NO120041B - - Google Patents

Download PDF

Info

Publication number
NO120041B
NO120041B NO342568A NO342568A NO120041B NO 120041 B NO120041 B NO 120041B NO 342568 A NO342568 A NO 342568A NO 342568 A NO342568 A NO 342568A NO 120041 B NO120041 B NO 120041B
Authority
NO
Norway
Prior art keywords
amplifier element
amplifier
output
switching device
electrode
Prior art date
Application number
NO342568A
Other languages
Norwegian (no)
Inventor
K Dieter
L Hoelzl
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Publication of NO120041B publication Critical patent/NO120041B/no

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/50Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3083Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the power transistors being of the same type
    • H03F3/3084Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the power transistors being of the same type one of the power transistors being controlled by the output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/50Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F2203/5006Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower the input signal being capacitively coupled to the gate of the source follower
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/50Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F2203/5009Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower the output signal being capacitively coupled to the source of the source follower
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/50Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F2203/5021Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower the source follower has a controlled source circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/50Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F2203/5024Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower the source follower has a controlled source circuit, the source circuit being controlled via a capacitor, i.e. AC-controlled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/50Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F2203/5031Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower the source circuit of the follower being a current source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/50Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F2203/5039Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower the source circuit of the follower has one or more capacitors between source and supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Description

Koplingsanordning som tjener til effektforsterkning. Coupling device that serves for power amplification.

Oppfinnelsens gjenstand er en koblingsanordning som tjener til forsterkning av effekt, og som har hoy inngangs- The object of the invention is a switching device which serves to amplify power, and which has a high input

og lav utgangsmotstand og ikke behover noen utgangstransformator, og hvor to forsterkerelementer i serie er tilsluttet en matende stromkilde og inngangssignalet foreligger ved det forste forsterkerelements styreelektrode, mens det forste forsterkerelements utgangselektrode er forbundet med det annet forsterkerelements styreelektrode og utgangsbelastningen er tilsluttet de to forsterkerelementers forbindelsespunkt over en kondensator. and low output resistance and does not require an output transformer, and where two amplifier elements in series are connected to a feeding current source and the input signal is present at the first amplifier element's control electrode, while the first amplifier element's output electrode is connected to the second amplifier element's control electrode and the output load is connected to the connection point of the two amplifier elements above a capacitor.

I effektforsterkere er de anvendte transformatorer ugunstige på grunn av sin pris og sitt volum. For en okonomisk produksjon og særlig for den integrerte oppbygning som har vært utviklet i den seneste tid, er det nodvendig å få plass til koblins-enhetene innen et lite volum. Det er derfor viktig å erstatte de kjente forsterkerkoblinger som innbefatter transformatorer, med slutt-effektforsterkere uten transformatorer. In power amplifiers, the transformers used are disadvantageous because of their price and volume. For economical production and especially for the integrated structure that has been developed in recent times, it is necessary to find space for the koblins units within a small volume. It is therefore important to replace the known amplifier connections that include transformers with power amplifiers without transformers.

Oppfinnelsens oppgave er å gi anvisning på en effektforsterker som har gunstigere virkningsgrad enn kjente koblinger og ikke behover noen transformator, men alikevel gir liten klirrfaktor. Samtidig skal der realiseres en stor effektforsterkning og, for at utgangsspenningen skal bli minst mulig avhengig av den tilsluttede utgangsbelastning, en lav utgangsmotstand. The task of the invention is to provide instructions for a power amplifier which has a more favorable efficiency than known connections and does not require a transformer, but still provides a low jitter factor. At the same time, a large power gain must be realized and, in order for the output voltage to depend as little as possible on the connected output load, a low output resistance.

Ifolge oppfinnelsen loses oppgaven ved at der mellom det forste forsterkerelements utgangselektrode og det annet forsterkerelements styreelektrode er innkoblet et tredje forsterkerelement. According to the invention, the task is solved by connecting a third amplifier element between the output electrode of the first amplifier element and the control electrode of the second amplifier element.

