NO120846B - - Google Patents

Download PDF

Info

Publication number
NO120846B
NO120846B NO3802/68A NO380268A NO120846B NO 120846 B NO120846 B NO 120846B NO 3802/68 A NO3802/68 A NO 3802/68A NO 380268 A NO380268 A NO 380268A NO 120846 B NO120846 B NO 120846B
Authority
NO
Norway
Prior art keywords
catalyst
platinum
rhenium
reforming
sulfur
Prior art date
Application number
NO3802/68A
Other languages
Norwegian (no)
Inventor
H Kluksdahl
Original Assignee
Chevron Res
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Res filed Critical Chevron Res
Publication of NO120846B publication Critical patent/NO120846B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/085Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
    • C10G35/09Bimetallic catalysts in which at least one of the metals is a platinum group metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/367Formation of an aromatic six-membered ring from an existing six-membered ring, e.g. dehydrogenation of ethylcyclohexane to ethylbenzene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Katalytisk reformeringsprosess. Catalytic reforming process.

Oppfinnelsen angår reformeringsprosesser for hydrocarboner og mer spesielt et nytt katalytisk materiale og en fremgangsmåte j Ifor reformering av en nafthafraksjon i nærvær av den nye kata- I The invention relates to reforming processes for hydrocarbons and more particularly to a new catalytic material and a method for reforming a naphtha fraction in the presence of the new catalyst

