the subsequent precipitation of chromium. The treated solution is introduced into a diaphragm-type electrolytic cell, where it is electrolysed using more than 9.25 amp hours per liter of solution. This step is indicated by rectangle 12 a on the work chart. After the electrolysis, the lead-containing residue is filtered from the solution and the solution is introduced in the usual way into the catalyst compartment of the electrolytic cell. This filtering step is indicated by rectangle 12 b on the work chart.

Hvis det dreier seg om en krom-alun-opp-løsning, som har sammensetningen (NH4)2.Cr2 (S04)3.24H20, vil denne av seg selv ha en pH på ca. 1,0, slik at det ikke kreves noen regulering av pH-verdien for å bringe denne innenfor det ønskede område 1,0—2,25. Med slike oppløs-ninger har det vist seg at strømstyrken og varig-heten av behandlingen, hvis det skal oppnås maksimal utfelling av blyforurensningen, er ca. 16 amp.timer pr. liter oppløsning, i løpet av hvilken tid oppløsningens pH stiger til ca. 2,25. For å sikre mot hydrolyse, kan det være nød-vendig å behandle oppløsningen med H2S04-anolytt fra kromutfellingscellene, eller liknende, for å holde oppløsningens pH under 2,25, mens den nevnte elektrolyse foregår. If it is a chrome-alum solution, which has the composition (NH4)2.Cr2 (SO4)3.24H20, this will itself have a pH of approx. 1.0, so that no regulation of the pH value is required to bring it within the desired range of 1.0-2.25. With such solutions, it has been shown that the amperage and duration of the treatment, if maximum precipitation of the lead contamination is to be achieved, is approx. 16 amp hours per liter of solution, during which time the pH of the solution rises to approx. 2.25. To ensure against hydrolysis, it may be necessary to treat the solution with H 2 SO 4 anolyte from the chromium precipitation cells, or the like, to keep the pH of the solution below 2.25, while the aforementioned electrolysis takes place.

I et utførelseseksempel ble elektrolyserommet i cellen av diafragmatypen fylt med cellemate-oppløsning og behandlet med 10 000 amp. i ialt 9 timer. Katolytten besto av 3028 liter krom-alun-oppløsning. Anolytten besto av 757 liter av samme oppløsning. Den følgende tabell angir konsentrasjonen av blyforurensning i katolytt-og anolytt-oppløsningene på forskjellige tids-punkter under elektrolyseringen. In an exemplary embodiment, the electrolysis compartment of the diaphragm type cell was filled with cell feed solution and treated with 10,000 amps. for a total of 9 hours. The catholyte consisted of 3028 liters of chromium-alum solution. The anolyte consisted of 757 liters of the same solution. The following table indicates the concentration of lead contamination in the catholyte and anolyte solutions at different time points during the electrolysis.

Det fremgår av ovenstående tabell at konsentrasjonen av blyforurensning i katolytten ble nedsatt med over 75 % ved ca. 3 timers behandling og at den maksimale utfelling av bly, nemlig over 90 % av det opprinnelige innhold, ble oppnådd etter 5 timers elektro-lysering. Denne behandling representerte 16,5 amp.timer pr. liter katolytt og det viste seg at ytterligere behandling ikke bevirket noen ytterligere senkning av konsentrasjonen av blyforurensningen av oppløsningen. Etter denne behandling ble det utfelte bly filtrert fra oppløs-ningen gjennom en filterpresse av plate- og rammetypen og oppløsningen ble innført i den elektrolytiske celle og elektrolysert, hvorved det på katoden ble utfelt metallisk krom som inneholdt mindre enn 0,002 vektsprosent bly. It appears from the above table that the concentration of lead contamination in the catholyte was reduced by over 75% at approx. 3 hours of treatment and that the maximum precipitation of lead, namely over 90% of the original content, was achieved after 5 hours of electrolysis. This treatment represented 16.5 amp hours per liter of catholyte and it was found that further treatment did not effect any further lowering of the concentration of the lead contamination of the solution. After this treatment, the precipitated lead was filtered from the solution through a filter press of the plate and frame type and the solution was introduced into the electrolytic cell and electrolyzed, whereby metallic chromium containing less than 0.002 weight percent lead was precipitated on the cathode.

Claims (2)

1. Fremgangsmåte til å fjerne blyforurensninger fra en kromholdig sulfatoppløsning ved elektrolytisk utfelning av bly fulgt av fjernelse av utfelningen, karakterisert ved at oppløs-ningens pH reguleres til en verdi mellom 1,0 og 2,25 før elektrolysen og holdes på en verdi mellom 1,0 og 2,25 under elektrolysen og at oppløsningen elektrolyseres i minst en celle med mere enn 8 amp.timer/liter oppløsning for utfelning av blyet.1. Method for removing lead contaminants from a chromium-containing sulfate solution by electrolytic precipitation of lead followed by removal of the precipitation, characterized in that the pH of the solution is regulated to a value between 1.0 and 2.25 before the electrolysis and maintained at a value between 1 .0 and 2.25 during the electrolysis and that the solution is electrolysed in at least one cell with more than 8 amp.hours/litre of solution to precipitate the lead. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at oppløsningen elektrolyseres med ca. 16 amp.timer/liter oppløsning.2. Method according to claim 1, characterized in that the solution is electrolysed with approx. 16 amp.hours/liter resolution.
NO14729063A 1962-01-29 1963-01-28 NO120965B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16925862A 1962-01-29 1962-01-29
US25453963A 1963-01-16 1963-01-16