Der er allerede kjent en koblingsanordning som finner anvendelse som avkoblingsforsterkere Qg ..ikke .behover noen transformator. Dette transformatorlose forsterkertrinn betegnes som "White-katodefolgerkobling" (Internationale Elektrische Rund-schau 1966, nr. 2, s. 85 - 88). There is already known a switching device which finds use as decoupling amplifiers Qg ..does not .require any transformer. This transformerless amplifier stage is referred to as "White-cathode-follower coupling" (Internationale Elektrische Rund-schau 1966, no. 2, pp. 85 - 88).

Denne koblingsanordning avgir en effekt til en kondensatorkoblet forbruker. Den kan derfor også anvendes som transformatorlost sluttrinn. This switching device emits a power to a capacitor-connected consumer. It can therefore also be used as a transformerless final stage.

Forsterkerkoblingen ifolge oppfinnelsen har vesentlig gunstigere egenskaper enn de kjente anordninger. Ved hjelp av den nye anordning blir der oppnådd en hoy inngangsmotstand, en lav utgangsmotstand og en hoyere virkningsgrad enn ved de kjente koblinger. Ved de nye slutt-effekttrinn er det dessuten mulig å drive koblingen som AB-forsterker og dermed forbedre virkningsgraden ytterligere. Koblingen egner seg til å utfores i integrert oppbygning så det dermed blir mulig på særlig okonomisk måte å produsere byggetrinn for transformatorlose slutt-effekttrinn. På grunn av den lave utgangsmotstand blir utgangsspenningen i vidtgående grad uavhengig av belastningen, så anordningen også kan tjene som skille-forsterker. Videre er den nye kobling bare lite omfintlig overfor brummespenninger som overlagres driftspenningen, da koblingsprin-sippet betinger at bare en brokdel av den opptredende brummespenning kan komme frem til utgangen. The amplifier coupling according to the invention has significantly more favorable properties than the known devices. With the help of the new device, a high input resistance, a low output resistance and a higher degree of efficiency are achieved than with the known connections. With the new final power stages, it is also possible to operate the coupling as an AB amplifier and thus further improve the efficiency. The connection is suitable for being carried out in an integrated structure, so it is thus possible to produce building stages for transformerless final power stages in a particularly economical way. Due to the low output resistance, the output voltage is largely independent of the load, so the device can also serve as a separation amplifier. Furthermore, the new connection is only slightly sensitive to hum voltages that are superimposed on the operating voltage, as the connection principle requires that only a fraction of the occurring hum voltage can reach the output.

Enkeltheter ved oppfinnelsen vil bli forklart i forbindelse med et fordelaktig utforelseseksempel som er vist på tegningen. Fig. 1 viser prinsippet for en "White-katodefolgerkobling" med transistorer. Fig. 2 viser et koblingsforslag for en "White-katodef olgerkobling" , og Details of the invention will be explained in connection with an advantageous embodiment shown in the drawing. Fig. 1 shows the principle of a "White cathode follower connection" with transistors. Fig. 2 shows a connection proposal for a "White-cathode olger connection", and

fig. 3 viser et forsterkertrinn i samsvar med oppfinnelsen. fig. 3 shows an amplifier stage in accordance with the invention.