* I ;lysator. Den nye katalysator omfatter platina <p>g rhenium båret j ;■på et porost, fast bærermateriale. i i ;Katalytisk reformering er velkjent innen 'petroleumsindustrien ;og angår behandling av nafthafraksjoner for å forbedre octantal- j ,let. De mer betydningsfulle hydrocarbonreaksjoner som forekommer! ;i ;under reformeringen ved anvendelse av katalysatorer omfattende <1 >dehydrogeneringsfremmende metallbestanddeler, innbefatter dehydroj-genering av nafthener til aromatiske forbindelser, dehydrocycli- j sering av normale parafiner til nafthener og aromatiske forbind- j ;(eiser, isomerisering av normale parafiner til isoparafiner og jhydrokrakking av forholdsvis langkjedede parafiner. Hydrokrakkingreaksjoner som gir hbye utbytter av lette, gassformige hydrocarboner, som f.eks. methan og ethan, må spesielt unngåes under (reformeringen da dette minsker utbyttet av produkter innenfor ben-sinområdet» Da hydrokrakking dessuten er en eksoterm prosess i motsetning til reformering som i alminnelighet er endoterm, ad-folges hydrokrakkingreaksjoner som bevirker fremstilling av store mengder lette, gassformige produkter, ?v alvorlige temperatur-svingninger som kan bevirke at temperaturen ikke kan holdes under kontroll under reformeringen. ;På grunn av behovet for hbyoctanbensiner for anvendelse som motorbrennstoff etc. forskes det meget for å utvikle forbedrede reformeringskatalysatorer og katalytiske reformeringsprosesser. Katalysatorer for gode reformeringsprosesser må ha god selektivitet, d.v.So de må kunne gi hbye utbytter av bensinprodukter med hbyt octantall og fblgelig lave utbytter av lette, gassformige hydrocarboner eller carbonholdige biprodukter. I alminnelighet kan bensinprodukter med hbyt octantall fåes fra et gitt tilfbrsels-piateriale ved å anvende kraftigere betingelser med hensyn til itemperatur eller lavere romhastighet. Bensinutbyttet minsker imidlertid efterhvert som produktets octantall oker. Katalysatorene bedbmmes således ofte med hensyn til deres utbytte/octantall jselektivitet, d.v.s. sammenlignet på basis av det oppnåelige ben-j sinutbytte ved det bnskede octantall for produktet. Katalysatorejne 5br også "ha god aktivitet slik at det ikke vil være nbdvendig å anvende en forhbyet temperatur for fremstilling av et visst kvalitetjs-jprodukt. Bortsett fra en god selektivitet og aktivitet er det og-så nbdvendig at katalysatorene har en god stabilitet slik at aktivitet- og selektivitetsegenskapene kan beholdes under lange jdrif tsperioder. Katalysatorer omfattende platina, f.eks. platina båret på aluminiumoxyd, er velkjente og utstrakt anvendt for reformering av nafthaer og bensinmaterialer for fremstilling av bensiner med hoyt octantall. Platinakatalysatorer er meget selektive med hensyn til fremstilling av aromatiske forbindelser med hbyt octantall og meget aktive i forbindelse med det flertall reaksjoner som fore-ikommer under reformeringen. Platinakatalysatorer er imidlertid jogså meget kostbare på grunn av platinaets hbye pris, og kataly-i I ; satoretie vil é' åtag'él"ig"IflT ennf VnérncbsTibåré "p"å""grunfr"å"v~a€'_meta!.-let bare er tilgjengelig i begrensede mengder. Disse bkonomiske <;>faktorer har fort til at petroleumsindustrien soker mindre kostbare erstatninger for platina og til at det er blitt satt igang •'undersøkelser av katalytiske promoters for anvendelse sammen med :platinakatalysatorene f or å oke deres aktivitet, stabilitet og 'spesielt selektivitet med hensyn til bensinutbytte/octantall, for derved å gjore platinakatalysatorer mer bkonomiske for anvendelse i reformeringsprosesser. Rhenium er blitt foreslått for bruk ved katalytisk reformerir.g som erstatning for de mer vanlige katalytiske bestanddeler, som i .platina. Rhenium har imidlertid vist seg å være meget dårlig for .anvendelse ved reformering. Rhenium alene båret på trekull eller ialuminiumoxyd viste seg således å bare ha en, begrenset reformerirgs-jaktivitet samtidig som det var nbdvendig med svært store konsentra-jsjoner av metallet, over 5 vekt$, for å oppnå en god aktivitet. iDet er også blitt foreslått å anvende rhenium sammen med palladii.m ji reformeringsprosesser. Således viste en på forhånd sulfidiseri Ikatalysator omfattende palladium og rhenium impregnert på aluminiium-oxyd seg å ha en bedre opprinnelig reformeringsaktivitet enn en j ,på forhånd sulfidisert palladium-aluminiumoxydkatalysatorer ved j ;anvendelse for reformering av en svovelholdig naftha. Aktiviteten til den på forhånd sulfidiserte katalysator av palladium og rhenijum minsket imidlertid betraktelig efter kort bruk. \ I forbindelse méd utviklingen av foreliggende oppfinnelse ble idet fremstilt en katalysator omfattende platina og rhenium sammer med , å_luminiumoxyd, men det viste seg at ved anvendelse for reformering av en nafthafraksjon forårsaket katalysatoren en meget i sterk hydrokrakking. Produksjonen a<y> store mengder lette gasser,; som methan og ethan,var betraktelig stbrre enn produksjonen av j :lette gasser ved anvendelse a<y> en katalysator omfattende platinaj •alene på aluminiumoxyd. Med andre ord viste katalysatoren baserl på platina og rhenium seg å være mindre selektiv for fremstilling av bensinprodukter med hbyt octantall enn en platina- aluminium-,oxyd katalysator. Ved innfbring av nafthafraksjonen i reaksjonssonen ble det også iaktatt en sterkt eksoterm reaksjon i kataly-satorlaget. Det ble også fremstilt en katalysator omfattende platina og rhenium på aluminiumoxyd, hvorpå katalysatoren ble sulfidbehandlet og undersbkt ved å anvendes For reformering av et ;(svovelholdig ti l.fbrselsmat;riale. Katalysatoren viste seg å ha ! en dårlig selektivitet og aktivitet. Utbyttet av hbyoctanproduk-i ter var lavt og reformeringsprossen fblgelig bkonomisk utiltrek- | .kende. Selv om rhenium således er blitt foreslått for anvendelse sammen med edelmetaller, som palladium, viste det seg at en slik kocfainasjon ikke var tilfredsstillende under de ovennevnte betingelser. ;i . i ;Det har nu meget overraskende vist seg at dersom visse pro-j sessbetingelser fblges og/eller katalysatoren utsettes for visse i forbehandlinger, vil en katalysator omfattende platina, og rhenium! båret på aluminiumoxyd- få en hby aktivitet og spesielt en god selektivitet og stabilitet når den anvendes for reformering av svovelfrie tilfbrselsmaterialer. Det var spesielt uventet at en båret platina/rheniumkatalysator til å begynne med ville vise en I ubnsket hydrokrakking hvorpå hydrokrakkingen ble ubetydelig efter; 'Sfortsatt reformering. Efter den fbrste periode er katalysatoren omfattende platina og rhenium på aluminiumoxyd overlegen i forhold til en katalysator omfattende platina alene på aluminiumoxyd ved at den opprinnelig dårlige reformering som bevirker "produksjon av store mengder lette, gassformige hydrocarboner, kan! ; •tolereres i den tid som er nbdvendig for å redusere katalysatorenjis jneget sterke hydrokrakking-aktivitet. Det. er mulig å oppnå lengrle driftsperioder med hbyere utbytter av hbyoctanprodukter ved å anvende den platina/rheniumbårne katalysator istedenfor en platina.-! katalysator uten rhenium. i ;I overensstemmelse med foreliggende oppfinnelse kan en for-! bedret reformeringsprosess gjennomfbres i nærvær av katalysatorer' ;i omfattende platina og rhenium på eller i porbse, faste bærer- j materialer. Små konsentrasjoner av rhenium, d.v.s. under ca. j 5 vekt$, er virkningsfulle som aktivatorer for platinareformeringls-I ;katalysatorer idet de målbart senker den avtagende utbyttehastighiet, d.v.s. at de oker katalysatorens stabilitet når tilfbrselsmaterji-alet ikke inneholder svovel. Ifblge oppfinnelsen avstedkommes I v i således en reformering av.en svovelfri naf thaf raks jon ved å bringje fraksjonen i kontakt ved reformeringsbetingelser og i nærvær av hydrogen med en katalysator omfattende et porbst, fast kataly-satorunderlag med en intim blanding av 0,01-3vekt$ platina, og 0,01-5 vekt$ rhenium. j ;i Ifblge oppfinnelsen tilveiebringes også en ny katalysator- ;:sammensetning omfattendeeT p6fost," fasT"'lÉatalyså^o'rTære>lnåt'é^T-~ ale med en intim blanding av 0,01-3 vekt$ platina og 0,01-5 vekt? rhenium. Den nye katalysator ifolge oppfinnelsen har vist seg ,å være meget aktiv og stabil under reformering av naftha og hydre^-carboner innenfor kokepunktområdet for bensin og er langt bedre enn ikommersielt tilgjengelige reformeringskatalysatorer inneholdende platina, men uten rhenium. ;Oppfinnelsen vil bli nærmere beskrevet under henvisning til ;■kurvene på Fig. 1 og 2 som til sammenligning viser data fra simulerte levealderforsok som angir reformeringsaktiviteten og stabiliteten til en vanlig katalysator omfattende platina på et aluminiumoxydunderlag, og en katalysator omfattende platina og rhenium på et aluminiumoxydunderlag. Driftsbetingelsene var kraftigere enn de som i alminnelighet anvend.es under en reformera ng t <i>for derved å simulere katalysatorenes reaksjon på langt lengre jforsok (levealderforsok). Kurven på Fig. 1 viser de gjennom-isnittlige katalysatortemperaturer som en funksjon av forsøkstider jeller- timer under drift som er nodvendige for å opprettholde et jlOO-octanprodukt (F-l ren) for hver av de to katalysatorer. ;Kurven på Fig. 2 viser utbyttet av 0^+ flytende produkt eller jbensin med 100-octantall som en funksjon av driftstiden under reformering med hver av de to katalysatorer. Det fremgår av Fig.2 ;;at ved å anvende platina-rheniumkatalysatoren fåés betraktelig storre mengder 100-octanbensinprodukt enn ved å anvende platinakatalysatoren. Katalysatortemperaturene og volumprosentene av iflytende produkt med mer enn 5 carbonatomer som ble anvendt for j å utfore sammenligningene ifolge icurvehe, ble oppnådd bare efter j at platina-rheniumkatalysatorens hydrokrakkingaktivitet hadde av-j tatt til platinakatalysatorens aktivitet. Katalysatorene hadde jsåledes vært i drift i flere timer for de sammenligninger som er vist på kurvene ifolge Fig. 1 og 2 ble utfort. ;Det er ikke éntydig klarlagt hvorfor rhenium aktiverer platinaholdige katalysatorer ved reformering av naftha. Selv om ;det ikke er ment å begrense oppfinnelsens omfang eller å være bundet av noen teoretisk forklaring, er det tegn som tyder på at rhenium danner en legering med platinaet og at denne legering <:>delvis kan være ansvarlig for de forbedrede resultater som fåes ved anvendelse av platina-rheniumkatalysatoren i forhold til en vanlig platinakatalysator. ;i'' Ro ri tg én- ~6 g elektron difTr aks jon s u h d or b ole e 1 r, c f' av' 'de Iri "é talli "slk o :fa.ser som er tilstede i katalysatorene omfattende forskjellige j ;.konsentrasjoner av platina og rhenium båret på aluminiumoxyd, tyder på at platina-rheniumfasen forandres merkbart på lignende måte som den forandring som kan iaktaes i rene platina-rhenium- ;i ;jlegeringssystemer, d.v.s. systemer uten barermateriale. En henvisning til et fasediagram for et rent platina-rheniumlegerings-jsystem, se f.eks. Hansen, M., og Anderko, K., "Constitution of jBinary Alloys", MoGraw Hill (1958), tyder på at for konsentrasjoner av rhenium av fra 0 til ca. 40 atomvektprosent og ved temperaturer under minst 1750°0 foreligger det bare én platina-rhenium-fase, d.v.s. den flatesentrerte kubiske (fsk) krystallstruktur for platina. Over 40 atomprosent rhenium kan også den hexagonale tettpakkede (htp) rheniumstruktur iaktaes. Undersøkelser utfort med katalysatorprover omfattende platina alene på aluminiumoxyd, rhenium alene på aluminiumoxyd og forskjellige konsentrasjroner av platina og rhenium på aluminiumoxyd har vist at for rhenium-konsentrasjoner på katalysatoren av under ca. 50 atomvektprosent var den hexagonale tettpakkede rheniumstruktur ikke tilstede, Jeller den kunne i det minste ikke oppdages. Bare den flatesentrerte '• kubiske platinastruktur forelå. Ved hoyere konsentrasjoner av rhenium på katalysatoren, d.v.s. over ca. 50 atomvektprosent - rhenium, kunne den hexagonale tettpakkede rheniumstruktur iaktaes. ;De platina-rheniumkatalysatorprover som ble anvendt for å under-ste" metallenes krystallstruktur, ble fremstilt ved å oppvarme katålysatorene til forhoyéde temperaturer, f.eks. 815°C, enten i nærvær av vått eller tort hydrogen for derved å redusere metallene til metallisk tilstand. ;i Det er også kjent fra undersøkelser med rene platina-rhenivm-jsystemer at tilsetning av rhenium til platina minsker gitterav-jstanden i den flat«sehtrérteikubiske platinaehhetsceHe. Denne minskning i gitteravstanden efterhvert som rhenium ti-lsettes til Iplatina under slike betingelser at det dannes en legering, kan iiaktaes ved okningen i dif f raks j onsvinkelen, 28, ved anvendelse:-jav OuKa-^-stråling, fra (311) planet til den f latesentrerte kubisk e ;.platinastruktur. En bkning av rheniumkonsentrasjonen i platina-ialuminiumoxydkatalysatorene bevirker også en bkning av d';ffrak-|sjonsvinkelen, 26, fra (311) planet til den_flatesentrerte kubisle jplatinastruktur. Tilsetningen av rhenium til platina-rhenium-j katalysatoren forårsaker en t ilstrekk al - i e ntnr f nmk- yvn- l ne m<g>rt ;den ventede stbrrelsesretnirig"' i"diffråks'JonsvinkeLerT,™ 29", "til" at" det fåes en -sterk indikasjon på at en legering dannes. ;Et ytterligere bevis som underbygger den teori at legering ;.dannes for platina-rheniumbårne katalysatorer, er iakttagelsen av at storrelsen av de flatesentrerte kubiske platinapar.tikler minsker efterhvert som rhenium settes til platina-aluminiumkatalysatorene. Partiklcelstorrelsen til det f latesentrerte kubiske platina, som bestemt ved elektrondiffraksjonsundersokelser av katalysatorprover som er redusert i hydrogen ved konstant temperatur, minsker eftei-hvert som rhenium tilsettes inntil praktisk talt den ekviatomære platina-rheniumsammensetning er blitt nådd. Metallpartikkel-storrelsen står i relasjon til den Tetthet hvormed metallet sintier, d.v.s. jo mindre partiklene er jo mindre har metallene sintret. 'Denne letthet hvormed sintring finner sted, er på sin side forbundet med metallenes smeltepunkt, d.v.s. jo hoyere metallenes ;■smeltepunkt er jo vanskeligere vil det være for en sintring å ;t ;[inntreffe. Minskningen i de flatesentrerte kubiske partiklers storrelse efterhvert som rhenium settes til platina-aluminiumoxydkatalysatorer antaes-såledés å skyldes okningen i den dannede legerings smeltepunkt. Denne iakttagelse er i overensstemmelse med kjemien for rene platina-rheniumlegeringssystemer som viser j at tilsetningen av rhenium til platina bevirker en bkning av de j f latesentrerte kubiske krystallers!. smeltepunkt. j ;I ;Det porbse, faste bærermateriale eller stbttemateriale som \s anvendes ved fremstillingen av platina-rheniumka.talysatoren ifblgje oppfinnelsen, kan omfatte et stort antall materialer hvorpå de katalytisk aktive mengder av platina, og rhenium kan avsettes. De;t porbse, faste bærermateriale ka.n for eksempel utgjbres av siliciujm-carbid, trekull eller crarbon. Det porbse, faste bærermateriale uti-gjbres fortrinnsvis av et uorganisk oxyd. Det foretrekkes spesiellt å anvende et bærermateriale av uorganisk oxyd med et stort overflateareal, f.eks. et uorganisk oxyd med et overflateareal av 50-700 m /g. Bærermaterialet kan være et naturlig eller syntetisik fremstilt uorganisk oxyd eller en kombinasjon av uorganiske oxyder. Av typiske sure uorganiske oxydbærermaterialer som kan anvendes, kan nevnes de naturlig forekommende aluminiumsilikater, spesielt dersom de er blitt syrebehandlet for å oke deres aktivitet, og de syntetisk fremstilte krakkingbærermaterialer, som silicium-dioxyd-aluminiumoxyd, siliciumdioxyd-zirkoniumdioxyd, silicium- ;(iioxyd-aluminiumoxyd-zirkoniumdioxy pxyd, siliciumdioxyd-aluminiumoxyd-magnesiumoxyd"og krystallinske peolittiske aluminiumsilikater. I allminnelighet utfores imidlertid<[>_<_>r<e>f ojfrneringsprosesser i nærvær av katalysatorer med lav krak-fcingaktivitet, d.v.s. i nærvær av katalysatorer med begrenset sur-let. Uorganiske oxyder, som magnesiumoxyd og aluminiumoxyd, er folgelig foretrukne bærermaterialer. i i iAluminiumoxyd er et spesielt foretrukket, katalytisk bærer-^lateriale for anvendelse ved foreliggende oppfinnelse. En hvilkei hom helst form av aluminiumoxyd som er egnet som stottemateriale for reformeringskatalyssatorer kan anvendes. Aluminiumoxyd kan iessuten fremstilles ved hjelp av en rekke fremgangsmåter som alis ir tilfredsstillende for foreliggende oppfinnelses formål. Fremstilling av aluminiumoxyd for anvendelse i forbindelse med re-Lormeringskatalysatorer er velkjent. ;Den nye reformeringskatalysator omfatter et onsket, porost, fast, katalysatorstottemateriale med en intim blanding av kataLytisk aktive mengder av platina og rhenium. Den foretrukne ^catalysator ifolge oppfinnelsen omfatter fortrinnsvis ca. 0,01-5 vekt$, og mer spesielt ca. 0,2-1 vekt$, platina basert på den ferdige katalysator. Platinakonsentrasjoner under ca. 0,01 vekt$ ir for lave til at reforderingenj vil forlope tilfredsstillende nens på den annen side platinakonsentrasjoner over ca. 3 vekt$ ^om regel er utilfredsstillende fordi de bevirker en for sterk (crakking. På grunn av at platina er meget dyrt er dessuten den platinamengde som kan anvendes noe begrenset. Rheniumkonsentra-3jonen i den ferdige katalysatorblanding er fortrinnsvis 0,01-5 vekt$, og mer spesielt 0,1-2 vekt#. Hoyere konsentrasjoner av jrhenium kunne anvendes med fordel, men prisen for rhenium be-jgrenser den mengde som kan anvendes på katalysatoren. Det fore-jtrekkes å anvende et atom-forhold mellom rhenium og platina av jca. 0,2- ca.2, 0. Mer spesielt foretrekkes . det at atomforholdet mellom rhenium og platina ikke skal være storre enn 1. Hoyere jforhold, d.v.s. over | av rhenium til platina kan anvendes, men Idet fåes som regel ikke noen ytterligere vesentlig forbedring ved ;å anvende My«ye forhold. ;Ehskjont platina og rhenium intimt kan forbindes med det. porose, faste bærermateriale ved hjelp av en egnet teknikk, som iionebytting, samtidig utfelling etc, forbindes metallene som jl. ;, r eg eT"m"é d' "d et 'por ose"rå"srU'é~"Bærer"S'aTeriale"" vea ~Tmpr egTI"SrT!T[g~." ^Dessuten kan ett av metallene forbindes med bærermaterialet ved hjelp av én fremgangsmåte, f.Eks. ionebytting, og det annet metall ikan forbindes med bærermaterialet ved hjelp av en annen fremgangsmåte, f.eks. impregnering. Som angitt forbindes metallene imidler-itid fortrinnsvis med bærermaterialet ved hjelp av impregnering. iKatalysatoren kan fremstilles enten ved samtidig impregnering av :de to metaller eller ved å imnregneres i rekkefolge. I almin- ;i ;nelighet impregneres bærermaterialet med en vandig opplosning av ;en spaltbar forbindelse, av metallet i tilstrekkelig konsentra- ;sjon til at det fåes den onskede metallmengde i den ferdige katalysator. Den erholdte blanding blir så oppvarmet for å fjerne vann. Det foretrekkes i alminnelighet å anvende kloroplatinsyre ;som kilde for platina. Andre egnede platinaholdige forbindelser, f .eks. ammoniumkloroplatinater og polyaminplatinasalter ka.n også anvendes. Av rheniumforbindelser som er egnet for påforing på bærermaterialet, kan blant annet perrheniumsyre og ammonium-eller teliumperrhenater nevnes. Det taes ved foreliggende opp-jfinnelse sikte på at innforingen av metaller sammen med bærer-imaterialet skal kunne utfores på et hvilket som helst spesielt jtrinn av katalysatorfremstiIlingen. Dersom metallene for eksem- ;jpel skal påfores på et aluminiumoxydunderlag, kan påforingen <;>finne sted mens aluminiumoxydet foreligger som en sol eller gel, 'hvorpå aluminiumoxydet utfelles. Et på forhånd fremstilt aluminium-ioxydbærermateriale kan også impregneres med en vandig opplosning iav metallforbindelsene. Uansett hvilken fremgangsmåte som an- ;• vendes for fremstilling av den bårne platina-rheniumkatalysator, ' ;i foretrekkes det at platinaet og rheniumet skal være intimt for- i <I>bundet med og dispergert gjennom det porbse, faste katalysator- ;i ;jbærermateriale. ;i ;Efter at bærermaterialet er blitt tilfort platina og rhenii.m, torkes som regel den erholdte sammensetning ved oppvarming til en temperatur av f.eks. ikke over ca. 260°G, og fortrinnsvis ved en temperatur av ca. 93,3-204t4°C. Derpå kan om onskes sammen-setningen kalsineres ved en forhhyet tenperatur av for eksempel iinntil ca. 649°0. ;7 ■ - Bærermaterialet inneholdende platina og rhenium opp.Varmes~ jf or.trinnsvis ved forhoye-t temperatur for omdannelse av platinaet jog rheniumet til metallisk tilstand. Oppvarmningen utfores fortrinnsvis i nærvær av hydrogen, fortrinnsvis tort hydrogen. Det jforetrekkes spesielt å utfore denne forreduksjon ved en temperatur av 315,5-704,4°G, fortrinnsvis 315,5-537,8°C. Reformering under anvendelse av visse av katalysatorene ifolge ioppfinnelsen gir til å begynne med en meget stor mengde lette pydrocarbongasser med mindre det anvendes en egnet forbehandlings-jeller oppstartingstekrtikk. De lette hydrocarbongasser fremstilles på grunn av katalysatorens hbye hydrokrakkingvirkning eller metall-crakkingvirkning. Det har vist seg at hydrokrakkingvirkningen kai ninskes dersom katalysatoren sulfidiseres for den bringes i kontact ned naftha. Denne forsulfidisering kan utfores in situ eller 3X situ ved å lede en svovelholdig gass, f.eks. F^S, gjennom catalysatorlaget. Andre sulfidiserende forbehandlinger er også cjente. ,,, Det har også vist seg at ved oppstartingen vil en liten aengde svovel, f.eks. HgS eller dimethyldisulfid„ satt til reform-sringssonen effektivt redusere katalysatorens opprinnelige hydro-crakkingvirkning. Den nbyaktige form for svovel som anvendes for sulfidiseringen, er ikke kritisk. Svovelet kan innfores i reak-fejonssonen på en hvilken som helst egnet måte og på et hvilket piom helst egnet sted. Det kan inneholdes i den flytende hydro-fcarbontilfbrsel, den hydrogenrike gass, den tilbakeførte flytende etrbm eller en tilbakefbrt gasstrbm eller i en hvilken som helst combinasjon. Efter at reformeringen er blitt utfort i nærvær av svovel i lbpet av kort tid sammenlignet med den samlede drifts-jeriode som kan oppnåes med den nye katalysator, må svoveltilsetningen avbrytes for at de fulle fordeler, som en nedsatt ut-)ytte_minskningshastighet eller forbedret stabilitet, ifblge oppfinnelsen skal kunne oppnåes. Den nbdvend-ige tid for å redusere len opprinnelige hydrokrakkingaktivitet vil variere fra flere ;imer til flere hundrede timer avhengig av den anvendte mengde svovel, strengheten av driftsbetingelsene og platina/rheniumfor-loldet. Den nbdvendige tid for å redusere den Opprinnelige hydro-crakkingaktivitet varierer omvendt proporsjonalt med svovelmengde i, Iriftsbetingelsenes strenghet og platina/rhenium-forholdet. Det har også vist' ség'"aT"en" liTén~méngdé' 'av'"" etoxygenRoiaig anion av svovel, som et sulfat, sulfitt, bisulfat eller bisulfitt, forbundet med katalysatorsammensetningen gir katalysatoren for-delaktige egenskaper ved at den hjelper til med å kontrollere dens <:>til å begynne med hbye hydrokrakkingaktivitet. Således reduserer •tilstedeværelsen av sulfat sammen med en katalysator omfattende aluminiumoxyd og katalytisk aktive mengder av platina og rhenium utbyttet av lette hydrocarbongasser som til å begynne med fremstilles under reformeringen så vel som under dehydrocycliseringen av n-heptan til aromatiske forbindelser. De oxygenhoIdige anione-r av svovel kan innfores i katalysatormaterialet under fremstillingen ;av det porbse, faste bærermateriale. Således kan for eksempel ved jfremstillingen av et aluminiumoxydbarermateriale det aluminiumsalt ■som anvendes som utgangsmateriale, foreligge i sulfatform. Ut-fellingen av aluminiumoxyd bevirker som regel at en mindre mengde isulfat vil være forbundet med aluminiumoxydet. Et oxygenholdig janion av svovel kan også påfores på katalysatorbærermaterialet |ved å bringe det på forhånd fremstilte bærermateriale i kontakt jmed egnede forbindelser inneholdende oxygenhoIdige anioner av ■svovel, f.eks. SO^ , SO^ , HS0^~, eller HSO^<-.> De oxygen-iholdige anioner av svovel kan med fordel være tilstede i den ferdige katalysator i en mengde av 0,05-2 vekt$, fortrinnsvis 0,1- \ ;i ;1 vekt#. ;Under reformeringen har katalysatoren ifblge oppfinnelsen fortrinnsvis platina og rhenium i metallisk, tilstand. Selv om i således katalysatoren bringes i kontakt med svovel og metallene j tilsynelatende omdannes til sulfider for eller under reformeringen for derved å redusere katalysatorens opprinnelige hydrokrakking-, aktivitet, befries/.'katalysatoren for svovel under den opprinnelige ref ormeringsperiode . Svovelet (ril'derfor fjernes og metallene, j ;i platina, og rhenium, omdannes til metallisk tilstand under omtrentlig den samme tid som er nbdvendig for å redusere den hbye j hydrokrakkingaktivitet. For at metallene skal kunne foreligge ji ;i sulfidisert tilstand under hele reformeringsprosessen vil • svovel kontinuerlig måtte settes til katalysatoren, ^en en svov^l-tilsetning under hele reformeringsprosessen er ikke tilfreds- ! stillende ifblge oppfinnelsen. ;Katalysatoren kan aktiveres for reformeringen ved tilsetni lg av halogenider, spesielt fluorid eller klorid. Halogenidene gir katalysatoren tilsynelatende en begrenset surhet som er fordel-aktig ved de fleste reformeringsprosesser. "Én med halogenid ^.ktivert katalysator inneholder fortrinnsvis 0,1-3 vekt^ samlet ]|ialogenidmengde. Halogenidene kan innfores i katalysatorbærermaterialet på et hvilket som helst egnet trinn under fremstillingen 4v katalysatoren, f.eks. for eller efter innforingen av platina ijig rhenium. Noe halogenid innfores ofte i bærermaterialet under impregneringen med platina. Således gir for eksempel impregnering rjied kloroplatinsyre som regel en klortilsetning til bærermaterialet. Ytterligere halogenid kan om onskes innarbeides på stbttematerialet $amtidig med innarbeidelsen av metallet. Som regel kombineres halogenidene med katalysatorbærermaterialet ved å bringe egnede forbindelser, som hydrogenfluorid, ammonium!luorid, hydrogenkloric eller ammoniumklorid, enten i gassform eller opplost i vann, i l:ontakt med bærermaterialet. Pluoridet eller kloridet innarbeider fortrinnsvis på bærermaterialet fra en vandig opplosning inneholdende halogenidet. ;Den form i hvilken katalysatoren fremstilles, bestemmes som regel av den håndtering som den vil utsettes for. Dersom således "i?eformé|ringsprosessen ifolge oppfinnelsen skal utfores ved an- ;^ytelandndeilnsge ean v frfaemsst tisklilkes t i elfloerr aj baeyvlteagbelleig ttesrki,k. pte, lvleitl sk, aktuallyefsaortmore-de -artikler eller ekstruderte partikler. Hvis det derimot taes sikle på å anvende et fluidisert skikt, fremstilles katalysatoren i fin-cjelt form. ;i Det tilfbrselsmateriale aom skal anvendes under reformeringen, én en lett hydrocarbonolje, f.eks. en nafthafraksjon. Nafthaen j \lil i alminnelighet koke innen tempera turområdet ca. 21,1-287,8°C, fortrinnsvis 65,5-232,2°0. Tilfbrselsmaterialet kan for eksempel ;vare enten en direkte avdestillert naftha eller en termisk krakket ajller katalytisk krakket naftha eller blandinger derav. Tilfbrsels-alaterialet bor være praktisk talt svovelfritt, d.v.s. at tilfbrselsmaterialet fortrinnsvis bor inneholde mindre enn ca. 10 ppm svovel, fortrinnsvis mindre Sinn 5 ppm og helet mindre enn i ppm. Tilstedeværelsen av svovel i tilfbrselsmaterialet minsker såvel katalysatorens aktivitet som dens.- stabilitet. ;Ved anvendelse av et tilfbrselsmateriale som ikke allerede ;i ;Har et lavt svovelinnhold, kan det fåes akeepterbare mengder ved å' 'lly a r o ge ri éré til fors éi småferiåle t" T "e n~" f orme triingssone hvo r hafthaen bringes i kontakt med en hydrogeneringskatalysator som ér motstandsdyktig overfor svovelforgiftning. En egnet katalysatcbr for denne hydroavsvovlingsprosess er for eksempel et aluminium-pxydholdig stottemateriale og en mindre mengde molybdenoxyd og koboltoxyd. Hydroavsvovlingen utfores som regel ved en temperatur av 371,1-454,4°C, et overtrykk av 14,061-140,61 kg/cm<2> og ved $n flytende romhastighet pr. time av 1-5. Det i nafthaen forekommende svovel omdannes til hydrogensulfid som kan fjernes for ■ Reformeringen ved hjelp av egnede vanlige fremgangsmåter. ;Reformeringsbetingelsene vil i stor grad avhenge av det an- : vendte tilforselsmåteriale, hvorvidt dette er sterkt aromatisk, | parafinisk eller nafthenisk, og av produktets onskede octantall. j Temperaturen under reformeringen ,,vtfJi i alminnelighet være ca. j ;15,5-593,3°0, fortrinnsvis ca. 371,1-565,6°G. Trykket i reform-! £ringsreaksjonssonen kan være atmosfærisk eller overatmosfærisk. i Imidlertid vil trykket i alminnelighet være et overtrykk innen j cmrådet 1,7577-70,31 kg/cm2, fortrinnsvis ca. 3,5153-52,73 kg/cm2j temperaturen og trykket kan avpasses i overensstemmelse med den ' flytende romhastighet pr. time (PRHT) for å fremme en hvilken j dom helst spesielt onskelig reformeringsreaksjon, som for eksempel! g(romatisering, isomerisering eller dehydrb~g eirerl~ njg. Den flytende ! rlomhastighet pr. time vil i alminnelighet være 0,1-10, fortrinnsvis 1-5 • ;i ; ;i Ved reformeringen dannes som regel hydrogen. Et overskudd j ajv hydrogen behbver således ikke nødvendigvis å settes til reform-j ejringssystemet. Det er imidlertid som regel foretrukket å innfore ejt overskudd av hydrogen på et eller annet trinn under prosessen, j siom for eksempel under oppstartingen. Hydrogenet kan innfores i tjilf orselsmaterialet for det bringes i kontakt med katalysatoren eller det kan bringes i kontakt samtidig med innførselen av tilforselsmaterialet til reaksjonssonen. I alminnelighet resirkuleres hydrogenet over katalysatoren for tilforselsmaterialet bringes i kontakt med denne. Tilstedeværelsen av hydrogen bevirker reduk-sjon av koksdannelsen som er tilboyelig til å forgifte katalysatoren. Dessuten kan tilstedeværelsen av hydrogenet anvendes for å fremme :; vjisse ref ormeringsreaks joner. Hydrogen innfores fortrinnsvis i rjeformeringsreaktoren i en mengde av ca. 0,5- ca. 20 mol hydrogen : pjr. mol tilforselsmåteriale. Hydrogenet kan foreligge i blandingi i ; t ;méd Lette, gassformige hydrocårboriér. Et overskudd av hydrogen """ - fjernet efter separering fra produktene, vii i alminnelighet ren-ses og resirkuleres til reaksjonssonen. ;Efter en driftsperiode hvor katalysatoren er blitt deaktivert av nærvær av carbonholdige avsetninger, kan katalysatoren reaktiv-eres eller regenereres ved å lede en oxygenholdig gass, som luft, i kontakt med katalysatoren ved forhoyet temperatur for å avbrenne carbonholdige avsetninger fra katalysatoren'. Den fremgangsmåte som anvendes for regenerering a.v katalysatoren, vil være avhengig av hvorvidt det anvendes et stati<p>k skikt, bevegelig skikt eller j fluidisert skikt. Regenereringsmetoder og- betingelser er velkjente. j ;EKSEMPEL 1 I ;En vanlig rheniumfri katalysator inneholdende 0,7 vekfr/ o j platina på aluminiumoxyd ble undersbkt og sammenlignet med hensyn! til dens dehydrogeneringsaktivitet for cyclohexan med en rekke j katalysatorer inneholdende forskjellige mengder rhenium på den i nevnte platina-aluminiumoxydblanding. j ;Platina-aluminiumoxydkatalysatoren ble fremstilt ved .