NO119829B - - Google Patents

Download PDF

Info

Publication number
NO119829B
NO119829B NO1051/68A NO105168A NO119829B NO 119829 B NO119829 B NO 119829B NO 1051/68 A NO1051/68 A NO 1051/68A NO 105168 A NO105168 A NO 105168A NO 119829 B NO119829 B NO 119829B
Authority
NO
Norway
Prior art keywords
explosive
explosives
plastic
glass particles
hollow glass
Prior art date
Application number
NO1051/68A
Other languages
Norwegian (no)
Inventor
W Thomison
T Slykhouse
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of NO119829B publication Critical patent/NO119829B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B47/00Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
    • C06B47/14Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase comprising a solid component and an aqueous phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S102/00Ammunition and explosives
    • Y10S102/705Separated explosive constituents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S149/00Explosive and thermic compositions or charges
    • Y10S149/11Particle size of a component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S149/00Explosive and thermic compositions or charges
    • Y10S149/11Particle size of a component
    • Y10S149/112Inorganic nitrogen-oxygen salt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S149/00Explosive and thermic compositions or charges
    • Y10S149/11Particle size of a component
    • Y10S149/114Inorganic fuel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Air Bags (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

Ikke-selvdetonerende, plastisk sprengstoff. Non-self-detonating plastic explosive.

Oppfinnelsen vedrører et forbedret plastisk sprengstoff. Plastiske sprengstoffer har vært vanskelige å detonere på grunn av den høye varmekapasitet av vannet som i de fleste tilfelle brukes som basis i væskefasen. Det er tidligere opp-nådd en viss forbedring i følsomhet ved innarbeidelse av tomrom i form av luft, skummet ammoniumnitrat eller andre materialer som inneholder gassaktige stoffer. Imidlertid har slike sprengstoffer sviktet med hensyn på å beholde tilstrekkelig følsomhet ved anvendelse under forhøyet trykk. The invention relates to an improved plastic explosive. Plastic explosives have been difficult to detonate due to the high heat capacity of the water, which in most cases is used as a base in the liquid phase. A certain improvement in sensitivity has previously been achieved by incorporating voids in the form of air, foamed ammonium nitrate or other materials containing gaseous substances. However, such explosives have failed to retain sufficient sensitivity when used under elevated pressure.

Når det kreves detonering under trykk, såsom ved under-grunnsprengninger, har det vært praksis å bruke høy-eksplosive produkter, f.eks. nitroglycerol, eller plastiske sprengstoffer som inneholder selv-detonerende organiske sprengstoffer, f.eks. TNT. Imidlertid er det innlysende at slike sprengstoffer er farlige å håndtere, og det kan i noen tilfelle forekomme ufullsten-dig detonering av sprengstoffet i et borhull. When detonation under pressure is required, such as in underground blasting, it has been practice to use high-explosive products, e.g. nitroglycerol, or plastic explosives containing self-detonating organic explosives, e.g. TNT. However, it is obvious that such explosives are dangerous to handle, and in some cases incomplete detonation of the explosive in a borehole can occur.

US-patent 2 671 400 vedrører et formet patronsprengstoff, som ved sin spesielle utformning gjør det mulig å bestemme retnin-gen av hovedeffekten av sprengvirkningen ved detonering. Patronen har fått en slik form at den gir et område med redusert tetthet US patent 2,671,400 relates to a shaped cartridge explosive, which, due to its special design, makes it possible to determine the direction of the main effect of the explosive action upon detonation. The cartridge has been given such a shape that it provides an area with reduced density

for sprengvirkningen som følger. Generelt tilveiebringes en spreng-stoffladning, f.eks. dynamitt, gelatin-sprengstoff, flytende nitroglycerol eller TNT, i en patron som er fylt méd luftfylte celler eller globuler laget av plast, aluminium, glass eller lignende. Det fremgår av patentskriftet at de luftfylte partikler gir luft som hjelper på sprengvirkningen til sprengladningen i hylsteret når den detoneres under forhøyet trykk. Virkningen av de luftfylte partikler er å lede sprengkraften ved detonering i en på forhånd bestemt retning. Patronen kan tilveiebringes i forskjellige former, beroende på den ønskede bruk. I henhold til patentet anvendes det imidlertid bare selvdetonerende sprengstoffer, som som nevnt er farlige å håndtere. for the explosive effect that follows. Generally, an explosive charge is provided, e.g. dynamite, gelatin explosive, liquid nitroglycerol or TNT, in a cartridge filled with air-filled cells or globules made of plastic, aluminium, glass or the like. It appears from the patent document that the air-filled particles provide air that helps the explosive effect of the explosive charge in the casing when it is detonated under elevated pressure. The effect of the air-filled particles is to direct the explosive force upon detonation in a predetermined direction. The cartridge can be provided in different forms, depending on the desired use. According to the patent, however, only self-detonating explosives are used, which, as mentioned, are dangerous to handle.