Fig. 1 anskueliggjor prinsippet for en "White-katodef olgerkobling" hvor det anvendes transistorer. C betegner koblingskondensatoren, RL forbrukermotstanden og ,uo' en likespennings-kilde som behoves til kobling av de to transistorer. UB er trinnets driftsspenning. Til forklaring av virkemåten etter dette prinsipp skal motstanden R antas lik null. Koblingen forholder seg da som et vanlig kollektortrinn som får sin hvilestrom fra transistoren T2. Ved endelig motstand R og utstyring med en vekselspenning på inn-gangssiden oppstår der derimot i kollektorstrommen for'transistoren T2 en vekselstromkomponent som er i fase med utgangsstrommen IL. Laststrommen må derfor ikke presteres fullt ut av transistoren Tl, Fig. 1 illustrates the principle of a "White-cathode electrocoupler" where transistors are used. C denotes the coupling capacitor, RL the consumer resistor and 'uo' a direct voltage source which is needed to connect the two transistors. UB is the stage's operating voltage. To explain how it works according to this principle, the resistance R must be assumed equal to zero. The connection then behaves like a normal collector stage which gets its quiescent current from the transistor T2. In the case of finite resistance R and equipment with an alternating voltage on the input side, on the other hand, an alternating current component occurs in the collector current of the transistor T2 which is in phase with the output current IL. The load current must therefore not be fully performed by the transistor Tl,

så inngangsmotstanden Ril på grunn av transistoren T2 er hoyere enn ved en kollektorkobling som bare består av Tl. På lignende måte bevirker den kobling som består av R, T2 og Uo, også en senkning av vekselstrom-utgangsmotstanden Ri2. Ved et normalt kollektortrinn med transistorer er tomlopsspennings-forsterkningen også ved den her beskrevne kobling omtrent lik 1 når man antar idealiserte beting-elser - idet man ignorerer transistor-tilbakevirkning og transistor-utgangskonduktans. so the input resistance Ril due to the transistor T2 is higher than with a collector junction consisting only of Tl. Similarly, the junction consisting of R, T2 and Uo also causes a lowering of the AC output resistance Ri2. In the case of a normal collector stage with transistors, the open circuit voltage gain is also approximately equal to 1 in the connection described here when assuming idealized conditions - ignoring transistor feedback and transistor output conductance.

Fig. 2 viser nå en koblingsanordning til. å realisere det prinsipp som er anskueliggjort på fig. 1. Transistorene Tl og T2 er her koblet over en spenningsdeler bestående av motstander R3 og R4. Kondensatorer Cl, C2, C3 og C4 skaffer vekselstromkoblingene. Til stabilisering av kollektorhvilestrommene for Tl og T2 tjener Fig. 2 now shows another coupling device. to realize the principle illustrated in fig. 1. The transistors Tl and T2 are connected here via a voltage divider consisting of resistors R3 and R4. Capacitors Cl, C2, C3 and C4 provide the AC couplings. Serves for stabilization of the collector idle drums for Tl and T2

motstanden RI. the resistance RI.

For beskrivelse av de dynamiske egenskaper hos den her behandlete anordning vil de forekommende transistorer og de eventuelt forekommende emitter- eller basismotstander som ikke er kortsluttet for vekselstrom, bli representert ved styrte stromkilder med de effektive steilheter Sl, S2 osv. og stromforsterkningene ^1,^9 2 osv. Sammenfatter man parallellkoblingen av motstandene R2, R4- og inngangsmotstanden av T2 til den resulterende motstand Ro, For the description of the dynamic properties of the device treated here, the existing transistors and the possibly existing emitter or base resistors that are not short-circuited for alternating current will be represented by controlled current sources with the effective steepnesses Sl, S2 etc. and the current gains ^1,^ 9 2 etc. Summarizing the parallel connection of resistors R2, R4 and the input resistance of T2 to the resulting resistor Ro,

kan forsterkerens inngangs- og utgangsmotstander beregnes som folger: the amplifier's input and output resistances can be calculated as follows:

Med sikte på hoyere inngangs- og lavere utgangsmotstander skulle altså produktet S2.Ro velges hoyest mulig, noe som ville være forbundet med hoye verdier for motstandere R2 og RI. Men en slik dimensjonering er ugunstig ved anvendelse av trinnet With a view to higher input and lower output resistances, the product S2.Ro should therefore be selected as high as possible, which would be associated with high values for resistors R2 and RI. But such a dimensioning is unfavorable when using the step

som effektforsterker da utstyringsområdet såvel for de positive which then reinforces the equipment area for the positives as well