å impregnere aluminiumoxydet med kloroplatinsyre. Platina-rhenium- : aluminiumoxydkatalysatorene ble fremstilt ved å impregnere på fori-hånd impregnerte platina-aluminiumoxydkatalysatorer med vandige oppløsninger inneholdende perrheniumsyre i tilstrekkelige konsentrasjoner til at de ferdige katalysatorer inneholdt den onskedte mengde rhenium. Tbrking ble utfort ved å oppvarme katalysatorene* i 12 timer ved on temperatur av 76,67°0 og så i 3 timer ved en temperatur av 204,44°C. ^e med platina eller platina og rhenium impregnerte katalysatorer ble behandlet med en hydrogena tabsfære i en mengde av 6,9 liter pr. minutt pr. gram katalysator i 2 j timer ved forskjellige temperaturer. * In ;lysator. The new catalyst comprises platinum <p>g rhenium supported j ; on a porous solid support material. Catalytic reforming is well known within the petroleum industry and relates to the treatment of naphtha fractions to improve octant. The more significant hydrocarbon reactions that occur! ;i ;during the reforming using catalysts comprising <1>dehydrogenation-promoting metal constituents, includes dehydrogenation of naphthenes to aromatic compounds, dehydrocyclization of normal paraffins to naphthenes and aromatic compounds, isomerization of normal paraffins to isoparaffins and jhydrocracking of relatively long-chain paraffins. Hydrocracking reactions that give high yields of light, gaseous hydrocarbons, such as methane and ethane, must be especially avoided during (the reforming as this reduces the yield of products in the gasoline range" Since hydrocracking is also an exothermic process in contrast to reforming which is generally endothermic, ad-following hydrocracking reactions which cause the production of large quantities of light, gaseous products, • severe temperature fluctuations which can cause the temperature to not be kept under control during the reforming. ;Because of the need for hbyoctane gasolines for use as motor fuel etc. much research is being done to develop improved reforming catalysts and catalytic reforming processes. Catalysts for good reforming processes must have good selectivity, i.e. So they must be able to give high yields of petrol products with a high octane number and possibly low yields of light, gaseous hydrocarbons or carbonaceous by-products. In general, high octane gasoline products can be obtained from a given feedstock by applying more severe conditions with respect to temperature or lower space velocity. However, the petrol yield gradually decreases as the product's octane number increases. The catalysts are thus often evaluated with regard to their yield/octane selectivity, i.e. compared on the basis of the achievable bone-to-sine yield at the desired octane number for the product. Catalyst properties must also "have good activity so that it will not be necessary to use an elevated temperature for the production of a certain quality product. Apart from good selectivity and activity, it is also necessary that the catalysts have good stability so that activity - and the selectivity properties can be retained over long periods of operation. Catalysts comprising platinum, e.g. platinum supported on aluminum oxide, are well known and widely used for reforming naphthas and gasoline materials for the production of high octane gasolines. Platinum catalysts are highly selective with respect to production of aromatic compounds with a high octane number and very active in connection with the majority of reactions that occur during the reforming. Platinum catalysts are, however, also very expensive due to platinum's high price, and catalysis will be difficult "IflT enf VnérncbsTibåré "p"å""grunfr"å"v~a€'_meta!.-let is only available in limited m meadows. These economic factors have led the petroleum industry to seek less expensive substitutes for platinum and to initiate research into catalytic promoters for use with the platinum catalysts to increase their activity, stability and, in particular, selectivity with respect to to petrol yield/octane number, thereby making platinum catalysts more economical for use in reforming processes. Rhenium has been proposed for use in catalytic reforming as a replacement for the more common catalytic constituents, such as in platinum. However, rhenium has proved to be very poor for use in reforming. Rhenium alone supported on charcoal or aluminum oxide thus proved to have only limited reforming activity, while very large concentrations of the metal, over 5% by weight, were necessary to achieve good activity. iIt has also been proposed to use rhenium together with palladii.m ji reforming processes. Thus, a pre-sulfidized series I catalyst comprising palladium and rhenium impregnated on aluminum oxide proved to have a better initial reforming activity than a j, previously sulfidized palladium-aluminum oxide catalysts when used for reforming a sulfur-containing naphtha. However, the activity of the previously sulphided catalyst of palladium and rhenium decreased considerably after a short period of use. In connection with the development of the present invention, a catalyst comprising platinum and rhenium together with aluminum oxide was prepared, but it turned out that when used for reforming a naphtha fraction, the catalyst caused a very strong hydrocracking. The production a<y> large quantities of light gases,; such as methane and ethane, was considerably greater than the production of light gases using a catalyst comprising platinum alone on aluminum oxide. In other words, the catalyst based on platinum and rhenium proved to be less selective for the production of high octane gasoline products than a platinum aluminum oxide catalyst. When introducing the naphtha fraction into the reaction zone, a strongly exothermic reaction was also observed in the catalyst layer. A catalyst comprising platinum and rhenium on aluminum oxide was also prepared, after which the catalyst was sulphide-treated and examined by using For reforming a sulfur-containing feedstock. The catalyst was found to have poor selectivity and activity. The yield of high-octane products were low and the reforming process was apparently economically unattractive. Although rhenium has thus been proposed for use together with noble metals, such as palladium, it turned out that such cocafination was not satisfactory under the above-mentioned conditions. ;i . It has now very surprisingly been shown that if certain process conditions are met and/or the catalyst is exposed to certain pre-treatments, a catalyst comprising platinum and rhenium supported on aluminum oxide will have a high activity and especially a good selectivity and stability when used for reforming sulfur-free feedstocks It was particularly unexpected that a supported platinum/rhenium ka lysator would initially show an undesirable hydrocracking after which the hydrocracking became negligible; 'Continued reformation. After the first period, the catalyst comprising platinum and rhenium on aluminum oxide is superior to a catalyst comprising platinum alone on aluminum oxide in that the initially poor reforming which causes "production of large quantities of light gaseous hydrocarbons can be tolerated for the time being necessary to reduce the catalyst engine's extremely strong hydrocracking activity. It is possible to achieve longer operating periods with higher yields of hbyoctane products by using the platinum/rhenium supported catalyst instead of a platinum catalyst without rhenium. In accordance with the present invention, an improved reforming process is carried out in the presence of catalysts comprising platinum and rhenium on or in porous solid support materials. Small concentrations of rhenium, i.e. below about 5% by weight, are effective as activators for platinum reforming In ;catalysts as they measurably lower the decreasing yield rate, i.e. that they increase the stability of the catalyst when the feed material does not contain sulphur. According to the invention, a reforming of a sulphur-free naphtha fraction is thus accomplished by bringing the fraction into contact under reforming conditions and in the presence of hydrogen with a catalyst comprising a porous, solid catalyst substrate with an intimate mixture of 0.01-3 wt. $ platinum, and 0.01-5 wt$ rhenium. In accordance with the invention, a new catalyst composition is also provided, comprising a first catalyst, a catalyst with an intimate mixture of 0.01-3 wt% platinum and 0 .01-5 weight? rhenium. The new catalyst according to the invention has been shown to be very active and stable during the reforming of naphtha and hydrocarbons within the boiling point range for gasoline and is far better than commercially available reforming catalysts containing platinum, but without rhenium. ;The invention will be described in more detail with reference to ; the curves in Fig. 1 and 2 which, for comparison, show data from simulated lifetime experiments indicating the reforming activity and stability of a common catalyst comprising platinum on an aluminum oxide substrate, and a catalyst comprising platinum and rhenium on an aluminum oxide substrate. The operating conditions were stronger than those normally used during a reformer in order to simulate the reaction of the catalysts on a much longer test (lifetime test). The curve in Fig. 1 shows the average catalyst temperatures as a function of test times and hours during operation which are necessary to maintain a jlOO-octane product (F-1 pure) for each of the two catalysts. The curve in Fig. 2 shows the yield of 0^+ liquid product or 100-octane gasoline as a function of operating time during reforming with each of the two catalysts. It is clear from Fig.2 that by using the platinum-rhenium catalyst considerably larger amounts of 100-octane petrol product are obtained than by using the platinum catalyst. The catalyst temperatures and volume percentages of influent with more than 5 carbon atoms used to j perform the comparisons according to icurvehe were obtained only after j the hydrocracking activity of the platinum-rhenium catalyst had been reduced to that of the platinum catalyst. The catalysts had thus been in operation for several hours before the comparisons shown on the curves according to Fig. 1 and 2 were carried out. It is not unequivocally clear why rhenium activates platinum-containing catalysts when reforming naphtha. Although it is not intended to limit the scope of the invention or to be bound by any theoretical explanation, there are indications that the rhenium forms an alloy with the platinum and that this alloy <:>may be partly responsible for the improved results obtained when using the platinum-rhenium catalyst in relation to a conventional platinum catalyst. ;i'' Ro ri tg én- ~6 g electron difTr axion s u h d or b ole e 1 r, c f' of' 'the Iri "é talli "slk o :fa.ses present in the catalysts comprising various j ; .concentrations of platinum and rhenium supported on aluminum oxide, indicate that the platinum-rhenium phase changes noticeably in a similar way to the change that can be observed in pure platinum-rhenium alloy systems, i.e. systems without bar material. For a reference to a phase diagram for a pure platinum-rhenium alloy system, see e.g. Hansen, M., and Anderko, K., "Constitution of jBinary Alloys", MoGraw Hill (1958), suggest that for concentrations of rhenium of from 0 to about 40 atomic weight percent and at temperatures below at least 1750°0 there is only one platinum-rhenium phase, i.e. the face-centered cubic (fsk) crystal structure for platinum. Above 40 atomic percent rhenium, the hexagonal close-packed (htp) rhenium structure can also be observed. Investigations carried out with catalyst samples comprising platinum alone on aluminum oxide, rhenium alone on aluminum oxide and different concentration levels of platinum and rhenium on aluminum oxide have shown that for rhenium concentrations on the catalyst of below approx. 50 atomic weight percent, the hexagonal close-packed rhenium structure was not present, or at least could not be detected. Only the face-centered 'cubic platinum structure was present. At higher concentrations of rhenium on the catalyst, i.e. over approx. 50 atomic weight percent - rhenium, the hexagonal close-packed rhenium structure could be observed. The platinum-rhenium catalyst samples that were used to investigate the crystal structure of the metals were prepared by heating the catalysts to elevated temperatures, e.g. 815°C, either in the presence of wet or dry hydrogen to thereby reduce the metals to metallic state. ;i It is also known from investigations with pure platinum-rhenium systems that the addition of rhenium to platinum reduces the lattice spacing in the planar cubic platinum unit cell. This reduction in the lattice spacing gradually as rhenium is added to platinum under such conditions that an alloy is formed, can be observed by the increase in the diffraction angle, 28, when applying:-jav OuKa-^ radiation, from the (311) plane to the face-centered cubic platinum structure. A change in the rhenium concentration in platinum The aluminum oxide catalysts also cause a bending of the diffraction angle, 26, from the (311) plane to the face-centered cubic platinum structure. the enium-j catalyst causes a t ilstretch al - i e ntnr f nmk- kyvn- l ne m<g>rt ;the expected stbrrelsretnirig"' in"diffraction'JonswinkelerT,™ 29", "to" that" a -strong indication that an alloy is forming. Further evidence supporting the theory that alloying is formed for platinum-rhenium supported catalysts is the observation that the size of the face-centered cubic platinum particles decreases as rhenium is added to the platinum-aluminum catalysts. The particle size of the face-centered cubic platinum, as determined by electron diffraction studies of catalyst samples reduced in hydrogen at constant temperature, decreases with each addition of rhenium until practically the equiatomic platinum-rhenium composition has been reached. The metal particle size is related to the density with which the metal sinters, i.e. the smaller the particles, the less the metals have sintered. 'This ease with which sintering takes place is in turn connected with the melting point of the metals, i.e. the higher the metals; melting point, the more difficult it will be for sintering to occur. The reduction in the size of the face-centered cubic particles as rhenium is added to platinum-aluminum oxide catalysts is thus assumed to be due to the increase in the melting point of the alloy formed. This observation is in agreement with the chemistry of pure platinum-rhenium alloy systems which show that the addition of rhenium to platinum causes a bending of the j f face-centred cubic crystals!. melting point. j ;I ;The porous, solid carrier material or support material which is used in the production of the platinum-rhenium catalyst according to the invention can comprise a large number of materials on which the catalytically active amounts of platinum and rhenium can be deposited. The porous, solid carrier material can, for example, be made of silicon carbide, charcoal or carbon. The porous, solid carrier material is preferably composed of an inorganic oxide. It is particularly preferred to use a support material of inorganic oxide with a large surface area, e.g. an inorganic oxide with a surface area of 50-700 m /g. The carrier material can be a natural or synthetically produced inorganic oxide or a combination of inorganic oxides. Of typical acidic inorganic oxide carrier materials that can be used, mention can be made of the naturally occurring aluminum silicates, especially if they have been acid treated to increase their activity, and the synthetically produced cracking carrier materials, such as silicon dioxide aluminum oxide, silicon dioxide zirconium dioxide, silicon ;(iioxyd -aluminium oxide-zirconium dioxy pxyd, silicon dioxide-aluminium oxide-magnesium oxide" and crystalline peolitic aluminum silicates. In general, however, ojfrination processes are carried out in the presence of catalysts with low cracking activity, i.e. in the presence of catalysts with limited acidic. Inorganic oxides, such as magnesium oxide and aluminum oxide, are therefore preferred carrier materials. Aluminum oxide is a particularly preferred catalytic carrier material for use in the present invention. Any form of aluminum oxide that is suitable as a support material for reforming catalysts can be used. Aluminum oxide can also be produced using a number of methods which are satisfactory for the purposes of the present invention. The preparation of aluminum oxide for use in connection with reforming catalysts is well known. The new reforming catalyst comprises a desired porous solid catalyst support material with an intimate mixture of catalytically active amounts of platinum and rhenium. The preferred ^catalyst according to the invention preferably comprises approx. 0.01-5 wt$, and more especially approx. 0.2-1 wt.$, platinum based on the finished catalyst. Platinum concentrations below approx. 0.01 wt% is too low for the reforging to proceed satisfactorily, on the other hand, platinum concentrations above approx. 3 by weight as a rule is unsatisfactory because they cause too strong cracking. Furthermore, due to the fact that platinum is very expensive, the quantity of platinum that can be used is somewhat limited. The rhenium concentration in the finished catalyst mixture is preferably 0.01-5 by weight $, and more particularly 0.1-2 wt#. Higher concentrations of rhenium could be used with advantage, but the price of rhenium limits the amount that can be used on the catalyst. It is preferred to use an atomic ratio of rhenium to platinum of about 0.2 - about 2.0. More particularly, it is preferred that the atomic ratio between rhenium and platinum should not be greater than 1. Higher j ratios, i.e. over | of rhenium to platinum can be used, but it is usually obtained no further significant improvement by using My«ye conditions. Although platinum and rhenium can be intimately associated with the porous, solid support material by means of a suitable technique, such as ion exchange, co-precipitation, etc., the metals are associated as jl.;, I am eT "m"é d' "d et 'por ose"raw"srU'é~"Carrier"S'aTeriale"" vea ~Tmpr egTI"SrT! T[g~." ^Furthermore, one of the metals can be connected to the carrier material using one method, e.g. ion exchange, and the other metal can be connected to the carrier material using another method, e.g. impregnation. As stated however, the metals are preferably connected to the carrier material by means of impregnation. The catalyst can be produced either by simultaneous impregnation of the two metals or by impregnation in sequence. In general, the carrier material is impregnated with an aqueous solution of a cleavable compound , of the metal in sufficient concentration to obtain the desired amount of metal in the finished catalyst. The resulting mixture is then heated to remove water. It is generally preferred to use chloroplatinic acid as a source of platinum. Other suitable platinum-containing compounds, eg ammonium chloroplatinates and polyamineplatinum salts can also be used Of rhenium compounds suitable for coating on the support material , perrhenium acid and ammonium or telium perrhenates can be mentioned, among other things. The aim of the present invention is that the introduction of metals together with the carrier material should be able to be carried out at any particular stage of the catalyst production. If, for example, the metals are to be applied to an aluminum oxide substrate, the application can take place while the aluminum oxide is present as a sol or gel, after which the aluminum oxide is precipitated. A previously prepared aluminum oxide carrier material can also be impregnated with an aqueous solution of the metal compounds. Regardless of which procedure an- ; used for the preparation of the supported platinum-rhenium catalyst, it is preferred that the platinum and rhenium be intimately associated with and dispersed throughout the porous, solid catalyst support material. After platinum and rhenium have been added to the support material, the resulting composition is usually dried by heating to a temperature of e.g. not over approx. 260°G, and preferably at a temperature of approx. 93.3-204t4°C. Then, if desired, the composition can be calcined at an elevated temperature of, for example, up to approx. 649°0. ;7 - The carrier material containing platinum and rhenium is heated ~ cf. or. step by step at a high temperature to convert the platinum and the rhenium into a metallic state. The heating is preferably carried out in the presence of hydrogen, preferably dry hydrogen. It is particularly preferred to carry out this pre-reduction at a temperature of 315.5-704.4°G, preferably 315.5-537.8°C. Reforming using certain of the catalysts according to the invention initially produces a very large amount of light hydrocarbon gases unless a suitable pretreatment or start-up technique is used. The light hydrocarbon gases are produced due to the catalyst's high hydrocracking action or metal cracking action. It has been shown that the hydrocracking effect is reduced if the catalyst is sulfidized before it is brought into contact with naphtha. This presulphidation can be carried out in situ or 3X in situ by passing a sulphurous gas, e.g. F^S, through the catalyst layer. Other sulfidizing pretreatments are also useful. ,,, It has also been shown that at start-up a small amount of sulphur, e.g. HgS or dimethyl disulfide added to the reforming loop zone effectively reduce the catalyst's initial hydrocracking action. The near-type form of sulfur used for sulphidation is not critical. The sulfur may be introduced into the reaction zone in any suitable manner and at any suitable location. It may be contained in the liquid hydrocarbon feed, the hydrogen-rich gas, the recovered liquid ether stream or a recovered gas stream or in any combination. After the reforming has been carried out in the presence of sulfur for a short period of time compared to the total operating period achievable with the new catalyst, the sulfur addition must be discontinued in order to obtain the full benefits, such as a reduced yield reduction rate or improved stability. according to the invention must be achievable. The time required to reduce the initial hydrocracking activity will vary from several hours to several hundred hours depending on the amount of sulfur used, the severity of the operating conditions and the platinum/rhenium alloy. The time required to reduce the initial hydrocracking activity varies inversely proportionally with the sulfur content, the severity of the cracking conditions and the platinum/rhenium ratio. It has also been shown that the addition of an ethoxygen oxide anion of sulfur, such as a sulfate, sulfite, bisulfate, or bisulfite, associated with the catalyst composition provides the catalyst with beneficial properties in that it helps to with controlling its <:>initially high hydrocracking activity Thus, the presence of sulfate together with a catalyst comprising aluminum oxide and catalytically active amounts of platinum and rhenium reduces the yield of light hydrocarbon gases initially produced during the reforming as well as during the dehydrocyclization of n-heptane to aromatic compounds. The oxygen-containing anions of sulfur can be introduced into the catalyst material during the production of the porous, solid carrier material. Thus, for example, in the production of an aluminum oxide carrier material, the aluminum salt used as starting material can be present in sulfate form. - the precipitation of aluminum oxide usually means that a smaller amount of isulphate will v honor associated with the aluminum oxide. An oxygen-containing anion of sulfur can also be applied to the catalyst support material by contacting the previously prepared support material with suitable compounds containing oxygen-containing anions of sulfur, e.g. SO^ , SO^ , HS0^~, or HSO^<-. > The oxygen-containing anions of sulfur can advantageously be present in the finished catalyst in an amount of 0.05-2% by weight, preferably 0.1-1% by weight. During the reforming, the catalyst according to the invention preferably has platinum and rhenium in a metallic state. Thus, although the catalyst is brought into contact with sulfur and the metals are apparently converted to sulfides before or during the reforming to thereby reduce the catalyst's original hydrocracking activity, the catalyst is freed of sulfur during the original reforming period. The sulfur (ril') is therefore removed and the metals, j ;i platinum, and rhenium, are converted to the metallic state for approximately the same time that is necessary to reduce the high j hydrocracking activity. during the reforming process, sulfur will have to be continuously added to the catalyst, an addition of sulfur during the entire reforming process is not satisfactory according to the invention. The catalyst can be activated for the reforming by the addition of halides, especially fluoride or chloride. The halides give the catalyst apparently a limited acidity which is advantageous in most reforming processes. A halide-activated catalyst preferably contains 0.1-3 wt% total halide content. The halides can be introduced into the catalyst support material at any suitable stage during the preparation 4v the catalyst, eg before or after the introduction of platinum into rhenium Some halide is often introduced into the carrier material during the impregnation with platinum. Thus, for example, impregnation with chloroplatinic acid usually adds chlorine to the carrier material. Additional halide can, if desired, be incorporated onto the base material simultaneously with the incorporation of the metal. As a rule, the halides are combined with the catalyst support material by bringing suitable compounds, such as hydrogen fluoride, ammonium! fluoride, hydrogen chloride or ammonium chloride, either in gaseous form or dissolved in water, in contact with the carrier material. The fluoride or chloride preferably incorporates onto the support material from an aqueous solution containing the halide. ;The form in which the catalyst is produced is usually determined by the handling to which it will be subjected. If, therefore, the forming process according to the invention is to be carried out by an-;^ytelandndeilnsge ean v frfaemsst tisklilkes t i elfloerr aj baeyvlteagbelleig ttesrki,k. pte, lvleitl sk, actuallyefsaortmore-de -articles or extruded particles. If, on the other hand, saliva is taken on to use a fluidized bed, the catalyst is prepared in fine gelled form. The feedstock to be used during the reforming is a light hydrocarbon oil, for example a naphtha fraction. The naphtha generally boils within a temperature range of about 21, 1-287.8°C, preferably 65.5-232.2°0. The feed material can, for example, be either a directly distilled naphtha or a thermally cracked oil or catalytically cracked naphtha or mixtures thereof. The feed material should be practically sulphur-free , i.e. that the supply material should preferably contain less than about 10 ppm sulphur, preferably less than 5 ppm and the whole less than in ppm. The presence of sulfur in supply material it reduces both the catalyst's activity and its stability. When using a feed material that does not already have a low sulfur content, acceptable amounts can be obtained by applying it to a small ferrial t" T "e n~" f forme triage zone where the haftha is brought into contact with a hydrogenation catalyst that is resistant to sulfur poisoning. A suitable catalyst for this hydrodesulfurization process is, for example, an aluminum oxide-containing support material and a small amount of molybdenum oxide and cobalt oxide. The hydrodesulfurization is usually carried out at a temperature of 371.1-454.4°C, an overpressure of 14.061-140.61 kg/cm<2> and at $n liquid space velocity per hour of 1-5. The sulfur present in the naphtha is converted into hydrogen sulphide which can be removed for the reforming by means of suitable conventional methods. ;The reforming conditions will largely depend on the feed material used, whether this is strongly aromatic, paraffinic or naphthenic, and on the desired octane number of the product. j The temperature below r the eformation ,,vtfJi generally be approx. j ;15.5-593.3°0, preferably approx. 371.1-565.6°G. The pressure in reform-! The ring reaction zone can be atmospheric or superatmospheric. i However, the pressure will generally be an overpressure within the j cm range 1.7577-70.31 kg/cm2, preferably approx. 3.5153-52.73 kg/cm2j the temperature and pressure can be adjusted in accordance with the 'liquid space velocity per hour (PRHT) to promote any j dom particularly desirable reformation reaction, such as! g(romatization, isomerization or dehydrb~g eirerl~ njg. The liquid !rlom rate per hour will generally be 0.1-10, preferably 1-5 ;i ; ;i Hydrogen is usually formed during the reforming. An excess j ajv hydrogen thus does not necessarily need to be added to the reforming system. However, it is generally preferred to introduce an excess of hydrogen at one stage or another during the process, for example during start-up. The hydrogen can be introduced into the feed material because it is brought into contact with the catalyst or it can be brought into contact simultaneously with the introduction of the feed material into the reaction zone. In general, the hydrogen is recycled over the catalyst before the feed material is brought into contact with it. The presence of hydrogen causes a reduction in the formation of coke which tends to poison the catalyst. In addition, the the presence of the hydrogen is used to promote certain reforming reactions. Hydrogen is introduced preferably in the red propagation reactor in an amount of approx. 0.5- approx. 20 moles of hydrogen : pjr. mol supply method material. The hydrogen can be present in a mixture i i ; t ;méd Light, gaseous hydrocarbons. An excess of hydrogen """ - removed after separation from the products, is generally cleaned and recycled to the reaction zone. After a period of operation where the catalyst has been deactivated by the presence of carbonaceous deposits, the catalyst can be reactivated or regenerated by conducting an oxygen-containing gas, such as air, in contact with the catalyst at an elevated temperature to burn off carbonaceous deposits from the catalyst'. The method used for regeneration of the catalyst will depend on whether a static bed, moving bed or j fluidized bed. Regeneration methods and conditions are well known. j ;EXAMPLE 1 I ;A common rhenium-free catalyst containing 0.7 wt% platinum on aluminum oxide was examined and compared for its dehydrogenation activity for cyclohexane with a variety of j catalysts containing different amounts of rhenium on it in said platinum-aluminium oxide mixture. j ;Platinum-aluminium the oxide catalyst was prepared by impregnating the aluminum oxide with chloroplatinic acid. The platinum-rhenium: aluminum oxide catalysts were prepared by impregnating pre-impregnated platinum-alumina catalysts with aqueous solutions containing perrhenic acid in sufficient concentrations that the finished catalysts contained the desired amount of rhenium. Treatment was carried out by heating the catalysts* for 12 hours at on temperature of 76.67°C and then for 3 hours at a temperature of 204.44°C. Catalysts impregnated with platinum or platinum and rhenium were treated with a hydrogena tabsphere in an amount of 6.9 liters per minute per grams of catalyst for 2 j hours at different temperatures.

