NO120335B - - Google Patents
Download PDFInfo
- Publication number
- NO120335B NO120335B NO165907A NO16590766A NO120335B NO 120335 B NO120335 B NO 120335B NO 165907 A NO165907 A NO 165907A NO 16590766 A NO16590766 A NO 16590766A NO 120335 B NO120335 B NO 120335B
- Authority
- NO
- Norway
- Prior art keywords
- carbon
- residue
- oxide
- hydrogen
- titanium
- Prior art date
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 42
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 26
- 229910052799 carbon Inorganic materials 0.000 claims description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 17
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 14
- 239000004408 titanium dioxide Substances 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 2
- 230000007717 exclusion Effects 0.000 claims 1
- 239000010936 titanium Substances 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 10
- 229910052719 titanium Inorganic materials 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910004369 ThO2 Inorganic materials 0.000 description 1
- 229910009973 Ti2O3 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 239000001038 titanium pigment Substances 0.000 description 1
- GQUJEMVIKWQAEH-UHFFFAOYSA-N titanium(III) oxide Chemical compound O=[Ti]O[Ti]=O GQUJEMVIKWQAEH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/89—Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S209/00—Classifying, separating, and assorting solids
- Y10S209/939—Video scanning
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
Fremgangsmåte for å behandle titandioksydmalmer. Process for treating titanium dioxide ores.
Foreliggende oppfinnelse vedrører en forbedret fremgangsmåte for reduksjon av titandioksydmalmer som inneholder små mengder av jernoksyd. The present invention relates to an improved method for the reduction of titanium dioxide ores containing small amounts of iron oxide.
Det er tidligere blitt foreslått å behandle titandioksydmalmer som inneholder mindre mengder av jernoksyd og gangart ved opphetning av malmen med en tilstrekkelig mengde carbon i et forsøk på å redusere alt jernet til elementær form og alt titandioksydet til et lavere oksyd, mens carbonet oksyderes til carbonmonoksyd. Ved utførelsen av denne kjente fremgangsmåte har det imidlertid vist seg at det må anvendes et overskudd av carbon. Dette forårsaker at det blir tilbake en uønsket stor mengde av det overskytende carbon som er uforbrukt i residuet av den delvis reduserte malm, og gjør det nødvendig å fjerne det ikke-forbrukte overskudd før fjernelsen av jernet som er blitt redusert til elementær form. Når det videre anvendes en slik fremgangsmåte, kan ikke en vesentlig fullstendig reduksjon av titandioksydet til et lavere oksyd oppnåes i løpet av en rimelig tid, med mindre reaksjonen utføres ved sterkt reduserte trykk ved hjelp av vakuumutstyr. It has previously been proposed to treat titanium dioxide ores containing smaller amounts of iron oxide and gangue by heating the ore with a sufficient amount of carbon in an attempt to reduce all the iron to elemental form and all the titanium dioxide to a lower oxide, while the carbon is oxidized to carbon monoxide. When carrying out this known method, however, it has been shown that an excess of carbon must be used. This causes an undesirably large amount of the excess carbon to remain unconsumed in the residue of the partially reduced ore, and makes it necessary to remove the unconsumed surplus prior to the removal of the iron which has been reduced to elemental form. When such a method is further used, a substantially complete reduction of the titanium dioxide to a lower oxide cannot be achieved within a reasonable time, unless the reaction is carried out at greatly reduced pressures by means of vacuum equipment.
Formålet med foreliggende oppfinnelse er å avhjelpe de ovennevnte vanskeligheter. The purpose of the present invention is to remedy the above-mentioned difficulties.