(R2) som for de negative (RI) momentanverdier av utgangsspenningen derved ville bli redusert. Dessuten kan driftsspenningene bare tillates å ha liten pulsasjon hvis der stilles hoye krav til brum-mingsfrihet hos forsterkeren, da driftsspenningenes vekselspennings-komponenter kommer til basis hos transistoren T2 både over R4 og over 312 og C3. (R2) which for the negative (RI) instantaneous values of the output voltage would thereby be reduced. Moreover, the operating voltages can only be allowed to have a small pulsation if high demands are placed on freedom from humming at the amplifier, as the alternating voltage components of the operating voltages come to the base at the transistor T2 both across R4 and across 312 and C3.

De gjenstående ulemper blir fullstendig unngått ved hjelp av den koblingsanordning som er vist på fig. 3» Til kobling av transistorene Tl og T2 har koblingsanordningen en ytterligere transistor T3, som drives i basiskobling. Mens det ved transistorene Tl og T2 dreier seg om npn-typer, representerer transistoren T3 en pnp-type. Derved er det mulig å velge den i og for seg lave kollektor-motstand R2 vesentlig hoyere enn inngangsmotstanden -gj- for det med transistoren T3 dannede basistrinn. Således blir endringen i kollektorstrommen for transistoren Tl fullt ut meddelt transistoren T3. Da steilheten S3 allerede ved liten emitterstrom for T3 antar meget hoye verdier, klarer man seg her med små motstandsverdier for R2. På lignende måte kan motstanden RI, som opprinnelig tjente til kolleKtorhvilestrom-stabilisering, holdes liten, da hvilestrommen i denne kobling ikke lenger bestemmes av motstanden RI, men av basis-emitterspenningen for transitoren T3 samt motstandene R2, R5 og R6. Alt i alt gir den minskning av motstandene R2 og RI som er mulig ved den nye anordning, da en okning av den mulige spennings-utstyring og dermed en bedring av virkningsgraden ved anvendelse som effektforsterker. The remaining disadvantages are completely avoided by means of the coupling device shown in fig. 3» For connecting the transistors T1 and T2, the switching device has a further transistor T3, which is operated in base switching. While the transistors T1 and T2 are npn types, the transistor T3 represents a pnp type. Thereby, it is possible to choose the inherently low collector resistance R2 significantly higher than the input resistance -gj- for the base stage formed with the transistor T3. Thus, the change in the collector current of the transistor T1 is fully communicated to the transistor T3. Since the steepness S3 already assumes very high values at a small emitter current for T3, you can manage here with small resistance values for R2. In a similar way, the resistor RI, which originally served for collector quiescent current stabilization, can be kept small, as the quiescent current in this connection is no longer determined by the resistor RI, but by the base-emitter voltage of the transistor T3 as well as the resistors R2, R5 and R6. All in all, it provides a reduction in the resistances R2 and RI which is possible with the new device, then an increase in the possible voltage equipment and thus an improvement in the degree of efficiency when used as a power amplifier.

Sammenfatter man inngangsmotstanden av transistoren T2 og motstanden R4 til en resulterende motstand Ro ,får man ved Summing up the input resistance of the transistor T2 and the resistance R4 to a resulting resistance Ro, we get

den nye anordning under den tidligere nevnte forutsetning S3 1 ^ ^ R2 folgende uttryik for inngangs- og utgang smot standen: the new arrangement under the previously mentioned condition S3 1 ^ ^ R2 the following expression for entry and exit against the stand:

Da Ro' ved steilhet S2 kan velges vesentlig hoyere enn den tidligere nevnte motstand Ro, er det mulig med denne anordning å oppnå hoyere inngangs- og lavere utgangsmotstand. Since Ro' at steepness S2 can be chosen significantly higher than the previously mentioned resistance Ro, it is possible with this device to achieve higher input and lower output resistance.