Porsbkene med dehydrogcnering av cyclohexan ble utfort ved ; en temperatur av 251,66UC, et trykk av én 'atmosfære og et forhold mellom hydrogen og hydrocarbon (cyclohexan) av 10. Hydrogen-tilfbrselshastigheten til reaktoren var 6,9 liter Hp pr.'minutt i pr. gram katalysator. Cyclohexan ble bragt i kontakt med kata- ' lysatoren med en hastighet av 0,17 liter flytende hydrocarbon J pr. time pr. gram katalysator. Dehydrogeneringshastighetee for ! cyclohexan, målt som mikromoljT>enzen\fremstilt pr. gram katalysator The experiments with dehydrogenation of cyclohexane were carried out at ; a temperature of 251.66UC, a pressure of one atmosphere and a hydrogen to hydrocarbon (cyclohexane) ratio of 10. The hydrogen feed rate to the reactor was 6.9 liters Hp per minute in pr. grams of catalyst. Cyclohexane was brought into contact with the catalyst at a rate of 0.17 liters of liquid hydrocarbon J per hour per grams of catalyst. Dehydrogenation rateee for ! cyclohexane, measured as micromoljT>ene\produced per grams of catalyst

•:pr. time, ble bestemt for de forskjellige katalysatorer med for-J skjellige rheniuminnhold og forredusert ved forskjellige temperaturer. Resultatene er gjengitt i tabell I. Katalysatorene inneholdende platina, og rhenium var i alle tilfeller mer aktive ved dehydrogeneringen av cyclohexan enn katalysatoren inneholdende bare platina. Således hådde for ekse,i)-ipel katalysatoren inneholdende 0,j7 vekt# rhenium og 0,7 vekt$ platina og som var forredusert ved 537,78°G, en^dehydrogenerings-j hastighet for cyclohexan av 54 sammenlignet med en dehydrogener- j ingshastighet av 37 for platinakatalysatoren som var forredusert i lo i .ved 537>78 C, men som ikke inneholdt noe rhenium. Det fremgår j jdessuten at dehydrogeneringshastigheten for katalysatoren inne- j iholdende bare platina sank hurtigere med stigende forreduksjons- j jtemperatur enn katalysatorene inneholdende rhenium i tillegg til iplatina» Katalysatoren inneholdende bare platina og forredusert ; jved en temperatur av 537,78°C, hadde for eksempel en dehydrogen- ; jeringshastighet av 37 mens samme katalysator forredusert ved en j itemperatur av 871»11°C hadde en dehydrogeneringshastighet av toarej 15. Dette er en minskning på over 50$. Katalysatoren inneholdende 0,2 vekt$ rhenium i tillegg til platina og forredusert ved en temperatur av 537,78°C hadde imidlertid en dehydrogeneringshastighet av 48 sammenlignet med en dehydrogeneringshastighet av 35 for den samme katalysator forredusert ved en temperatur av 871,11°0. Dette er en minskning av under l/3 og tyder på at platina-rheniumkatalysatorene er mer stabile enn platinakataly-jsatorer som ikke inneholder rhenium. En katalysator inneholdende 0,7 vekt$ platina og 0,7 vekt$ rhenium på et aluminiumoxydbærermateriale ble sammenlignet med jen katalysator inneholdende 0,7 vekt$ platina i en akselerert reformeringsprosess. Katalysatorene ble fremstilt og tbrket som beskrevet i eksempel 1 og så oppvarmet i hydrogen i en halv time ved 232,22°C.og i 1,5 time ved 371,11°C. Strbmningshastigheten •for hydrogenet var i alle tilfeller 4,0 ml H9 pr. minutt pr. gran: ;katalysator. Det ved reformeringen anvendte tilf<o>rselsmåteriale var en hydroraffinert, katalytisk krakket naftha med et begynnelses-jkokepunkt av 66,11°0, et sluttkokepunkt av 220°G og et 50$ koke-ipunkt av 152,77°0. Tilfbrselsmaterialets undersbkte octantall futen tilsetning av antibankemidler (P-l klar) var 64,6. Nafthaen inneholdt mindre enn 0,1 ppm nitrogen eller svovel. I reaksjons-j■ sonen ble det opprettholdt et overtrykk av 21,092 kg/cm 2, en (flytende romhastighet pr. time av 3 og en tilstrekkelig temperatur til å gi et produkt med et octantall (P-l ren) av 100. •:per hour, was determined for the different catalysts with different rhenium contents and pre-reduced at different temperatures. The results are reproduced in Table I. The catalysts containing platinum and rhenium were in all cases more active in the dehydrogenation of cyclohexane than the catalyst containing only platinum. Thus, for example, the catalyst containing 0.7 wt% rhenium and 0.7 wt% platinum and which was pre-reduced at 537.78°G had a dehydrogenation rate for cyclohexane of 54 compared to a dehydrogenator j ing rate of 37 for the platinum catalyst which was pre-reduced in lo i .at 537>78 C, but which contained no rhenium. It also appears that the dehydrogenation rate for the catalyst containing only platinum decreased faster with increasing pre-reduction temperature than the catalysts containing rhenium in addition to platinum" The catalyst containing only platinum and pre-reduced; at a temperature of 537.78°C, for example, had a dehydrogen- ; jeration rate of 37 while the same catalyst pre-reduced at a j itemperature of 871»11°C had a dehydrogenation rate of tworej 15. This is a reduction of over 50$. However, the catalyst containing 0.2 wt% rhenium in addition to platinum and pre-reduced at a temperature of 537.78°C had a dehydrogenation rate of 48 compared to a dehydrogenation rate of 35 for the same catalyst pre-reduced at a temperature of 871.11°0. This is a reduction of less than 1/3 and indicates that the platinum-rhenium catalysts are more stable than platinum catalysts which do not contain rhenium. A catalyst containing 0.7 wt% platinum and 0.7 wt% rhenium on an aluminum oxide support material was compared with a catalyst containing 0.7 wt% platinum in an accelerated reforming process. The catalysts were prepared and used as described in example 1 and then heated in hydrogen for half an hour at 232.22°C and for 1.5 hours at 371.11°C. The flow rate •for the hydrogen was in all cases 4.0 ml H9 per minute per fir: ;catalyst. The feedstock used in the reforming was a hydrorefined, catalytically cracked naphtha with an initial boiling point of 66.11°C, a final boiling point of 220°C and a 50% boiling point of 152.77°C. The tested octane number of the supply material without the addition of anti-knock agents (P-l clear) was 64.6. The naphtha contained less than 0.1 ppm nitrogen or sulphur. In the reaction zone, an overpressure of 21.092 kg/cm 2 , a (fluid space velocity per hour of 3 and a temperature sufficient to give a product with an octane number (P-l pure) of 100 was maintained.