I overensstemmelse med foreliggende In accordance with the present
oppfinnelse modifiseres den kjente fremgangsmåte ved å utføre opphetningen av titandioksyder og en støkiometrisk mengde carbon for reduksjon av titandioksydet og mindre mengder av tilstedeværende jern ved en temperatur innenfor området mel-lom 1300 og 1600° C i nærvær av hydrogen ved normalt trykk, hvorved det fremstilles invention, the known method is modified by heating titanium dioxide and a stoichiometric amount of carbon to reduce the titanium dioxide and smaller amounts of iron present at a temperature within the range between 1300 and 1600° C in the presence of hydrogen at normal pressure, whereby it is produced
et delvis redusert, i alt vesentlig carbon-fritt, porøst sintret malmresiduum i hvilket jernet i alt vesentlig er fullstendig redusert til elementært jern og titanet er i alt vesentlig fullstendig redusert til et lavere oksyd eller oksyder. a partially reduced, substantially carbon-free, porous sintered ore residue in which the iron is substantially completely reduced to elemental iron and the titanium is substantially completely reduced to a lower oxide or oxides.
Ved den foretrukne fremgangsmåte for utførelse av oppfinnelsen reduseres par-tikkelstørrelsen av en titandioksydmalm om nødvendig til et pulver som er fritt for store klumper eller korn. En avmålt mengde av carbon i findelt form, som f. eks. lampe-sot eller grafitt, blandes derpå omhyggelig med malmen. Den totale carbonmengde som anvendes er den mengde som vil for-ene seg med alt oksygenet i jernet, og fra V4 til V2-del av oksygenet i TiO- så at der dannes CO. In the preferred method for carrying out the invention, the particle size of a titanium dioxide ore is reduced, if necessary, to a powder that is free of large lumps or grains. A measured amount of carbon in finely divided form, such as lamp soot or graphite, is then carefully mixed with the ore. The total amount of carbon used is the amount that will combine with all the oxygen in the iron, and from V4 to V2 part of the oxygen in TiO, so that CO is formed.
Blandingen av malmen og carbon char-geres inn i en passende lukket ovn. Luftens adgang forhindres slik at den ønskete ovns-atmosfære opprettholdes og ovnen opphetes for å bringe chargens temperatur til området av 1300 til 1600° C, hvor denne temperatur holdes i tre til fem timer eller deromkring, alt efter den spesielle temperatur som anvendes og den fysikalske art av malm-carbonblandingen. Temperaturer over 1600° C vil ha en tendens til å danne TiC, særlig hvis der er til stede et overskudd av carbon like overfor den nødven-dige mengde, og dette unngåes på en øn-sket måte ved å utføre malmreduksjonen ved en temperatur under 1600° C. The mixture of ore and carbon is charged into a suitable closed furnace. The entry of air is prevented so that the desired furnace atmosphere is maintained and the furnace is heated to bring the temperature of the charge to the range of 1300 to 1600°C, where this temperature is maintained for three to five hours or so, depending on the particular temperature used and the physical nature of the ore-carbon mixture. Temperatures above 1600° C will tend to form TiC, especially if there is an excess of carbon just opposite the required amount, and this is avoided in a desired way by carrying out the ore reduction at a temperature below 1600 °C.
For å oppnå en effektiv reduksjon av alt TiOa, i det minste til Ti^O:!, skal der opprettholdes en atmosfære bestående i alt vesentlig av hydrogen (og CO som uunn-gåelig er til stede) i ovnen ved å innføre en kontinuerlig strøm av hydrogen slik at CO føres bort efter som det dannes gjennom en passende utløpsåpning og slik at inn-slipning av luft forhindres. Når der opprettholdes en slik atmosfære i ovnen og temperaturen i denne holdes over ca. 1300° C, vil carbon opp til den ovenfor angitte maksimumsmengde (svarende til fra V4 til y2-del av oksygen i TiOa) forbrukes for reduksjon av TiOa til et lavere oksyd eller oksyder. Forutsatt at der er tilstrekkelig carbon opptil denne maksimumsmengde som foran nevnt, vil alt bli forbrukt og i