Ved moderate krav til inngangs- og utgangsmot-standene er det mulig å unnvære kondensatoren C2. Forsterkertrinnet på fig. 3 ©r dessuten bare lite omfintlig overfor brummespenninger som er overlagret driftsspenningen, da bare den brummespenning som foreligger på motstanden R5 kommer til virkning ved utgangen. With moderate requirements for the input and output resistances, it is possible to dispense with the capacitor C2. The amplifier stage in fig. 3 is also only slightly sensitive to hum voltages that are superimposed on the operating voltage, as only the hum voltage present on the resistor R5 comes into effect at the output.

Ved hjelp av en kondensator parallellkoblet med motstanden R5 lar det seg gjore å kortslutte brummespenninger som opptrer på utgangs-siden. Ved anvendelse av koblingen som effektforsterker lar det seg også ved kondensatorkoblet forbruker gjore å realisere en AB-drift, dvs. en av utstyringen avhengig stromopptagelse hos forsterkeren. Forsok med et slikt trinn med C2 = 0 har vist at det med denne driftsmåte i forbindelse med en motkobling lar seg gjore å oppnå en gunstigere virkningsgrad ved liten klirrfaktor. By means of a capacitor connected in parallel with the resistor R5, it is possible to short-circuit hum voltages that appear on the output side. When using the coupling as a power amplifier, it is also possible for a capacitor-connected consumer to realize an AB operation, i.e. a current absorption by the amplifier that depends on the equipment. Experiments with such a step with C2 = 0 have shown that with this mode of operation in connection with a feedback it is possible to achieve a more favorable degree of efficiency with a low jitter factor.

Claims (6)

1. Koblingsanordning som tjener til effektforsterkning, og som har hoy inngangs- og lav utgangsmotstand og ikke behover noen utgangstransformator, og hvor to forsterkerelementer i serie er tilsluttet en mate stromkilde og inngangssignalet foreligger ved det forste forsterkerelements styreelektrode, mens det forste forsterkerelements utgangselektrode er forbundet med det annet forsterkerelements styreelektrode og utgangsbelastningen er tilsluttet de to forsterkerelementers forbindelses-punkt over en kondensator, karakterisert ved at der mellom det forste forsterkerelements (Tl) utgangselektrode og det annet forsterkerelements (T2) styreelektrode er innkoblet et tredje forsterkerelement (T3).1. Switching device which serves for power amplification, and which has high input and low output resistance and does not require an output transformer, and where two amplifier elements in series are connected to a fed current source and the input signal is present at the first amplifier element's control electrode, while the first amplifier element's output electrode is connected with the second amplifier element's control electrode and the output load is connected to the connection point of the two amplifier elements via a capacitor, characterized in that a third amplifier element (T3) is connected between the first amplifier element's (Tl) output electrode and the second amplifier element's (T2) control electrode. 2. Koblingsanordning som angitt i krav 1, karakterisert ved at der som forsterkerelementer er anordnet transistorer, og at det tredje forsterkerelement drives i basiskobling.2. Switching device as stated in claim 1, characterized in that transistors are arranged as amplifier elements, and that the third amplifier element is operated in base coupling. 3. Koblingsanordning som angitt i krav 2, karakterisert ved at det tredje forsterkerelements (T3) emitterkollektorstrekning ligger mellom det forste forsterkerelements utgangselektrode og det annets styreelektrode, og at det tredje forsterkerelements styreelektrode er tilsluttet en spenningsdeler (R5 og R6) for driftsspenningen, og at der ved forbindelses-punktet mellom det tredje forsterkerelements utgangselektrode og det annet forsterkerelements inngangselektrode er innkoblet en motstand (R4) mot referansepotensialet.3. Connection device as specified in claim 2, characterized in that the third amplifier element's (T3) emitter-collector line lies between the first amplifier element's output electrode and the second's control electrode, and that the third amplifier element's control electrode is connected to a voltage divider (R5 and R6) for the operating voltage, and that where at the connection point between the third amplifier element's output electrode and the second amplifier element's input electrode, a resistor (R4) is connected to the reference potential. 4. Koblingsanordning som angitt i krav 3j karakterisert ved at der for det forste og det annet forsterkerelement er anordnet transistorer av den ene ledningsevne type (npn) og for det tredje forsterkerelement en transistor av den annen type (pnp)4. Switching device as specified in claim 3j characterized in that transistors of one conductivity type (npn) are arranged for the first and second amplifier elements and for the third amplifier element a transistor of the other type (pnp) 5. Koblingsanordning som angitt i krav karakterisert ved at der parallelt med den annen forsterkerelements (T2) emittermotstand (Ri) er koblet en kondensator (G2).5. Switching device as specified in claim characterized in that a capacitor (G2) is connected in parallel with the emitter resistance (Ri) of the second amplifier element (T2). 6. Koblingsanordning som angitt i krav 4> karakterisert ved at der' parallelt med basisspennings-delermotstanden (5) er tilkoblet en kondensator.6. Switching device as stated in claim 4> characterized in that a capacitor is connected in parallel with the base voltage dividing resistor (5).
NO342568A 1967-09-11 1968-09-04 NO120041B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1967S0111754 DE1296207B (en) 1967-09-11 1967-09-11 Transformerless power amplifier with high input and low output resistance