US-patent 3 101 288 beskriver bruken av bestemte spesifikke hule ballonger av vann-uoppløselig, termoherdende, syntetisk harpiks i sprengstoffer av dynamitt-type, her også bare sprengstoffer av den selv-detonerende type. US Patent 3,101,288 describes the use of certain specific hollow balloons of water-insoluble, thermosetting, synthetic resin in explosives of the dynamite type, here also only explosives of the self-detonating type.

Det er nå funnet frem til et plastisk sprengstoff som er ufarlig å håndtere og som har evne til praktisk talt fullstendig utbredelse ved detonering under trykk, ved innarbeidelse av hule glasspartikler av bestemt størrelse i sprengstoffet. De hule glasspartikler er karakterisert ved at størrelsen varierer fra 10 til 250^,u, og de bør ha tilstrekkelig veggtykkelse til at partiklene ikke knuses før detonering. Det er funnet at partikler hvis stør-relse varierer som antydet, og som har en partikkeltetthet på fra 0,1 til 0,9 g/cm 3 , vanligvis har tilstrekkelig styrke til å o mot-stå trykk på minst 70 kg/cm 2. Partikler med slik tetthet foretrekkes derfor. A plastic explosive has now been found which is harmless to handle and which has the ability to spread practically completely when detonated under pressure, by incorporating hollow glass particles of a certain size into the explosive. The hollow glass particles are characterized in that their size varies from 10 to 250 µm, and they should have sufficient wall thickness so that the particles are not crushed before detonation. It has been found that particles whose size varies as indicated, and which have a particle density of from 0.1 to 0.9 g/cm 3 , usually have sufficient strength to withstand pressures of at least 70 kg/cm 2 Particles with this density are therefore preferred.

I'*den hensikt å sikre praktisk talt fullstendig utbredelse ved detonering anvendes de hule glasspartikler i en mengde som er tilstrekkelig til å gi en tetthet av fra 1,0 til 1,5 g/ In order to ensure practically complete propagation upon detonation, the hollow glass particles are used in an amount sufficient to give a density of from 1.0 to 1.5 g/

cm^ i produktet. Generelt, men beroende på det spesielle sprengstoff som anvendes, faller mengden av glasspartikler som behøves, cm^ in the product. In general, but depending on the particular explosive used, the amount of glass particles required falls,

i området fra 1 til 20 vekt% av det totale produkt. Det er funnet at praktisk talt konstante tettheter kan opprettholdes ved in the range from 1 to 20% by weight of the total product. It has been found that practically constant densities can be maintained at

trykk på opptil 1400 kg/cm 2 samtidig med at det ikke skjer noe skadelig tap i følsomhet ved innarbeidelse av hule glasspartikler i plastiske sprengstoffer, og man får således plastiske sprengstoffer som kan detoneres under forhøyet trykk uten bruk av sensibiliserende midler som selv består av et selv-detonerende materiale. Ved anvendelse av sprengstoffene ifølge oppfinnelsen plasseres disse i et borhull som går under jorden, eller pum-pes fortrinnsvis inn i revner i en bergformasjon og detoneres. pressure of up to 1400 kg/cm 2 at the same time that no harmful loss of sensitivity occurs when hollow glass particles are incorporated into plastic explosives, and thus plastic explosives are obtained that can be detonated under elevated pressure without the use of sensitizing agents which themselves consist of a self-detonating material. When using the explosives according to the invention, these are placed in a borehole that goes underground, or are preferably pumped into cracks in a rock formation and detonated.