det vesentlige alt Ti02 vil bli redusert til i det minste TiaOa, mens eventuelt tilstedeværende jernoksyd vil bli redusert til elementært jern. Hvis den teoretisk krevete mengde av carbon er til stede, kan der oppnåes en praktisk talt fullstendig reduksjon av Ti02 til TiO, mens bare små mengder forblir som Ti;i04 eller Ti203, og disse lavere oksyder vil være praktisk talt fullstendig oppløselig i svovelsyre ved hjelp av en for-holdsvis kort behandling. Residuet som forblir i ovnen, kan anvendes som et syreopp-løselig titanoksydråmateriale for titanpig-mentindustrien. In order to achieve an effective reduction of all TiOa, at least to Ti^O:!, an atmosphere consisting essentially of hydrogen (and CO which is unavoidably present) must be maintained in the furnace by introducing a continuous current of hydrogen so that CO is carried away as it is formed through a suitable outlet opening and so that the grinding in of air is prevented. When such an atmosphere is maintained in the oven and the temperature in it is kept above approx. 1300° C, carbon up to the maximum amount stated above (corresponding to from V4 to y2 part of oxygen in TiOa) will be consumed for the reduction of TiOa to a lower oxide or oxides. Provided that there is sufficient carbon up to this maximum amount as mentioned above, everything will be consumed and essentially all Ti02 will be reduced to at least TiaOa, while any iron oxide present will be reduced to elemental iron. If the theoretically required amount of carbon is present, a practically complete reduction of Ti02 to TiO can be obtained, while only small amounts remain as Ti;i04 or Ti203, and these lower oxides will be practically completely soluble in sulfuric acid by of a relatively short treatment. The residue that remains in the furnace can be used as an acid-soluble titanium oxide raw material for the titanium pigment industry.
De følgende eksempler 1, 2, 3 og 4 viser med hvilken effektivitet reaksjonen kan utføres, hvorunder titan reduseres til et lavere oksyd eller oksyder. The following examples 1, 2, 3 and 4 show the efficiency with which the reaction can be carried out, during which titanium is reduced to a lower oxide or oxides.
I eksemplene 1 og 2 var det til stede en merkbar, skjønt dog liten, mengde av jern, hvilket vil fremgå av den følgende analyse av et naturlig rutil, som ble be-handlet i overensstemmelse med disse eksempler. In examples 1 and 2, a noticeable, albeit small, amount of iron was present, which will appear from the following analysis of a natural rutile, which was treated in accordance with these examples.
Den følgende analyse angir også sam-mensetningen av et syntetisk rutil, som be-handles i eksemplene 3 og 4. The following analysis also indicates the composition of a synthetic rutile, which is treated in examples 3 and 4.
Eksempel 1: Example 1:
160 vektsdeler naturlig rutilmalm av den ovenfor angitte sammensetning og med en partikkelstørrelse på maksimum ca. 40 160 parts by weight of natural rutile ore of the composition stated above and with a particle size of a maximum of approx. 40
mikron ble intimt blandet med 12 deler findelt carbon og anbrakt i en grafittdigel. Hydrogen ble ledet i en strøm gjennom digelen for å føre bort CO eftersom dette ble dannet og for å opprettholde en reduserende atmosfære, bestående i alt vesentlig av hydrogen, og innholdet i digelen ble opphetet til en temperatur innenfor området av fra 1500 til 1550° C i en periode av ca. micron was intimately mixed with 12 parts finely divided carbon and placed in a graphite crucible. Hydrogen was passed in a stream through the crucible to drive away CO as it was formed and to maintain a reducing atmosphere, consisting essentially of hydrogen, and the contents of the crucible were heated to a temperature in the range of from 1500 to 1550°C in a period of approx.
2 timer, hvorpå opphetningen ble avbrutt 2 hours, after which the heating was interrupted
og chargen fikk anledning til å kjøle seg. Residuet var et mørkeblått kornet titanoksyd. and the charge was allowed to cool. The residue was a dark blue granular titanium oxide.