'Temperaturen i reaksjonssonen som målt ved katalysatorskiktets gjennomsnittstemperatur, ble således forandret med tiden for å opprettholde et produkt med 100 octan. Ref ormeringsprosessen blej rutfbrt under betingelser som efterlignet en levealderundersbkelsej for katalysatoren; Det vil si at betingelsene ikke nødvendigvis ble; opprettholdt på de samme nivåer som anvendes i en kommersiell ref ormeringsprosess, men at de i alminnelighet var kraftigere forj derved å undersbke i lbpet av en forholdsvis kort tid av et par i hundrede timer hvor godt katalysatoren ville virke under en | The temperature in the reaction zone as measured by the average temperature of the catalyst layer was thus changed with time to maintain a product with 100 octane. The reforming process was carried out under conditions that mimicked a life cycle for the catalyst; That is, the conditions did not necessarily remain; maintained at the same levels as used in a commercial reforming process, but that they were generally more powerful by examining in the lab of a relatively short time of a couple of hundred hours how well the catalyst would work under a |

i •kommersiell prosess. Hydrogen fremstilt under reformeringspros- | sen ble resirkulert til reaksjonssonen slik at det der ble opp- | nådd ca. 5,3 mol hydrogen pr. mol hydrocarbontilfbrsel. in •commercial process. Hydrogen produced during the reforming process | was then recirculated to the reaction zone so that there was raised | reached approx. 5.3 moles of hydrogen per moles of hydrocarbon supply.