I praksis kan forbedringen ifølge oppfinnelsen anvendes In practice, the improvement according to the invention can be used

i forbindelse med hvilket som helst av de kjente plastiske sprengstoffer hvis komponenter ikke vil ha skadelig innflytelse på egen-skapene til de hule glasspartikler. Produktene ifølge oppfinnelsen inneholder ett eller flere uorganiske oksyderende salter, ett eller flere ikke-selvdetonerende brennstoffer, vann og vanligvis også et gelerings- eller fortykningsmiddel. in connection with any of the known plastic explosives whose components will not have a detrimental influence on the properties of the hollow glass particles. The products according to the invention contain one or more inorganic oxidizing salts, one or more non-self-detonating fuels, water and usually also a gelling or thickening agent.

Eksempler på salter som anvendes i forbindelse med oppfinnelsen, er ammoniumnitrat, alkalimetall- og jordalkalimetall-nitrater, -perklorater og blandinger av disse. Spesifikke eksempler på typiske salter er ammoniumnitrat, natriumnitrat, kalsium-nitrat, natriumperklorat, kaliumperklorat og lignende. Vanligvis inneholder sprengstoffet fra 10 til 90 vekt%, regnet på den totale sammensetning, av det uorganiske oksyderende salt. Fortrinnsvis anvendes ammoniumnitrat og natriumnitrat, idet ammoniumnitrat brukes i mengder av fra 30 til 90 vekt% av den totale sammensetning og natriumnitrat i mengder av fra 0 til 30 vekt% av den totale sammensetning. Examples of salts used in connection with the invention are ammonium nitrate, alkali metal and alkaline earth metal nitrates, perchlorates and mixtures thereof. Specific examples of typical salts are ammonium nitrate, sodium nitrate, calcium nitrate, sodium perchlorate, potassium perchlorate and the like. Usually the explosive contains from 10 to 90% by weight, calculated on the total composition, of the inorganic oxidizing salt. Preferably, ammonium nitrate and sodium nitrate are used, with ammonium nitrate being used in amounts of from 30 to 90% by weight of the total composition and sodium nitrate in amounts of from 0 to 30% by weight of the total composition.

Vanligvis anvendes i det forbedrede sprengstoff et ikke-eksplosivt karbon- eller partikkelformet metallbrennstoff. Ikke-selvdetonerende brennstoffer foretrekkes, selv om selv-detonerende som f.eks. organiske nitrat- eller nitroforbindelser, nitrami-ner eller eksplosiv nitrocellulose kan medanvendes under bestemte betingelser for å gi nødvendig hastighet, forhøyet følsomhet ved lave temperaturer og lignende egenskaper. Typically, the improved explosive uses a non-explosive carbon or particulate metal fuel. Non-self-detonating fuels are preferred, although self-detonating such as e.g. organic nitrate or nitro compounds, nitramines or explosive nitrocellulose can be co-used under certain conditions to provide the necessary speed, increased sensitivity at low temperatures and similar properties.

Eksempler på karbonholdige ikke-eksplosive brennstoffer omfatter findelt kull, karbonholdige vegetabilske produkter som f.eks. maisstivelse, sukker eller tremasse, organiske væsker som f.eks. hydrokarbonoljer, fete oljer eller vegetabilske oljer, urinstoff, råolje eller andre flytende hydrokarboner og fortrinnsvis vannoppløselige petroleumsvæsker av lav flyktighet. Generelt anvendes opptil 20% av de ikke-eksplosive karbonholdige brennstof- Examples of carbonaceous non-explosive fuels include finely divided coal, carbonaceous vegetable products such as corn starch, sugar or wood pulp, organic liquids such as hydrocarbon oils, fatty oils or vegetable oils, urea, crude oil or other liquid hydrocarbons and preferably water-soluble petroleum liquids of low volatility. In general, up to 20% of the non-explosive carbonaceous fuels are used

fer i produktene og fortrinnsvis fra 5 til 15%. fer in the products and preferably from 5 to 15%.