Publications (1)

Publication Number Publication Date
NO120041B true NO120041B (en) 1970-08-17

Family

ID=7531200

Family Applications (1)

Application Number Title Priority Date Filing Date
NO342568A NO120041B (en) 1967-09-11 1968-09-04

Country Status (8)

Country Link
AT (1) AT281918B (en)
BE (1) BE720669A (en)
CH (1) CH484557A (en)
DE (1) DE1296207B (en)
ES (1) ES357908A1 (en)
FR (1) FR1579856A (en)
NO (1) NO120041B (en)
SE (1) SE354553B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004244A (en) 1975-05-27 1977-01-18 Rca Corporation Dynamic current supply
IT1196446B (en) * 1986-07-03 1988-11-16 Sgs Microelettronica Spa LOW HARMONIC DISTORTION VOLTAGE REPEATER CIRCUIT FOR LOADS WITH RESISTIVE COMPONENT

Also Published As

Publication number Publication date
ES357908A1 (en) 1970-04-01
DE1296207B (en) 1969-05-29
FR1579856A (en) 1969-08-29
CH484557A (en) 1970-01-15
BE720669A (en) 1969-03-11
SE354553B (en) 1973-03-12
AT281918B (en) 1970-06-10

Similar Documents

Publication Publication Date Title
US3077566A (en) Transistor operational amplifier
US3142781A (en) Lighting control circuit
US3531730A (en) Signal translating stage providing direct voltage
NO125957B (en)
US3001120A (en) Power supplies
USRE24204E (en) Amplifier circuit having series-
NO120041B (en)
US2938174A (en) Condition responsive apparatus
US2885494A (en) Temperature compensated transistor amplifier
US3157839A (en) Transistorized bridge amplifier with a bias compensating circuit therefor
US3050688A (en) Transistor amplifier
US3135874A (en) Control circuits for electronic switches
US2943266A (en) Transistor amplifier circuit
US3851270A (en) Transistorized operational amplifier
US3365545A (en) Network to couple a load to a transistorized amplifier
US3054067A (en) Transistor signal amplifier circuit
US2941154A (en) Parallel transistor amplifiers
US3223933A (en) Single-ended push-pull distortionless power amplifier including d.c. feedback
GB1257341A (en)
US3100877A (en) Transistor amplifier with constant input impedance
US3474346A (en) Electronic ripple filter and amplifier used therein
US3474327A (en) Alternating current line voltage regulator (lvr)
US3075155A (en) Differential amplifier
NO116302B (en)
US3305777A (en) Transistorized phase comparator wherein all the transistors operate in class a