Den ovennevnte sammenligning i eksempel 2 mellom katalysatoien inneholdende platina og rhenium og katalysatoren inneholdende baie platina, er vist på tegningene. Den forandring av den gjennomsnittlige katalysatortemperatur som var nbdvendig for, å opprettholde det bnskede 100-octanprodukt (P-l ren), er vist på Pig.l, og utbyttet av bensin med et octantall av 100 er vist på Fig. 2. Katalysatorens oppfbrsel under det simulerte levealderforsok var meget dårlig. Det vil fremgå av Pig.l at det var nbdvendig meget sterkt å oke temperaturen for å opprettholde et The above comparison in Example 2 between the catalyst containing platinum and rhenium and the catalyst containing baie platinum is shown in the drawings. The change in the average catalyst temperature that was necessary to maintain the desired 100-octane product (P-1 pure) is shown in Fig. 1, and the yield of gasoline with an octane number of 100 is shown in Fig. 2. The behavior of the catalyst during the simulated lifespan trials were very poor. It will appear from Pig.l that it was necessary to increase the temperature very strongly to maintain a

100-octanprodukt (F-l ren). Dokk;; t e fi" ± I n s két ii t byt te' a v" d e t flytende produkt med over 5 carbonatomer og det onskede octan-■tall betraktelig med tiden som vist på Fig. 2. På-den annen side :oppviste katalysatoren inneholdende platina, og rhenium en be^ 'merkeIsesverdig aktivitet under det akselererte ireformerinjrsfnr- - isok. Det fremgår av Fig. 2 at nafthatilforselen ble reformert jslik at det ble oppnådd praktisk talt 86 volumprosent av et jprodukt med et octantall av 100 (F-l ren) oveF praktisk talt hele jforsoksperioden. Det fremgår av Fig. 1 at den nødvendige reform- 100-octane product (F-l pure). Dock;; the liquid product with more than 5 carbon atoms and the desired octane number changed considerably with time as shown in Fig. 2. On the other hand, the catalyst containing platinum, and rhenium a be^ 'remarkable activity during the accelerated ireformerinjrsfnr- - isok. It appears from Fig. 2 that the naphthalene feedstock was reformed in such a way that practically 86 percent by volume of a product with an octane number of 100 (F-1 pure) was obtained over practically the entire trial period. It appears from Fig. 1 that the necessary reform

i in

jeringstemperatur for å opprettholde fremstillingen ait et produkt j |med et octantall av 100 (P-l ren) bare oket i liten grad sammen-j ilignet med temperaturøkningen under reformeringen med platina-kataiysatoren. Det er tydelig at rhenium forbedrer platinakatalysatorens stabilitet og aktivitet under reformeringen. reaction temperature to maintain the production of a product j |with an octane number of 100 (P-1 pure) increased only to a small extent together with the temperature increase during the reforming with the platinum catalyst. It is clear that rhenium improves the stability and activity of the platinum catalyst during reforming.

I eksempel 2 ga reformering med katalysatoren omfattende platina og rhenium til å begynne med hoye utbytter av lette hydrc-carbongasser, spesielt methan og ethan, sammenlignet med reform-jering med katalysatoren inneholdende platina, men ikke rhenium. iGa. 170 timers reformering var nødvendig for å bringe produk-i isj onen av lette gasser med platina-rhenium■ katalysatoren ned til jI iden mengde lette gasser som ble produsert ved platinakatalysatorein. iEn sterk eksoterm reaksjon ble også iaktatt under den opprinnelige jreformeringsperiode med platina-rheniumkatalysatoren. Som indikaj-jsjon på det hoye utbytte av lette gasser'som ble fremstilt under \ :denne opprinnelige innkjøringsperiode, ble målinger foretatt eftejr 143 timers drift og viste at 25,7 vekt$ av tilforselsmaterialet ,var blitt omdannet til lette hydrocarbnngasser. De data som ble janvendt for den ved hjelp av kurvene på Fig. 1 og 2 viste sammen-} Iligning, ble oppnådd bare efter at utbyttet av lette gasser ved I anvendelse av platina-rheniumkatalysatoren var omtrentlig det Isamme som ved anvendelse av platinakatalysatoren, d.v.s. efter de jfbrste 170 driftstimer. In Example 2, reforming with the catalyst comprising platinum and rhenium initially gave high yields of light hydrocarbon gases, particularly methane and ethane, compared to reforming with the catalyst containing platinum but no rhenium. iGa. 170 hours of reforming were necessary to bring the production of light gases with the platinum-rhenium catalyst down to the amount of light gases produced by the platinum catalyst. A strong exothermic reaction was also observed during the initial reforming period with the platinum-rhenium catalyst. As an indication of the high yield of light gases produced during this initial run-in period, measurements were made after 143 hours of operation and showed that 25.7% by weight of the feed material had been converted to light hydrocarbon gases. The data used for the equation shown by means of the curves in Figs. 1 and 2 were obtained only after the yield of light gases when using the platinum-rhenium catalyst was approximately the same as when using the platinum catalyst, i.e. after the first 170 operating hours.

I IN

! De følgende eksempler viser den ødeleggende virkning som jsvovel i tilforselsmaterialet har på foreliggende katalytiske jreformeringsprosess. ! The following examples show the destructive effect that sulfur in the feed material has on the current catalytic reforming process.

I IN

j EKSEMPEL 3 j EXAMPLE 3

To katalysatorprover ble fremstilt og torket som beskrevet i eksempel 1 idet katalysatorene inneholdt C_ ~~ ' _ ! . i Two catalyst samples were prepared and dried as described in example 1, the catalysts containing C_ ~~ ' _ ! . in

■ i ■ i

0, 7 vekt$ platina, og 0,7 ve'Kt#" rhenium på ef 'åluminiumoxyiTBærér-"". materiale. Provene ble forredusert under forskjellige betingelsdr og undersokt med hensyn til deres evne til å dehydrocyclisere n-heptan til aromatiske forbindelser. En proveka.talysa.tor, katalysator A»ble bragt i kontakt med hydrogen i 2 timer ved en ; temperatur av 537,78°C og atmosfære trykk og så i 2 timer ved en j 'temperatur av 402,22 0 og et overtrykk av 17,577 kg/om". Den ; annen katalysator, katalysator B, ble bragt i kontakt med hydrogen i 2 timer ved en temperatur av 537,78°C og et overtrykk av ] 17,577 kg/cm 2. Stromhingshastigheten for hydrogenet var 1,4 ml j 0.7 wt% platinum, and 0.7 wt% rhenium on an aluminum oxyiTBearer material. The samples were pre-reduced under various conditions and examined for their ability to dehydrocyclize n-heptane to aromatic compounds. A sample analyzer, catalyst A, was contacted with hydrogen for 2 hours at a temperature of 537.78°C and atmospheric pressure and then for 2 hours at a temperature of 402.22°C and an overpressure of 17.577 kg/rev". The ; another catalyst, catalyst B, was brought into contact with hydrogen for 2 hours at a temperature of 537.78°C and an overpressure of ] 17.577 kg/cm 2. The flow rate of the hydrogen was 1.4 ml j

i gass pr. minutt pr. gram katalysator. De to katalysatorprover j ble undersokt med hensyn til deres evne til å dehydrocyclisere ji ■ nt-ehmpepertaa.n tuur nadv er 4d82e ,a2n2 go C ittoe g reet akovs j erontrsbyekk tianv gel17se,r 577 omfkag/tctm en2d. e Heyndrogen in gas per minute per grams of catalyst. The two catalyst samples j were examined with regard to their ability to dehydrocyclize ji ■ nt-ehmpepertaa.n tuur nadv er 4d82e ,a2n2 go C ittoe g reet akovs j erontrsbyekk tianv gel17se,r 577 omfkag/tctm en2d. e Heyndrogen

;ble satt til reaksjonssonen i et molforhold av hydrogen til n-jheptan av 6. Det tilforte n-heptan ble bragt i kontakt med j katalysatoren med en hastighet av 80 ml n-heptan pr. time pr., grim i 'katalysator. Det tilforte n-heptan var svovelfritt ved anvendelsfe sammen med katalysatoren A. Imidlertid var 200 ppm svovel til- j stede i tilforselen til katalysatoren B. Resultatene av dehydro4 cycliseringsforsokene er gjengitt i tabell II. was added to the reaction zone in a molar ratio of hydrogen to n-heptane of 6. The added n-heptane was brought into contact with the j catalyst at a rate of 80 ml of n-heptane per hour per, grim in 'catalyst. The added n-heptane was sulfur-free when used together with catalyst A. However, 200 ppm sulfur was present in the feed to catalyst B. The results of the dehydro4 cyclization experiments are reproduced in Table II.

Det vil fremgå av den ovenstående tabell at ved å la svovel innvirke på katalysatoren inneholdende platina og rhenium fåes en uheldig virkning på katalysatorselektiviteten. It will appear from the above table that by allowing sulfur to act on the catalyst containing platinum and rhenium, an adverse effect on the catalyst selectivity is obtained.

EKSEMPEL 4 ' EXAMPLE 4'

En katalysator inneholdende 0,6 vekt$ platina og 0,46 vekt$; rhenium ble fremstilt ved å impregnere et på forhånd impregnert 1 platina-aluminiumoxydbærermateriale med en vandig opplosning inn£-holdende perrheniumsyre. Katalysatoren ble torket over natten I A catalyst containing 0.6 wt% platinum and 0.46 wt%; rhenium was prepared by impregnating a previously impregnated 1 platinum-alumina support material with an aqueous solution containing perrhenic acid. The catalyst was dried overnight I

i nitrocen ved en temperatur av 148,'3g°G og så oppvarmet i 200 { timer i luft ved en temperatur av 371,11 o G og i 400 timer i luftj1 in nitrocene at a temperature of 148.'3g°G and then heated for 200 { hours in air at a temperature of 371.11 o G and for 400 hours in airj1

ved en temperatur av 482,22°G. Derpå ble katalysatoren av aluminium- at a temperature of 482.22°G. Then the aluminum catalyst was

oxyd impregnert, med pla tina, og rhéhium behandlet 'I eh hydrogen- j atmosfære i l/2 time ved en temperatur av 371,11°0 for å redusere metallene.. Katalysatoren ble anvendt i en reformeringsprosess under anvendelse av det i eksempel 2 beskrevne tilforselsmåteriale. 'Forskjellige mengder svovel ble innfort i tilforselsmaterialet under prosessen. Reformeringsbetingelsene omfattet et overtrykk av 35,153 kg/em , en FRHT av 2 og et molforhold av hydrogen til hydroca.rbon av ca. 8. oxide impregnated, with platinum, and rhéhium treated 'In eh hydrogen-j atmosphere for 1/2 hour at a temperature of 371.11°0 to reduce the metals.. The catalyst was used in a reforming process using the described in example 2 supply method material. 'Various amounts of sulfur were introduced into the feed material during the process. The reforming conditions comprised an overpressure of 35.153 kg/em, an FRHT of 2 and a mole ratio of hydrogen to hydrocarbon of approx. 8.

Tilforselsmaterialet inneholdt til å begynne med mindre enn 0,1 ppm svovel. Det F-l rene octantall til produktet fremstilt under reformeringen var 97 og katalysatorene gjennomsnittstempera-J tur 493,33°0. 50 ppm svovel ble innfort i tilforselsmaterialet. The feedstock initially contained less than 0.1 ppm sulfur. The pure octane number of the product produced during the reforming was 97 and the catalysts average temperature 493.33°0. 50 ppm sulfur was introduced into the feed material.

! Produktets octantall falt til 91 og den gjennomsnittlige kata- j j lysatortemperatur oket til 498,33°CLtfed tilsetning av 500 ppm I svovel til tilforselsmaterialet falt octantallet til 86 og den ; gjennomsnittlige katalysatortemperatur bket til 501,66°C. Voluoj-I utbyttet av flytende hydrocarbon med over 5 carbonatomer var j ! The product's octane number fell to 91 and the average catalyst temperature increased to 498.33°CLtfed addition of 500 ppm I sulfur to the feed material the octane number fell to 86 and the ; average catalyst temperature increased to 501.66°C. Voluoj-I yield of liquid hydrocarbon with more than 5 carbon atoms was j

I omtrentlig det samme i alle tilfeller, d.v.s. ca. 84-85 volum- i In approximately the same in all cases, i.e. about. 84-85 volume- i

i prosent. Resultatene er gjengitt i tabell III. in percentage. The results are reproduced in table III.

i ' i i ' i

Den uheldige virkning av svovel i tilforselsmaterialet er The unfortunate effect of sulfur in the feed material is

! lett erkjennbar. Tilstedeværelsen av svovel i tilforselsmaterialet minsker de endoterme reformeringsreaksjoner som gir j hbyoctanbensin. Derved oker katalysatortemperaturen, og octan-; ! easily recognisable. The presence of sulfur in the feedstock reduces the endothermic reforming reactions that yield j hbyoctane gasoline. Thereby the catalyst temperature increases, and octane-;

! 1 tallet minsker. j ! 1 the number decreases. j

I EKSEMPEL 5 In EXAMPLE 5

I En katalysator inneholdende 0,66 vekt$ platina og 0,22 vek1;# rhenium ble fremstilt ved samtidig å impregnere et aluminium- I A catalyst containing 0.66 wt% platinum and 0.22 wt% rhenium was prepared by simultaneously impregnating an aluminum

j oxydbærermateriale med platina, i form av kloroplatincyre og j oxide carrier material with platinum, in the form of chloroplatinic acid and

I rhenium i form av perrheniumsyre. Katalysatoren ble torket og j så redusert med hydrogen. j In rhenium in the form of perrhenium acid. The catalyst was dried and then reduced with hydrogen. j

iKatalysat'oren- -ble- --an-<rend't 'f or -å ref orm-ere"-den---hydr©Fa-££i«ej?±e, iThe catalyst- -was- --an-<rend't 'for -to ref orm-ere"-the---hydr©Fa-££i«ej?±e,

katalytisk krakkede naftha beskrevet i eksempel 2. Reaksjons- catalytically cracked naphtha described in example 2. Reaction

betingelsene omfattet et overtrykk av 35,153 kg/cm , en FRHT av 3 og et molforhold av hydrogen til hydrocarbon av 5,3. Tempera- the conditions included an overpressure of 35.153 kg/cm, an FRHT of 3 and a mole ratio of hydrogen to hydrocarbon of 5.3. Temperature

turen ble kontrollert under hele reformeringsprosessen for frem- the trip was controlled throughout the reform process for the

.' stilling .av et P-l rent produkt med et octantall av 100. Til- .' position .of a P-1 pure product with an octane number of 100. To-

: forselsmaterialet inneholdt til å begynne med mindre enn 0,1 ppm : the foreskin material initially contained less than 0.1 ppm