Som antydet kan også partikkelformede meta11-brennstoffer anvendes, enten alene eller i blanding med andre brennstoffer. Metalliske brennstoffer som kan anvendes i det nye produkt, omfatter aluminium, magnesium, silisium, legeringer av aluminium, silisium og magnesium, jern, legeringer av jern, ferro-silisium, ferro-fosfor og blandinger og legeringer av disse. Partikkelstør-relsen på metallet ligger vanligvis i området fra 8 til 200 mesh (0,074-2,38 mm) og fortrinnsvis fra 20 til 200 mesh (0,074-0,84 mm). Ca. 50 vekt% metalliske brennstoffer kan anvendes i oppfinnelsen. Imidlertid anvendes fortrinnsvis bare fra 10 til 30%. As indicated, particulate meta11 fuels can also be used, either alone or in a mixture with other fuels. Metallic fuels that can be used in the new product include aluminium, magnesium, silicon, alloys of aluminium, silicon and magnesium, iron, alloys of iron, ferro-silicon, ferro-phosphorus and mixtures and alloys of these. The particle size of the metal is usually in the range from 8 to 200 mesh (0.074-2.38 mm) and preferably from 20 to 200 mesh (0.074-0.84 mm). About. 50% by weight metallic fuels can be used in the invention. However, preferably only from 10 to 30% is used.

Som antydet kan vannbærende produkter anvendes i oppfinnelsen. Vanligvis kan opptil 25% vann brukes. Imidlertid anvendes det fortrinnsvis bare fra 5 til 15% vann og vanligvis minst 8%. As indicated, water-bearing products can be used in the invention. Usually up to 25% water can be used. However, preferably only from 5 to 15% water is used and usually at least 8%.

Forskjellige fortykningsmidler kan anvendes i oppfinnelsen, og de resulterende produkter kan variere fra hellbare oppløs-ninger, oppslemminger eller dispersjoner til tykke, støpbare plastiske masser. Det foretrekkes at sprengstoffet holdes i en slik tilstand for å sikre en stabil blanding hvor de forskjellige komponenter holdes i suspensjon i vesentlige tidsrom og som er pump-bare uten behov for ekstra pumpetrykk. Det kan anvendes forskjellige fortyknings- og gelerende midler. De som vanligvis brukes, omfatter naturgummi, f.eks. arabisk gummi, guar-gummi eller karayagummi og syntetiske polymere som omfatter polyakrylamider og poly-vinylalkoholer. Generelt anvendes fra 0,1 til 10 vekt% og fortrinnsvis fra 0,5 til 5 vekt% av et fortykningsmiddel, basert på den totale vekt av produktet, beroende på det spesielle middel som velges og på sprengstoffets ønskede konsistens. Various thickeners can be used in the invention, and the resulting products can vary from pourable solutions, slurries or dispersions to thick, castable plastic masses. It is preferred that the explosive is kept in such a state to ensure a stable mixture where the various components are kept in suspension for significant periods of time and which are pumpable without the need for additional pump pressure. Different thickening and gelling agents can be used. Those commonly used include natural rubber, e.g. gum arabic, guar gum or karaya gum and synthetic polymers including polyacrylamides and polyvinyl alcohols. In general, from 0.1 to 10% by weight and preferably from 0.5 to 5% by weight of a thickener is used, based on the total weight of the product, depending on the particular agent chosen and on the desired consistency of the explosive.

Oppfinnelsen er spesielt tilpasset undergrunn-sprengning og spesielt i dybder hvor man støter på forhøyet trykk. Spesielt finner den anvendelse ved sprengning av olje- og gasskilder for å gi passasje fra et borhull i den hensikt å øke produksjonen av ol-je eller gass fra kilden. The invention is particularly adapted to underground blasting and especially at depths where elevated pressure is encountered. In particular, it finds application when blasting oil and gas wells to provide passage from a borehole with the intention of increasing the production of oil or gas from the well.

Sprengning av oljekilder kan utføres ved å plassere på forhånd formede ladninger i borhullet. Imidlertid foretrekkes det å pumpe sprengstoff av plastisk type inn i borhullet under trykk for å gi sprengstoffet anledning til å trenge gjennom sprekker i fjell og således oppnå en mer fullstendig og effektiv sprengning av fjell-lagene i en større avstand fra borhullet. Blasting of oil wells can be accomplished by placing pre-formed charges in the borehole. However, it is preferred to pump explosives of a plastic type into the borehole under pressure to give the explosives the opportunity to penetrate cracks in the rock and thus achieve a more complete and effective blasting of the rock layers at a greater distance from the borehole.