Under antagelse av at rutilmalmen var rent TiOi> og at Ti02 ble fullstendig redusert til Ti203, skulle residuet i digelen ha utgjort 144 deler. Den virkelige vekt av residuet i digelen var 140 deler, hvilket viser at en del av titanoksydet var blitt redusert til en ennå lavere oksydform som f. eks. TiO. En analyse av produktet viste et titaninnhold av 68 %, sammenlignet med et teoretisk titaninnhold av 66,6 % for Ti2Oa, hvilket således bekrefter at der har funnet sted en i alt vesentlig fullstendig reduksjon av titanet i det minste til formen Ti203 med en relativt liten mengde redusert til TiO. Residuet var ca. 90 % oppløse-lig i svovelsyre i løpet av en relativt kort tid. On the assumption that the rutile ore was pure TiOi> and that the Ti02 was completely reduced to Ti203, the residue in the crucible should have amounted to 144 parts. The real weight of the residue in the crucible was 140 parts, which shows that a part of the titanium oxide had been reduced to an even lower oxide form such as e.g. TiO. An analysis of the product showed a titanium content of 68%, compared to a theoretical titanium content of 66.6% for Ti2Oa, thus confirming that an essentially complete reduction of the titanium at least to the form Ti2O3 has taken place with a relatively small quantity reduced to TiO. The residue was approx. 90% soluble in sulfuric acid within a relatively short time.
Eksempel 2: Example 2:
80 vektsdeler av den samme naturlige rutilmalm med en partikkelstørrelse av ca. 40 mikron maksimum ble intimt blandet 80 parts by weight of the same natural rutile ore with a particle size of approx. 40 micron maximum was intimately mixed
med 12 deler findelt carbon og anbrakt i en grafittdigel. En atmosfære bestående i alt vesentlig av hydrogen ble opprettholdt på samme måte som nevnt i eksempel 1 og innholdet i digelen ble opphetet til en temperatur innenfor området av 1500 til 1525° C i en periode av ca. iy2 time, hvorpå opphetningen ble avbrutt og chargen fikk anledning til å avkjøle seg. Residuet var et gråaktig brunt pulverformet titanoksyd. with 12 parts of finely divided carbon and placed in a graphite crucible. An atmosphere consisting essentially of hydrogen was maintained in the same way as mentioned in example 1 and the contents of the crucible were heated to a temperature within the range of 1500 to 1525° C for a period of approx. iy2 hour, after which the heating was interrupted and the charge was allowed to cool. The residue was a grayish brown powdered titanium oxide.
Under antagelse av at rutilmalmen var rent TK>2 og at Ti02 var fullstendig redusert til TiO, skulle residuet i digelen ha utgjort 64 vektsdeler. Den virkelige vekt var 66 deler, hvilket viser at der hadde funnet On the assumption that the rutile ore was pure TK>2 and that the Ti02 was completely reduced to TiO, the residue in the crucible should have amounted to 64 parts by weight. The real weight was 66 parts, which shows that there had found
sted en reduksjon av det opprinnelige oksyd i alt vesentlig fullstendig til TiO, mens place a reduction of the original oxide essentially completely to TiO, while
resten sannsynligvis var redusert til Ti20.s. the rest were probably reduced to Ti20.s.
Analyse av produktet viste et titaninnhold Analysis of the product showed a titanium content
av ca. 72 % sammenlignet med et teoretisk titaninnhold av 75 % av TiO, hvilket bekrefter at der hadde funnet sted en praktisk talt fullstendig reduksjon av titan - dioksyd til TiO. Residuet var ca. 95 % oppløselig i svovelsyre i løpet av relativt kort tid. of approx. 72% compared to a theoretical titanium content of 75% of TiO, which confirms that practically complete reduction of titanium dioxide to TiO had taken place. The residue was approx. 95% soluble in sulfuric acid within a relatively short time.
Eksempel 3: 160 vektsdeler av syntetisk rutil av den ovenfor angitte analyse og med en par-tikkelstørrelse maks. av ca. 75 mikron ble intimt blandet med 12 deler findelt carbon og anbrakt i en grafittdigel. En atmosfære bestående i alt vesentlig av hydrogen, ble opprettholdt på samme måte som angitt i eksempel 1 og digelens innhold ble opphetet til en temperatur innenfor området 1400 til 1525° C i en periode av ca. 5 timer. Residuet var et mørkeblått, kornet oksyd av titan. Example 3: 160 parts by weight of synthetic rutile of the above analysis and with a particle size of max. of approx. 75 micron was intimately mixed with 12 parts finely divided carbon and placed in a graphite crucible. An atmosphere consisting essentially of hydrogen was maintained in the same way as stated in example 1 and the contents of the crucible were heated to a temperature within the range of 1400 to 1525° C for a period of approx. 5 hours. The residue was a dark blue, granular oxide of titanium.