Publications (1)

Publication Number Publication Date
NO120965B true NO120965B (en) 1970-12-28

Family

ID=26864908

Family Applications (1)

Application Number Title Priority Date Filing Date
NO14729063A NO120965B (en) 1962-01-29 1963-01-28

Country Status (8)

Country Link
BE (1) BE627711A (en)
CH (1) CH411561A (en)
DE (1) DE1267961B (en)
DK (1) DK116703B (en)
FI (1) FI43951B (en)
GB (2) GB1042596A (en)
NL (2) NL138970B (en)
NO (1) NO120965B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1465669A (en) 1972-12-28 1977-02-23 Agfa Gevaert Pressure sensitive recording materials and pressure-recording procews
US4232083A (en) * 1975-07-22 1980-11-04 Minnesota Mining And Manufacturing Company Imaging compositions and methods
GB1561272A (en) 1976-04-27 1980-02-20 Ciba Geigy Ag Azomethine compounds their manufacture and use
CH633533A5 (en) * 1978-04-24 1982-12-15 Ciba Geigy Ag CARBAZOLYL METHANE COMPOUNDS, THEIR PRODUCTION AND USE AS COLOR IMAGERS IN PRESSURE-SENSITIVE OR HEAT-SENSITIVE RECORDING MATERIALS.
DE2951486C2 (en) * 1979-12-20 1982-06-16 GAO Gesellschaft für Automation und Organisation mbH, 8000 München Security paper protected against counterfeiting and counterfeiting and process for its manufacture
EP0036117B1 (en) 1980-03-14 1986-02-05 Spezial-Papiermaschinenfabrik August Alfred Krupp GmbH & Co Pressure-sensitive recording material
DE3623413A1 (en) * 1986-07-11 1988-01-14 Basf Ag COMPOSITE LAYER
GB8706667D0 (en) * 1987-03-20 1987-04-23 Wiggins Teape Group Ltd Self-adhesive label assembly
DE68912688T2 (en) * 1988-07-01 1994-05-05 Wiggins Teape Group Ltd Pressure sensitive recording paper.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL95044C (en) * 1953-06-30
US2929736A (en) * 1957-07-25 1960-03-22 Ncr Co Heat and pressure responsive record material

Also Published As

Publication number Publication date
DE1267961B (en) 1968-05-09
CH411561A (en) 1966-04-15
GB1042599A (en) 1966-09-14
FI43951B (en) 1971-03-31
BE627711A (en)
DK116703B (en) 1970-02-02
GB1042596A (en) 1966-09-14
NL138970B (en) 1973-05-15
NL288246A (en)

Similar Documents

Publication Publication Date Title
KR830002907A (en) Method for producing chromic acid using 2 compartment electrolytic vessel and 3 compartment electrolytic vessel
NO152942B (en) PROCEDURE FOR SELECTIVE REMOVAL OF MANGANIONS FROM ZINC AND MULTIPLE SOLUTIONS
NO120965B (en)
RU2620228C1 (en) Method of electrochemical regeneration of cupro-ammonium pickling solution
US4274929A (en) Chemical removal of silicon from waste brine stream for chlor-alkali cell
CN106256914B (en) Bromine-sodium bromide gold refining method
CA2041914C (en) Process for the recovery of sulphate
US2367811A (en) Pickling solution
CN113026056B (en) Method for producing electrolytic cobalt by adopting secondary electrolysis of cobalt intermediate product
DE4243698C1 (en) Electrolytic dissolving of platinum@, platinum@ metal impurities and platinum@ metal alloys - using electrolytic cell with platinum metal salt or acid in the hydrochloric acid in the anode and cathode chambers of the cell
RU2144572C1 (en) Method of producing tungsten and/or molybdenum-containing solution from solution of alkali-open corresponding raw material
US2066347A (en) Production of nickel by electrolytic deposition from nickel salt solutions
JPH0610177A (en) On-site electrolysis system
US2849354A (en) Purifying solutions for use in the electrowinning of chromium
DE2757069C3 (en) Process for separating gallium from the products obtained during the production of alumina from silicon-rich, aluminum-containing ores, in particular nephelines, in a two-stage carbonization
US2348742A (en) Magnesium control in manganese electrowinning
DE2940741C2 (en)
DE4109434C2 (en) Process for working up chromate-containing wastewaters and / or process solutions
US2872395A (en) Lead removal in the electrowinning of chromium
US4618403A (en) Method of stabilizing metal-silica complexes in alkali metal halide brines
JPH08966A (en) Purification by electrodialysis
JPH0610178A (en) On-site electrolysis system
US1344869A (en) Electrolyzing cobalt solutions
DE679931C (en) Process for the removal of non-ferrous heavy metals from objects made of iron coated with them
JPS5524924A (en) Adjustment of metal ion concentration in nickel plating liquor