Plastiske sprengstoffer komprimeres under de forhøyede trykk som møtes i dybdene i de fleste oljekilder, spesielt i slike som har et høyt hydrostatisk utspring. Eksempelvis er trykket ved 300 m under et hydrostatisk utspring lik ca. 35 kg/cm 2. Hit-til kunne sprengstoffer av plastisk type ikke avfyres ved dette trykk, selv under anvendelse av ekstremt kraftige forsterkere, og selv plastisk sprengstoff som inneholder selvdetonerende brennstoff kan være ineffektivt ved slike trykk. Plastic explosives are compressed under the elevated pressures encountered at depth in most oil wells, especially those with a high hydrostatic head. For example, the pressure at 300 m below a hydrostatic spring is equal to approx. 35 kg/cm 2. Until now, plastic-type explosives could not be fired at this pressure, even using extremely powerful boosters, and even plastic explosives containing self-detonating fuel can be ineffective at such pressures.

Fremgangsmåten som benytter et sprengstoff ifølge oppfinnelsen, består i å plassere det plastiske sprengstoff som inneholder hule glasspartikler, i en underjordisk formasjon, enten i for-håndsformede ladninger eller ved fortrinnsvis å pumpe plastiske sprengstoffer inn i borhullet og inn i sprekker i den geologiske formasjon som omgir borhullet. En liten sprengstoffmengde blir vanligvis lagt tilbake til borhullet for å hjelpe til med anten-nelsen av den eksplosive masse. Borhullet fylles vanligvis med en væske, f.eks. vann eller bindemiddel, og sprengstoffet detoneres med en passende detoneringsladning. På grunn av nærværet av de hule glasspartikler i sprengstoffet kan sprengstoffet detoneres med praktisk talt fullstendig utbredelse ved hjelp av standard detoneringsutstyr. The method using an explosive according to the invention consists in placing the plastic explosive containing hollow glass particles in an underground formation, either in pre-formed charges or by preferably pumping plastic explosives into the borehole and into cracks in the geological formation which surrounds the borehole. A small amount of explosive is usually added back to the borehole to aid in the ignition of the explosive mass. The borehole is usually filled with a liquid, e.g. water or binder, and the explosive is detonated with a suitable detonating charge. Due to the presence of the hollow glass particles in the explosive, the explosive can be detonated with virtually complete propagation using standard detonating equipment.

De trykk som møtes i underjordiske formasjoner som f. eks. i oljekilder, kan ligge i området fra 7 til 1400 kg/cm 2 eller mer, beroende på formasjonens dybde. Ved anvendelse av de nye sprengstoffer ifølge oppfinnelsen kan sprengningen utføres med hell under anvendelse av plastiske sprengstoffer som er av ikke-selveksploderende natur. The pressures encountered in underground formations such as in oil wells, can range from 7 to 1400 kg/cm 2 or more, depending on the depth of the formation. When using the new explosives according to the invention, the blasting can be carried out successfully using plastic explosives which are of a non-self-exploding nature.

Et spesielt egnet sprengstoff for den omtalte forbedring, og som kan anvendes for undergrunnsprengning, inneholder i vekt opptil 60% alkalimetallnitrat, ammoniumnitrat fra 10 til 85%, partikkelformet aluminium fra 5 til 40%, vann fra 5 til 25%, i vann svellbart geleringsmiddel eller fortykningsmiddel fra 0,2 til 2,5%. Denne forbedring omfatter tilsetning av hule glasspartikler til sprengstoffet. For fullstendig utbredelse bør sprengstoffets tetthet holdes under 1,4 g/cm^ for 30% metall og ved 21°C. Lavere metallkonsentrasjoner og lavere temperaturer krever normalt redusert tetthet. A particularly suitable explosive for the mentioned improvement, and which can be used for underground blasting, contains by weight up to 60% alkali metal nitrate, ammonium nitrate from 10 to 85%, particulate aluminum from 5 to 40%, water from 5 to 25%, water-swellable gelling agent or thickener from 0.2 to 2.5%. This improvement includes the addition of hollow glass particles to the explosive. For complete propagation, the density of the explosive should be kept below 1.4 g/cm^ for 30% metal and at 21°C. Lower metal concentrations and lower temperatures normally require reduced density.