Vekten av residuet var 135 deler like overfor en teoretisk gjenvinning av 144 deler og titaninnholdet i residuet var ca. 68 % hvilket igjen viser at der hadde funnet sted en i alt vesentlig fullstendig reduksjon av titandioksydet i det minste til formen TiaOa med en relativt liten mengde redusert til TiO. Residuet var ca. 94 % oppløselig i svovelsyre i løpet av relativt kort tid. The weight of the residue was 135 parts equal to a theoretical recovery of 144 parts and the titanium content in the residue was approx. 68%, which again shows that an essentially complete reduction of the titanium dioxide had taken place at least to the form TiaOa with a relatively small amount reduced to TiO. The residue was approx. 94% soluble in sulfuric acid within a relatively short time.
Eksempel 4: 80 vektsdeler av det samme syntetiske rutil med en partikkelstørrelse av maksimum 75 mikron ble intimt blandet med 12 deler findelt carbon og anbrakt i en grafittdigel. En atmosfære bestående i alt vesentlig av hydrogen, ble opprettholdt på samme måte som angitt i eksempel 1, og digelens innhold ble opphetet til en temperatur innenfor området av 1450 til 1550° C i en periode av ca. 3y2 time. Residuet var et gråaktig brunt pulverformet titanoksyd. Example 4: 80 parts by weight of the same synthetic rutile with a particle size of 75 microns maximum was intimately mixed with 12 parts finely divided carbon and placed in a graphite crucible. An atmosphere consisting essentially of hydrogen was maintained in the same way as stated in example 1, and the contents of the crucible were heated to a temperature within the range of 1450 to 1550° C for a period of approx. 3y2 hours. The residue was a grayish brown powdered titanium oxide.
Vekten av residuet var 65,5 deler like overfor en teoretisk gjenvinning av 64 deler og titaninnholdet i residuet var ca. 73 % like overfor det teoretiske innhold av 75 % for rent TiO, hvilket viser at der hadde funnet sted en i alt vesentlig fullstendig reduksjon av det opprinnelige oksyd til TiO med en relativt liten mengde redusert til Tii>Os. Residuet var ca. 94 % oppløselig i svovelsyre i løpet av en relativt kort tid. The weight of the residue was 65.5 parts equal to a theoretical recovery of 64 parts and the titanium content in the residue was approx. 73% equal to the theoretical content of 75% for pure TiO, which shows that there had taken place an essentially complete reduction of the original oxide to TiO with a relatively small amount reduced to Tii>Os. The residue was approx. 94% soluble in sulfuric acid within a relatively short time.
Som følge av dannelsen av CO gass under reaksjonen kan atmosfæren i reduk-sjonsovnen naturligvis ikke bestå fullstendig av rent hydrogen. Ved opprettholdelse av en konstant strøm av hydrogen inn i og gjennom systemet kan imidlertid den mengde CO-gass som til enhver tid er til stede, holdes relativt liten, slik at denne CO-gass ikke har noen nevneverdig forsinkende virkning på reaksjon. As a result of the formation of CO gas during the reaction, the atmosphere in the reduction furnace cannot naturally consist entirely of pure hydrogen. By maintaining a constant flow of hydrogen into and through the system, however, the amount of CO gas that is present at all times can be kept relatively small, so that this CO gas has no significant delaying effect on the reaction.