■ svovel o Utgangstemperaturen under ref ormeringsprosessen vfar ; 504,44°C. Under de forste 845 driftstimer oppviste katalysatorei en lav forurenshingshastighet. Således var for eksempel fra :, 200 timer til 845 timer forurensningshastigheten ca. 0, 0133°C ■ sulfur o The output temperature during the reforming process vfar ; 504.44°C. During the first 845 operating hours, the catalyst showed a low contamination rate. Thus, for example, from :, 200 hours to 845 hours the pollution rate was approx. 0.0133°C

: pr. time. Efter en driftstid av 845 timer ble 10 ppm svovel satt I til tilforselsmaterialet. Den temperatur som var nbdvendig for : per hour. After an operating time of 845 hours, 10 ppm sulfur was added to the feed material. The temperature that was necessary for

fremstilling av en P-l ren octanbensin med et octantall av 100, production of a P-1 pure octane petrol with an octane number of 100,

i bket 20 grader, d.v.s. katalysatoren ble 20 grader mindre aktiv på grunn av svoveltilsetningen. Efter å ha fjernet svovelet I gjenvant katalysatoren en mindre mengde av aktiviteten, men den at an angle of 20 degrees, i.e. the catalyst became 20 degrees less active due to the sulfur addition. After removing the sulfur I, the catalyst recovered a small amount of the activity, but it

i fikk ikke den aktivitet som den hadde for tilsetningen av svovel til tilforselsmaterialet. Katalysatorens forurensningshastighet i efter svoveltilfbrselen var 0,025°0 pr. time. Det fremgår så- i did not get the activity that it had for the addition of sulfur to the feed material. The contamination rate of the catalyst after the sulfur addition was 0.025°0 per hour. It appears then-

ledes at selv en liten mengde svovel i tilforselsmaterialet, j f.eks. 10 ppm, har uheldige innvirkninger på katalysatoren. J is led that even a small amount of sulfur in the feed material, j e.g. 10 ppm, has adverse effects on the catalyst. J

i in

Claims (6)

1. Fremgangsmåte ved reforming av et praktisk talt svovelfritt nafthatilfbrselsmateriale under reformingsbetingelser og i nærvær1. Procedure for reforming a practically sulfur-free naphthalene production material under reforming conditions and in the presence av hydrogen ved anvendelse av en reformingskatalysator omfattende en dehydrogeneringsfremmende metallbestanddel fordelt gjennom et porbst,of hydrogen using a reforming catalyst comprising a dehydrogenation-promoting metal component distributed through a porbst, fast katalysatorbærermateriale, karakterisert ved at nafthatilfbrselsmaterialet bringes i kontakt med en katalysator omsolid catalyst carrier material, characterized in that the naphthalene carrier material is brought into contact with a catalyst fattende et porbst, uorganisk katalysatorbærermateriale inneholdendecomprising a porous inorganic catalyst support material containing en intim blanding av 0,01-3 vekt# platina og 0,01-5 vektig rhenium,an intimate mixture of 0.01-3 wt# of platinum and 0.01-5 wt# of rhenium, idet katalysatoren eventuelt er blitt aktivert med en samlet mengde av 0,1-3 vekt# klorid og/eller fluorid, og til å begynne med eventueltwhere the catalyst has optionally been activated with a total amount of 0.1-3 wt# of chloride and/or fluoride, and to begin with optionally inneholder 0,05-2 vekt% av et oxygenhoidig anion av svovel og det under 1.contains 0.05-2% by weight of an oxygen-containing anion of sulfur and that below 1. den opprinnelige oppstartingsperiode eventuelt tilfores et svovelholdig tilforselsmåteriale. during the original start-up period, a sulphur-containing supply method material may be supplied. 2. Fremgangsmåte ifolge krav 1,karakterisert ved at det anvendes en katalysator med et bærermateriale av aluminiumoxyd. 2. Method according to claim 1, characterized in that a catalyst is used with a carrier material of aluminum oxide. 3. Fremgangsmåte ifolge krav 1 eller 2,karakterisert ved at det anvendes en katalysator inneholdende 0,2-1 vekt% platina og 0,1-2 vekt$ rhenium. k. 3. Method according to claim 1 or 2, characterized in that a catalyst containing 0.2-1% by weight of platinum and 0.1-2% by weight of rhenium is used. k. Katalysator for utforelse av fremgangsmåten ifolge krav 1-3, karakterisert ved at den omfatter et porost katalysatorbærermateriale av uorganisk oxyd med en intim blanding derpå av 0,01-3 vekt$ platina, 0,01-5 vekt$ rhenium og 0,1-3 vekt$ klorid og/eller fluorid og eventuelt 0,05-2 vekt$ av et oxygenholdig anion av svovel. Catalyst for carrying out the method according to claims 1-3, characterized in that it comprises a porous catalyst support material of inorganic oxide with an intimate mixture thereon of 0.01-3 wt.$ platinum, 0.01-5 wt.$ rhenium and 0.1- 3% by weight of chloride and/or fluoride and optionally 0.05-2% by weight of an oxygen-containing anion of sulphur. 5. Katalysator ifolge kr av V, karakterisert ved at bærermaterialet er aluminiumoxyd. 5. Catalyst according to NOK of V, characterized in that the support material is aluminum oxide. 6. Katalysator ifolge krav h eller 5, karakterisert ved at den omfatter 0,2-1 vekt$ platina og 0,1-2 vekt% rhenium.6. Catalyst according to claim h or 5, characterized in that it comprises 0.2-1% by weight of platinum and 0.1-2% by weight of rhenium.
NO3802/68A 1966-06-24 1968-09-26 NO120846B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US56016666A 1966-06-24 1966-06-24
US639719A US3415737A (en) 1966-06-24 1967-05-19 Reforming a sulfur-free naphtha with a platinum-rhenium catalyst
MX11892668 1968-05-17
AT1021768A AT298647B (en) 1966-06-24 1968-10-18 Method of reforming an approximately sulfur-free naphtha fraction

Publications (1)

Publication Number Publication Date
NO120846B true NO120846B (en) 1970-12-14

Family

ID=36691608

Family Applications (1)

Application Number Title Priority Date Filing Date
NO3802/68A NO120846B (en) 1966-06-24 1968-09-26

Country Status (14)

Country Link
US (1) US3415737A (en)
AT (1) AT298647B (en)
CA (1) CA1014137A (en)
DE (1) DE1645715B1 (en)
DK (1) DK134286B (en)
ES (1) ES354046A1 (en)
FI (1) FI45453C (en)
FR (1) FR1575583A (en)
GB (1) GB1151639A (en)
MX (1) MX5271E (en)
MY (1) MY7500120A (en)
NO (1) NO120846B (en)
SE (1) SE325555B (en)
YU (1) YU246768A (en)