Fortrinnsvis inneholder produktet fra 5 til 40% natriumnitrat, fra 15 til 80% ammoniumnitrat, fra 10 til 30% partikkelformet aluminium, fra 6 til 16% vann, fra 2 til 16% flytende organisk, med vann blandbar væske fortynner, fra 0,5 til 2,5% av i vann svell-bar gummi og et kryssbindingsmiddel, samt hule glasspartikler med en partikkeltetthet på fra 0,1 til 0,9 g/cm 3 og med en størrelse • som varierer fra 10 til 250 , u og i tilstrekkelig mengde til å hol-de tettheten av produktet i områo det fra 1,1 g/cm 3 til 1,4 g/cm 3, som vanligvis nødvendiggjør bruken av fra'2,0 til 10 vekt% hule glasspartikler. Preferably, the product contains from 5 to 40% sodium nitrate, from 15 to 80% ammonium nitrate, from 10 to 30% particulate aluminum, from 6 to 16% water, from 2 to 16% liquid organic, water-miscible liquid diluent, from 0.5 to 2.5% of water-swellable rubber and a cross-linking agent, as well as hollow glass particles with a particle density of from 0.1 to 0.9 g/cm 3 and with a size • varying from 10 to 250 , u and i sufficient amount to keep the density of the product in the range from 1.1 g/cm 3 to 1.4 g/cm 3 , which usually necessitates the use of from 2.0 to 10% by weight of hollow glass particles.

Fortrinnsvis har aluminiumet en partikkelstørrelse av fra 30 til 150 mesh (0,104-0,59 mm). Vanligvis har det anvendte aluminiummetall en partikkelstørrelse og kaliberfordeling som an-gitt i tabell I. Preferably, the aluminum has a particle size of from 30 to 150 mesh (0.104-0.59 mm). Generally, the aluminum metal used has a particle size and caliber distribution as indicated in Table I.

Fortrinnsvis ligger metallet i området fra 0,625-125^u. Preferably, the metal is in the range from 0.625-125^u.

Med aluminium menes her aluminium og aluminiumlegeringer som inneholder minst 60 vektprosent aluminium. Aluminum here means aluminum and aluminum alloys that contain at least 60% aluminum by weight.

Flytende organiske væskefortynnere som kan anvendes, omfatter enverdige alkanoler med lav molekylvekt, etylenglykol, propylenglykol, glycerol, formamid og andre lignende væskefortynnere som fortrinnsvis har et slikt karbon/oksygen-forhold at det ikke er noen skadelig konkurranse mellom karbonet og metallet med hensyn til oppnåelig oksygen i systemet. Vanligvis foretrekkes meta-nol, etylenglykol, glycerol, formamid eller blandinger av disse i forbindelse med oppfinnelsen. Liquid organic diluents which may be used include low molecular weight monohydric alkanols, ethylene glycol, propylene glycol, glycerol, formamide and other similar diluents which preferably have such a carbon/oxygen ratio that there is no detrimental competition between the carbon and the metal for attainable oxygen in the system. Generally, methanol, ethylene glycol, glycerol, formamide or mixtures of these are preferred in connection with the invention.

Hvilken som helst vannresistent naturgummi eller et syntetisk gelerings- eller fortykningsmiddel kan brukes. Eksempler på spesielt egnede midler omfatter guargummi, karayagummi og blandinger av disse, og det kan dessuten anvendes et antall konvensjo-nelle kryssbindingsmidler. Any water resistant natural rubber or a synthetic gelling or thickening agent can be used. Examples of particularly suitable agents include guar gum, karaya gum and mixtures thereof, and a number of conventional cross-linking agents can also be used.

Mange forskjellige forbedrede sprengstoffer kan fremstil-les ved innarbeidelse av en tilstrekkelig mengde hule glasspartikler med de enestående egenskaper som her er beskrevet, for å gi det spesielle produkt en tetthet som er best egnet for fullstendig og rask detonering av sprengstoffet. Vanligvis er det nødven-dig med fra 1 til 10 vekt% av de hule glasspartikler. Fortrinnsvis anvendes ikke et overskudd av hule glasskuler utover det som er nødvendig for å fremskaffe den ønskede tetthet, siden et overskudd kan gi unødvendig forbedring av følsomheten og faktisk kan produsere mindre effektive sprengstoffer. Many different improved explosives can be made by incorporating a sufficient amount of hollow glass particles with the unique properties described herein to give the particular product a density best suited for complete and rapid detonation of the explosive. Usually, from 1 to 10% by weight of the hollow glass particles is necessary. Preferably, an excess of hollow glass spheres is not used beyond what is necessary to provide the desired density, since an excess may provide unnecessary improvement in sensitivity and may actually produce less effective explosives.