Alt efter hvilken kilde som er mest Depending on which source is the most
hensiktsmessig for hydrogenet kan denne reduserende gass være fortynnet eller ikke i en viss utstrekning med en inert gass, som f. eks. nitrogen. Blandingen av nitrogen og hydrogen som fåes ved spalting av ammoniakk, kan f. eks. anvendes direkte i prosessen og den resulterende 25 %'s for-tynning av hydrogenet med nitrogenet som er ikkeoksyderende og fullstendig inert i prosessen, er ikke for stor for oppfinnelsens øyemed. På lignende måte er innføringen av ammoniakk i systemet mulig da ammo-niakken umiddelbart spaltes ved den høye temperatur som opprettholdes i systemet. suitably for the hydrogen, this reducing gas may or may not be diluted to a certain extent with an inert gas, such as e.g. nitrogen. The mixture of nitrogen and hydrogen obtained by splitting ammonia can, e.g. is used directly in the process and the resulting 25% dilution of the hydrogen with the nitrogen, which is non-oxidizing and completely inert in the process, is not too great for the purpose of the invention. In a similar way, the introduction of ammonia into the system is possible as the ammonia is immediately decomposed at the high temperature maintained in the system.
Av de foregående bemerkninger vil det forståes at den aktive atmosfære består i alt vesentlig av hydrogen og slike andre inaktive gasser som er til stede i relativt små mengder, og vil ikke utøve mer enn en ganske liten forsinkende effekt på hastig-heten og effektiviteten av reaksjonen. Ut-trykket «en atmosfære, bestående i alt vesentlig av hydrogen» skal følgelig her forståes slik at det omfatter atmosfærer av den foran angitte karakter. From the foregoing remarks, it will be understood that the active atmosphere consists essentially of hydrogen and such other inactive gases as are present in relatively small quantities, and will exert no more than a rather slight retarding effect on the speed and efficiency of the reaction . The expression "an atmosphere, consisting essentially of hydrogen" is therefore to be understood here as including atmospheres of the nature specified above.
Da reaksjonen for å gi som resultat ved reduksjonen at alt Ti02 reduseres i det minste til formen ThOz, krever et forhold av carbon til TiO^ av i det minste 3:40, vil anvendelsen av enhver mindre mengde carbon i forhold til TiOu i chargen naturligvis være uøkonomisk for dette øyemed. Anvendelsen av bare ubetydelig lavere forhold av carbon til Ti02 i den oprinnelige char-ge resulterer i et lavere utbytte av det øn-skede lavere oksyd. Since the reaction to result in the reduction of all TiO2 being reduced at least to the form ThO2 requires a ratio of carbon to TiO^ of at least 3:40, the use of any smaller amount of carbon relative to TiOu in the charge will naturally be uneconomical for this purpose. The use of only insignificantly lower ratios of carbon to TiO 2 in the original charge results in a lower yield of the desired lower oxide.
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US512874A US3389789A (en) | 1965-12-10 | 1965-12-10 | Detecting and sorting means for sheets having flaws |
Publications (1)
Publication Number | Publication Date |
---|---|
NO120335B true NO120335B (en) | 1970-10-05 |
Family
ID=24040967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO165907A NO120335B (en) | 1965-12-10 | 1966-12-08 |
Country Status (5)
Country | Link |
---|---|
US (1) | US3389789A (en) |
DE (1) | DE1573955A1 (en) |
GB (1) | GB1171142A (en) |
NO (1) | NO120335B (en) |
SE (1) | SE333255B (en) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1285216B (en) * | 1966-07-15 | 1968-12-12 | Rheinische Kalksteinwerke | Device for sorting bulk goods |
GB1240263A (en) * | 1967-07-10 | 1971-07-21 | British Insulated Callenders | Improvements in or relating to testing insulated conductors |