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1256000A (en) * 1968-04-24 1971-12-08 Universal Oil Prod Co Hydrocarbon conversion catalyst and processes for the manufacture and use thereof
FR2011723B1 (en) * 1968-06-27 1974-02-01 Chevron Res
US3539495A (en) * 1968-10-30 1970-11-10 Chevron Res Catalytic dewaxing
US3487010A (en) * 1968-12-10 1969-12-30 Chevron Res Iron-containing reforming catalyst
US3617519A (en) * 1969-01-29 1971-11-02 Universal Oil Prod Co Controlled sulfur content in platinum-rhenium reforming
US3968025A (en) * 1969-02-20 1976-07-06 Chevron Research Company Hydrocarbon conversion process
US3879484A (en) * 1969-02-25 1975-04-22 Universal Oil Prod Co Hydrocarbon isomerization process
US3537980A (en) * 1969-03-12 1970-11-03 Chevron Res Regeneration at low temperatures of platinum-rhenium reforming catalysts
US3487009A (en) * 1969-03-24 1969-12-30 Chevron Res Low pressure reforming with a platinumrhenium-iridium catalyst
US3507780A (en) * 1969-04-07 1970-04-21 Chevron Res Startup procedure for a low content platinum rhenium-iridium catalyst reforming process
US3529029A (en) * 1969-04-07 1970-09-15 Universal Oil Prod Co Hydrogenation of aromatic hydrocarbons
GB1313365A (en) * 1969-06-20 1973-04-11 Engelhard Min & Chem Method of regenerating and reactivating a bed of catalyst
CA925450A (en) * 1969-06-20 1973-05-01 C. Pfefferle William Reforming process
US3875047A (en) * 1969-06-20 1975-04-01 Atlantic Richfield Co Platinum-rhenium serial reforming in four beds
CA925456A (en) * 1969-06-20 1973-05-01 Erickson Henry Reforming process employing platinum-rhenium catalyst and vaporous chlorine-containing agent in feed
US3781219A (en) * 1969-06-20 1973-12-25 Atlantic Richfield Co Halide addition and distribution in the reactivation of platinum-rhenium catalysts
CA925448A (en) * 1969-06-20 1973-05-01 H. Dalson Milton Reforming straight run petroleum naphthas
US3617520A (en) * 1969-06-25 1971-11-02 Chevron Res Sulfiding of low platinum content catalyst
US3639273A (en) * 1969-07-11 1972-02-01 Chevron Res Catalyst composition comprising a mixture
CA925451A (en) * 1969-07-31 1973-05-01 D. Keith Carl Reforming of naphthene-and paraffin-containing hydrocarbon feeds
US3617510A (en) * 1969-09-05 1971-11-02 Universal Oil Prod Co Hydroprocessing with a germanium-rhenium-group viii noble metal catalyst
US3617522A (en) * 1969-09-24 1971-11-02 Universal Oil Prod Co Catalytic reforming of a relatively lean charge stock
US3764557A (en) * 1969-10-09 1973-10-09 Chevron Res Catalyst activation process and activated catalyst
BE757342A (en) * 1969-10-09 1971-03-16 Chevron Res PROCESS AND CATALYST FOR TRANSFORMATION OF HYDROCARBONS IN THE PRESENCE OF HYDROGEN
BE756441A (en) * 1969-10-14 1971-03-22 Engelhard Min & Chem CATALYTIC REFORMING PROCESS OF NAPHTHENIC AND PARAFFINIC HYDROCARBONS
CA925454A (en) * 1969-12-08 1973-05-01 D. Keith Carl Catalytic reforming of gasoline boiling range hydrocarbons
CA949544A (en) * 1970-02-13 1974-06-18 Henry Erickson Rhenium and platinum series metal-containing catalysts
US3846343A (en) * 1970-02-13 1974-11-05 H Erickson Process for preparing a platinum-rhenium catalyst on an alumina support
US3925196A (en) * 1971-02-01 1975-12-09 Exxon Research Engineering Co Reforming process
US3951782A (en) * 1971-04-09 1976-04-20 Chevron Research Company Reforming with a group IIB-containing catalyst
US3847794A (en) * 1971-11-23 1974-11-12 Universal Oil Prod Co Sulfur-free reforming with a platinum-tin catalyst
US4061592A (en) * 1972-03-09 1977-12-06 Chevron Research Company Hydrocarbon conversion catalyst
US4012313A (en) * 1972-04-30 1977-03-15 Chevron Research Company Catalytic reforming process and catalyst
US3819507A (en) * 1972-06-15 1974-06-25 Sun Research Development Dehydrocyclization of paraffins and catalyst therefor
US3977999A (en) * 1972-09-07 1976-08-31 Atlantic Richfield Company Alumina compositions and methods for making and using same
US3932548A (en) * 1972-10-26 1976-01-13 Universal Oil Products Company Dehydrogenation method and multimetallic catalytic composite for use therein
US3939220A (en) * 1972-11-06 1976-02-17 Universal Oil Products Company Dehydrogenation method and multimetallic catalytic composite for use therein
GB1456369A (en) * 1972-11-30 1976-11-24 Stamicarbon Catalyst preparation
US4169813A (en) * 1973-08-24 1979-10-02 Uop Inc. Acidic multimetallic catalytic composite
US4013733A (en) * 1974-01-18 1977-03-22 Uop Inc. Dehydrogenation method
BE832072A (en) * 1974-08-12 1975-12-01 IMPROVED COMPOSITIONS FOR CATALYSIS AND THEIR PREPARATION PROCESS
US4179405A (en) * 1975-02-14 1979-12-18 Uop Inc. Acidic sulfur-free multimetallic catalytic composite
US4018845A (en) * 1975-06-06 1977-04-19 Uop Inc. Hydrocarbon isomerization process
US4018839A (en) * 1975-06-06 1977-04-19 Uop Inc. Hydrocarbon isomerization process
US4002555A (en) * 1976-01-07 1977-01-11 Chevron Research Company Hydrocarbon reforming process
CA1094533A (en) * 1976-08-23 1981-01-27 Paul W. Tamm Reforming catalyst and a hydrocarbon catalytic reforming process using the catalyst
US4059645A (en) * 1976-11-10 1977-11-22 Chevron Research Company Alkylaromatic isomerization process
CA1077527A (en) * 1976-12-03 1980-05-13 Chevron Research And Technology Company Alternating reforming and isomerization process
FR2373602A1 (en) * 1976-12-09 1978-07-07 Catalyse Soc Prod Francais CATALYTIC HYDROREFORMING PROCESS
US4124490A (en) * 1977-03-02 1978-11-07 Atlantic Richfield Company Hydrocarbon reforming process
US4178268A (en) * 1977-05-09 1979-12-11 Uop Inc. Selectively sulfided acidic multimetallic catalytic composite
US4165276A (en) * 1977-09-14 1979-08-21 Uop Inc. Hydrocarbon conversion with a superactive multimetallic catalytic composite
US4190557A (en) * 1977-09-14 1980-02-26 Uop Inc. Attenuated superactive multimetallic catalytic composite
US4210524A (en) * 1977-09-14 1980-07-01 Uop Inc. Hydrocarbon conversion with a superactive multimetallic catalytic composite containing two different types of rhenium sites
US4268377A (en) * 1977-11-04 1981-05-19 Uop Inc. Hydrocarbon conversion with an activated multimetallic catalytic composite
US4210523A (en) * 1978-03-20 1980-07-01 Uop Inc. Hydrocarbon conversion with a superactive multimetallic catalytic composite containing two different types of rhenium sites
US4356081A (en) * 1978-04-10 1982-10-26 Gallagher James P Catalytic reforming with rhenium-platinum catalyst containing more rhenium than platinum
AU537495B2 (en) * 1978-04-10 1984-06-28 Engelhard Corporation Catalytic reforming with rhenium-platinum catalyst
US4210769A (en) * 1978-05-18 1980-07-01 Uop Inc. Hydrocarbon dehydrogenation with a superactive multimetallic catalytic composite for use therein
US4261811A (en) * 1979-04-06 1981-04-14 Standard Oil Company (Indiana) Reforming with an improved rhenium-containing catalyst
US4251391A (en) * 1979-04-13 1981-02-17 Exxon Research & Engineering Co. Reforming with multimetallic catalysts
US4295958A (en) * 1979-04-13 1981-10-20 Exxon Research & Engineering Co. Reforming with multimetallic catalysts
US4295957A (en) * 1979-04-30 1981-10-20 Exxon Research & Engineering Co. Reforming with multimetallic catalysts
US4251392A (en) * 1979-04-30 1981-02-17 Exxon Research & Engineering Co. Reforming with multimetallic catalysts
US4222854A (en) * 1979-05-23 1980-09-16 Chevron Research Company Catalytic reforming of naphtha fractions
US4333854A (en) * 1979-06-04 1982-06-08 Uop Inc. Sulfided superactive multimetallic catalytic composite
US4295959A (en) * 1979-06-15 1981-10-20 Uop Inc. Hydrocarbon dehydrocyclization with an attentuated superactive multimetallic catalytic composite
US4299689A (en) * 1979-10-01 1981-11-10 Uop Inc. Hydrocarbon conversion with an attenuated superactive multimetallic catalytic composite
US4427533A (en) 1979-10-09 1984-01-24 Exxon Research And Engineering Co. Catalytic reforming process
DE3038231A1 (en) * 1979-10-09 1981-04-23 Exxon Research And Engineering Co., Florham Park, N.J. CATALYTIC REFORMING PROCESS
US4436612A (en) 1979-10-09 1984-03-13 Exxon Research And Engineering Co. Catalytic reforming process
US4298461A (en) * 1979-11-08 1981-11-03 Standard Oil Company (Indiana) Catalyst and process
USRE31647E (en) * 1980-03-17 1984-08-14 Mobil Oil Corporation Startup procedure for reforming catalysts
US4261810A (en) * 1980-03-17 1981-04-14 Mobil Oil Corporation Startup procedure for reforming catalysts
US4369129A (en) * 1980-06-25 1983-01-18 Exxon Research And Engineering Co. Production of rhenium-containing reforming catalysts
US4416806A (en) * 1981-04-10 1983-11-22 Elf France Catalyst for production of aromatic hydrocarbons and process for preparation
US4425222A (en) 1981-06-08 1984-01-10 Exxon Research And Engineering Co. Catalytic reforming process
CA1223836A (en) * 1981-12-31 1987-07-07 William E. Winter Catalytic reforming process
US4440626A (en) * 1981-12-31 1984-04-03 Exxon Research And Engineering Co. Catalytic reforming process
US4876392A (en) * 1982-09-21 1989-10-24 Exxon Research & Engineering Company Process for preparation of keystones by oxidation of secondary alcohols using a trimetallic catalyst comprising molybdenum, rhenium and a group VIII noble metal
US4737482A (en) * 1983-07-25 1988-04-12 Exxon Research & Engineering Co. Catalysts for oxidation of olefins to ketones
US4560803A (en) * 1982-09-21 1985-12-24 Exxon Research & Engineering Co. Catalysts and process for oxidation of olefins to ketones
US4456527A (en) * 1982-10-20 1984-06-26 Chevron Research Company Hydrocarbon conversion process
US4440627A (en) * 1983-03-10 1984-04-03 Exxon Research And Engineering Co. Catalytic reforming process
DE3586228D1 (en) * 1984-09-10 1992-07-23 Light Oil Utilization Res Ass SOLID STRONG ACID CATALYST.
US4613424A (en) * 1984-12-26 1986-09-23 Exxon Research And Engineering Co. Catalytic reforming process
FR2593824B1 (en) * 1986-02-03 1988-11-04 Inst Francais Du Petrole CATALYTIC REFORMING PROCESS THROUGH AT LEAST THREE CATALYST BEDS
US5066632A (en) * 1986-06-12 1991-11-19 Exxon Research & Engineering Company Reforming catalyst
US5019664A (en) * 1988-10-06 1991-05-28 Mobil Oil Corp. Process for the conversion of paraffins to olefins and/or aromatics and low acidity zeolite catalyst therefor
US4714538A (en) * 1986-09-22 1987-12-22 Uop Inc. Trimetallic reforming catalyst
US4714539A (en) * 1986-09-22 1987-12-22 Uop Inc. Reforming of hydrocarbons utilizing a trimetallic catalyst
US4714540A (en) * 1986-09-22 1987-12-22 Uop Inc. Reforming of hydrocarbons utilizing a trimetallic catalyst
US4962250A (en) * 1990-01-24 1990-10-09 Mobile Oil Corp. Process for the conversion of paraffins to olefins and/or aromatics and non-acidic zeolite catalyst therefor
CN1020378C (en) * 1990-03-17 1993-04-28 中国石油化工总公司 Catalyst for reforming naphtha
SA05260056B1 (en) 1991-03-08 2008-03-26 شيفرون فيليبس كيميكال كمبني ال بي Hydrocarbon processing device
US6258256B1 (en) 1994-01-04 2001-07-10 Chevron Phillips Chemical Company Lp Cracking processes
US6274113B1 (en) 1994-01-04 2001-08-14 Chevron Phillips Chemical Company Lp Increasing production in hydrocarbon conversion processes
KR100399304B1 (en) * 1995-06-16 2003-12-31 앵스띠뛰 프랑세 뒤 뻬뜨롤 Catalyst for hydrocarbon conversion reaction containing doping metal
FR2735488B1 (en) * 1995-06-16 1997-08-22 Inst Francais Du Petrole PROCESS FOR THE CATALYTIC CONVERSION OF HYDROCARBONS INTO AROMATIC COMPOUNDS WITH A LANTHANIDE-CONTAINING CATALYST
ZA969861B (en) * 1995-11-27 1997-05-27 Shell Int Research Process for the preparation of a catalyst or catalyst precursor
US6419986B1 (en) 1997-01-10 2002-07-16 Chevron Phillips Chemical Company Ip Method for removing reactive metal from a reactor system
US6495029B1 (en) 1997-08-22 2002-12-17 Exxon Research And Engineering Company Countercurrent desulfurization process for refractory organosulfur heterocycles
CA2243267C (en) 1997-09-26 2003-12-30 Exxon Research And Engineering Company Countercurrent reactor with interstage stripping of nh3 and h2s in gas/liquid contacting zones
US6083867A (en) * 1998-08-31 2000-07-04 Phillips Petroleum Company Hybrid catalyst system for converting hydrocarbons and a method of making and using such catalyst system
US6623621B1 (en) 1998-12-07 2003-09-23 Exxonmobil Research And Engineering Company Control of flooding in a countercurrent flow reactor by use of temperature of liquid product stream
US6497810B1 (en) 1998-12-07 2002-12-24 Larry L. Laccino Countercurrent hydroprocessing with feedstream quench to control temperature
US6579443B1 (en) 1998-12-07 2003-06-17 Exxonmobil Research And Engineering Company Countercurrent hydroprocessing with treatment of feedstream to remove particulates and foulant precursors
US6569314B1 (en) 1998-12-07 2003-05-27 Exxonmobil Research And Engineering Company Countercurrent hydroprocessing with trickle bed processing of vapor product stream
US6835301B1 (en) 1998-12-08 2004-12-28 Exxon Research And Engineering Company Production of low sulfur/low aromatics distillates
WO2000054879A1 (en) * 1999-03-18 2000-09-21 Matsushita Electric Works, Ltd. Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
US6566569B1 (en) 2000-06-23 2003-05-20 Chevron U.S.A. Inc. Conversion of refinery C5 paraffins into C4 and C6 paraffins
US6441263B1 (en) 2000-07-07 2002-08-27 Chevrontexaco Corporation Ethylene manufacture by use of molecular redistribution on feedstock C3-5 components
US6667270B2 (en) 2002-05-22 2003-12-23 Shell Oil Company Bismuth-and phosphorus-containing catalyst support, reforming catalysts made from same, method of making and naphtha reforming process
WO2003099433A1 (en) 2002-05-22 2003-12-04 Shell Internationale Research Maatschappij B.V. Bismuth-and phosphorus-containing reforming catalysts, method of making and naphtha reforming process
CN101468313B (en) * 2007-12-28 2014-08-20 中国石油化工股份有限公司 Method for preparing reforming catalyst
GB201002378D0 (en) 2010-02-12 2010-03-31 Johnson Matthey Plc Catalyst structures
WO2014085112A1 (en) * 2012-11-30 2014-06-05 Exxonmobil Chemical Patents Inc. Dehydrogenation process
US20140206915A1 (en) 2013-01-18 2014-07-24 Chevron U.S.A. Inc. Paraffinic jet and diesel fuels and base oils from vegetable oils via a combination of hydrotreating, paraffin disproportionation and hydroisomerization
AR118743A1 (en) 2019-04-21 2021-10-27 Chevron Usa Inc IMPROVED REFORM PROCESS

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL101242C (en) 1955-05-27 1900-01-01
NL110963C (en) 1955-07-18
US2939847A (en) * 1957-11-21 1960-06-07 Universal Oil Prod Co Manufacture of noble metal catalyst
GB826909A (en) 1957-12-23 1960-01-27 Universal Oil Prod Co Process for reforming hydrocarbon fractions boiling in the gasoline range
US2952611A (en) * 1958-03-11 1960-09-13 American Oil Co Regenerative platinum catalyst reforming
US3000813A (en) 1958-10-08 1961-09-19 American Cyanamid Co Platinum reforming catalyst and process for preparing the same
US2974111A (en) * 1958-10-13 1961-03-07 Universal Oil Prod Co Activated inorganic metal oxides
US3011967A (en) * 1959-11-24 1961-12-05 Standard Oil Co Platinum catalyst hydroforming and reactivation technique
NL265987A (en) 1960-06-15
FR1426063A (en) 1962-02-23 1966-01-28 Anciens Etablissements Granel Rosin treatment
US3258420A (en) 1962-05-07 1966-06-28 Sinclair Research Inc Reforming with optimization of hydrogen production
US3224962A (en) * 1962-07-27 1965-12-21 Shell Oil Co Sulfide treatment of reforming catalyst
US3236765A (en) * 1962-07-31 1966-02-22 Standard Oil Co Denitrogenation of hydrocarbon mixtures
US3287171A (en) * 1963-01-11 1966-11-22 Exxon Research Engineering Co Platinum-rhenium anodic oxidation catalyst
NL293400A (en) 1963-05-30 1900-01-01
US3347782A (en) * 1963-09-09 1967-10-17 Mobil Oil Corp Method of stabilizing platinum group metal reforming catalyst
US3291753A (en) * 1963-09-19 1966-12-13 Exxon Research Engineering Co Catalyst preparation
US3216923A (en) 1964-06-29 1965-11-09 Universal Oil Prod Co Hydrocarbon conversion process and catalyst therefor
US3574091A (en) 1968-06-24 1971-04-06 Universal Oil Prod Co Continuous,low pressure catalytic reforming process with sulfur inclusion and water exclusion
US3448036A (en) 1968-07-26 1969-06-03 Universal Oil Prod Co Continuous,low pressure catalytic reforming process with sulfur and halogen inclusion and water exclusion
US3515665A (en) 1969-07-17 1970-06-02 Universal Oil Prod Co Continuous low pressure catalytic reforming process with water and ammonia exclusion and programmed sulfur addition

Also Published As

Publication number Publication date
SE325555B (en) 1970-07-06
MY7500120A (en) 1975-12-31
DE1645715B1 (en) 1972-03-16
FR1575583A (en) 1969-07-25
DK134286B (en) 1976-10-11
AT298647B (en) 1972-05-10
CA1014137A (en) 1977-07-19
FI45453C (en) 1972-06-12
FI45453B (en) 1972-02-29
US3415737A (en) 1968-12-10
GB1151639A (en) 1969-05-14
MX5271E (en) 1983-05-26
ES354046A1 (en) 1969-10-16
DK134286C (en) 1977-03-07
YU246768A (en) 1973-12-31

Similar Documents

Publication Publication Date Title
NO120846B (en)
US6409939B1 (en) Method for producing a hydrogen-rich fuel stream
US6573214B2 (en) Preferential oxidation catalyst
US3389965A (en) Process for producing hydrogen by reaction of a hydrocarbon and steam employing a rhenium-containing catalyst
US3951782A (en) Reforming with a group IIB-containing catalyst
PH26593A (en) Trimetallic reforming catalyst
US3943050A (en) Serial reforming with zirconium-promoted catalysts
US3772184A (en) Reforming petroleum hydrocarbons with catalysts promoted with gallium and rhenium
US3825487A (en) Method for simultaneously producing synthetic natural gas and high octane reformate
US3487009A (en) Low pressure reforming with a platinumrhenium-iridium catalyst
US5166121A (en) Catalytic compositions
CA1291437C (en) Multi-stage catalytic reforming with high rhenium content catalyst
US3772183A (en) Reforming petroleum hydrocarbons with gallium-promoted catalysts
US3296119A (en) Catalytic reforming process and catalyst therefor
Franck et al. Deactivation of reforming catalysts
NO143052B (en) COMPOSITION CATALYST FOR HYDROCARBON CONVERSION AND PROCEDURES FOR HYDROCRACKING HYDROCARBONES
CN110064422B (en) Multi-metal continuous reforming catalyst and preparation method thereof
US4070306A (en) Method of treating a used platinum group alumina catalyst with a metal promoter
US4319984A (en) Reforming with an improved platinum-containing catalyst
JP3671246B2 (en) Hydroisomerization method
EP0027741B1 (en) Reforming catalyst and its use for the reforming of a hydrocarbon stream
US3793183A (en) Method for starting up a reforming process employing a catalyst containing a group viii metal, rhenium, and selenium
US4347123A (en) Reforming with multimetallic catalysts
CA2082430A1 (en) Catalytic compositions
US4469812A (en) Reforming catalyst containing a group VIII noble metal, a group VIII non-noble metal, and gallium on separate support particles