US3578904A (en) * | 1968-10-15 | 1971-05-18 | Reynolds Metals Co | Feature counter with feature discrimination and/or masking |
US3579249A (en) * | 1969-08-08 | 1971-05-18 | Reynolds Metals Co | Feature counter having between limits amplitude and/or width discrimination |
US3715476A (en) * | 1969-01-16 | 1973-02-06 | Nippon Steel Corp | Method and apparatus for detecting pinholes on sheet articles |
US3641257A (en) * | 1970-01-16 | 1972-02-08 | Hughes Aircraft Co | Noise suppressor for surveillance and intrusion-detecting system |
US3647961A (en) * | 1970-04-09 | 1972-03-07 | Western Electric Co | T.v. -aided flaw detection using rotating image techniques |
US3729635A (en) * | 1970-10-14 | 1973-04-24 | Lindly & Co | Yarn inspector |
US3694658A (en) * | 1970-10-22 | 1972-09-26 | Morvue Inc | Veneer inspection system |
US3689830A (en) * | 1971-04-05 | 1972-09-05 | Us Army | Exploding bridgewire tester with square wave generator |
GB1395147A (en) * | 1971-05-06 | 1975-05-21 | Image Analysing Computers Ltd | Feature classifiaction in image analysis |
US3872243A (en) * | 1971-05-18 | 1975-03-18 | Image Analysing Computers Ltd | Method and apparatus for checking measurements made in image analysis systems |
US3882316A (en) * | 1973-05-24 | 1975-05-06 | Smithkline Corp | Quality control monitor for medicinal capsule packaging apparatus |
US3911360A (en) * | 1974-02-11 | 1975-10-07 | Gene A Kimzey | Variable time delay voltage dropout detector |
US4011457A (en) * | 1975-08-06 | 1977-03-08 | E. I. Du Pont De Nemours And Company | Web defect monitor for abrupt changes in web density |
US4207472A (en) * | 1975-12-05 | 1980-06-10 | The Bendix Corporation | Lumber inspection and optimization system |
JPS52114212A (en) * | 1976-03-22 | 1977-09-24 | Fujitsu Ltd | Information density determining circuit |
DE2728717C2 (en) * | 1977-06-25 | 1983-11-10 | Pfister Gmbh, 8900 Augsburg | Method and device for the non-contact determination of quality features of a test object of the meat product category, in particular a carcass or parts thereof |
FR2402868A1 (en) * | 1977-09-12 | 1979-04-06 | Usinor | METHOD AND APPARATUS FOR DETECTION OF SURFACE FAULTS ON A HIGH SPEED TRAVELING BELT |
US4237539A (en) * | 1977-11-21 | 1980-12-02 | E. I. Du Pont De Nemours And Company | On-line web inspection system |
US4173736A (en) * | 1978-03-06 | 1979-11-06 | Western Electric Company, Incorporated | Capacitance detecting system and method for testing wire connections |
US4205769A (en) * | 1978-05-05 | 1980-06-03 | Western Electric Company, Inc. | Methods of and system for counting holes and for detecting missing holes in a web |
US4287990A (en) * | 1979-07-30 | 1981-09-08 | Libbey-Owens-Ford Company | Glass sheet shipping packages |
DE2952712C2 (en) * | 1979-12-29 | 1984-07-12 | Hoesch Werke Ag, 4600 Dortmund | Device for detecting errors |
US4500202A (en) * | 1982-05-24 | 1985-02-19 | Itek Corporation | Printed circuit board defect detection of detecting maximum line width violations |
US4578810A (en) * | 1983-08-08 | 1986-03-25 | Itek Corporation | System for printed circuit board defect detection |
GB2175396B (en) * | 1985-05-22 | 1989-06-28 | Filler Protection Developments | Apparatus for examining objects |
US4675730A (en) * | 1985-09-06 | 1987-06-23 | Aluminum Company Of America | Video surface inspection system |
DE3672163D1 (en) * | 1986-02-22 | 1990-07-26 | Pinsch Gmbh & Co Helmut K | WOOD CHECKER. |
US5113454A (en) * | 1988-08-19 | 1992-05-12 | Kajaani Electronics Ltd. | Formation testing with digital image analysis |
US5033095A (en) * | 1988-09-30 | 1991-07-16 | Marcantonio Jeffrey J | Scanning image analyzer for accumulating quantifiable contaminants of webs |
US4931657A (en) * | 1989-04-13 | 1990-06-05 | Macmillan Bloedel Limited | On-line texture sensing |
DE19544481A1 (en) * | 1995-11-29 | 1997-06-05 | Laser Sorter Gmbh | Lighting device with metal halide lamps |
FI110545B (en) * | 1998-10-28 | 2003-02-14 | Valtion Teknillinen | Method and arrangement for measuring wood material |
CA2631154A1 (en) * | 2005-11-28 | 2007-05-31 | Navy Island Plywood, Inc. | Method of rating wood product quality |
WO2010008074A1 (en) * | 2008-07-18 | 2010-01-21 | 瀬戸製材株式会社 | Wood management system |
US20120050522A1 (en) * | 2010-08-24 | 2012-03-01 | Research In Motion Limited | Method of and apparatus for verifying assembly components of a mobile device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2735017A (en) * | 1956-02-14 | beard ettal | ||
US2975293A (en) * | 1955-02-18 | 1961-03-14 | Diamond Power Speciality | Optical defect detector |
US2947212A (en) * | 1956-04-30 | 1960-08-02 | American Brass Co | Method of detecting surface conditions of sheet metal |
US3019346A (en) * | 1960-03-28 | 1962-01-30 | Jones & Laughlin Steel Corp | Electronic surface inspection system |
US3096443A (en) * | 1960-06-20 | 1963-07-02 | Jones & Laughlin Steel Corp | Electronic surface inspection system |
US3264480A (en) * | 1962-01-15 | 1966-08-02 | Linen Supply Ass Of America | Photoelectric inspection apparatus for material having variations in reflectivity |
-
1965
- 1965-12-10 US US512874A patent/US3389789A/en not_active Expired - Lifetime
-
1966
- 1966-12-01 GB GB53752/66A patent/GB1171142A/en not_active Expired
- 1966-12-06 DE DE19661573955 patent/DE1573955A1/en active Pending
- 1966-12-08 NO NO165907A patent/NO120335B/no unknown
- 1966-12-09 SE SE16945/66A patent/SE333255B/en unknown
Also Published As
Publication number | Publication date |
---|---|
US3389789A (en) | 1968-06-25 |
SE333255B (en) | 1971-03-08 |
DE1573955A1 (en) | 1971-01-14 |
GB1171142A (en) | 1969-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO120335B (en) | ||
RU2102510C1 (en) | Method of raising titanium dioxide content in titanium-containing ore or concentrate | |
US2184885A (en) | Treatment of titanium ores | |
US2762700A (en) | Production of ferrous chloride and metallic iron powder | |
CN106044771A (en) | Titanium carbide preparation method based on carbonization titanium extraction treatment of titanium-bearing blast furnace slag | |
US2933373A (en) | Beneficiation of titaniferous iron ores | |
JPS6169910A (en) | Fluidized bed reducing method of iron ore | |
US2852362A (en) | Process for forming titanium concentrates | |
CN106744960A (en) | A kind of method that oxidation of coal titanium or/and titanium carbide are prepared with carburetted hydrogen gas reduction | |
US2848303A (en) | Production of lower oxides of titanium | |
US3073695A (en) | Method for producing iron powder having low carbon and oxygen contents | |
US2928724A (en) | Method for producing titanium tetrachloride | |
US2603554A (en) | Production of zinc oxide | |
US3482964A (en) | Process of obtaining a granular charge for the blast furnace from a pyrite cinder and iron manufacture dust or powdered iron ore | |
US2089306A (en) | Method and apparatus for the burning of mineral sulphides in gaseous suspension | |
US3211527A (en) | Process for producing ultrafine silicon nitride | |
US3401032A (en) | Removal of impurities from nickel oxide granules | |
CA1113225A (en) | Recovery of chlorine values | |
US3179497A (en) | Production of selenium oxide, tellurium oxide or mixture thereof | |
US4517163A (en) | Process for making titanium dioxide concentrates | |
US2928721A (en) | Method for producing thorium tetrachloride | |
US2912319A (en) | Method for desulphurizing iron | |
US2750255A (en) | Process for rendering titanium minerals and ores soluble in acids | |
US986271A (en) | Process of refining and agglomerating ores and the like. | |
US2936217A (en) | Method for chlorinating titanium oxide material |