Følgende eksempler belyser oppfinnelsen. The following examples illustrate the invention.

Eksempel 1 Example 1

Det ble fremstilt et plastisk sprengstoff med følgende sammensetning: A plastic explosive was produced with the following composition:

Sprengstoffet ble fremstilt ved først å dispergere gele-ringsmidlet i propylenglykol. Vann og formamid ble blandet og tilsatt til blandingen av propylenglykol og geleringsmiddel. Deretter ble natriumnitrat og ammoniumnitrat tilsatt og blandet. De hule glasspartikler ble så tilsatt til blandingen, og hele blandingen ble oppvarmet til romtemperatur, hvoretter det partikkelformede aluminium ble tilsatt og blandet. Endelig ble kryssbindings-midlet tilsatt og sprengstoffet ble hensatt til gelering. De hu- The explosive was prepared by first dispersing the gelling agent in propylene glycol. Water and formamide were mixed and added to the mixture of propylene glycol and gelling agent. Then sodium nitrate and ammonium nitrate were added and mixed. The hollow glass particles were then added to the mixture, and the entire mixture was warmed to room temperature, after which the particulate aluminum was added and mixed. Finally, the cross-linking agent was added and the explosive was allowed to gel. They hu-

le glasspartikler hadde en størrelse som varierte fra 10 til 250 ,u og hadde en partikkeltetthet på ca. 0,26 g/cm 3. Den endelige spreng-stoffblanding hadde en tetthet på ca. 1,1 g/cm 3. Sprengstoffet ble deretter testet med hensyn på detoneringsegenskaper under forhøye- le glass particles had a size that varied from 10 to 250 µm and had a particle density of approx. 0.26 g/cm 3. The final explosive mixture had a density of approx. 1.1 g/cm 3. The explosive was then tested for detonation properties under elevated

de trykk. they press.

Sprengstoffet ble plassert i et standard stålrør med dia-meter 5 cm som hadde et deksel, en sveiset kappe og en trykkrørfor-bindelse. Dekslet ble forseglet med-en standard neoprenpakning. The explosive was placed in a standard steel pipe with a diameter of 5 cm which had a cover, a welded jacket and a pressure pipe connection. The cover was sealed with a standard neoprene gasket.

Et 37 grams høy-eksplosivt tennmiddel ble også plassert på bunnen A 37 gram high-explosive incendiary was also placed on the bottom

av stålrøret. Sprengstoffet ble adskilt fra dekslet ved en plast-skive for å hindre at olje blandet seg med sprengstoffet før detonering. of the steel pipe. The explosive was separated from the cover by a plastic disk to prevent oil from mixing with the explosive before detonation.

Stålrøret ble begravd i bakken med en liten, formet ladning like ved forsterkeren. Trykket i stålrøret ble hevet til 39,2 kg/cm 2, og den formede ladning ble detonert. The steel pipe was buried in the ground with a small shaped charge close to the amplifier. The pressure in the steel tube was raised to 39.2 kg/cm 2 and the shaped charge was detonated.

Inspeksjon av karet viste at det var fullstendig spruk-ket, kappen var gått i stykker, noe som sannsynliggjorde det fak-tum at hele sprengstoffladningen hadde detonert. Inspection of the vessel showed that it was completely cracked, the jacket had broken, which made it probable that the entire explosive charge had detonated.

Eksempel 2 Example 2

Det ble brukt noe av det samme sprengstoff i en annen test som ble utført på stort sett samme måte som beskrevet i eksempel 1. For denne test ble det anvendt et trykk av 66,5 kg/cm<2 >på produktet før antennelse av den formede ladning. Some of the same explosive was used in another test which was carried out in much the same way as described in Example 1. For this test a pressure of 66.5 kg/cm<2 > was applied to the product before igniting it shaped charge.

Den eksplosive ladning detonerte igjen fullstendig. The explosive charge detonated again completely.

Sammenligningseksempe1 Comparative example 1

Et sprengstoff med følgende sammensetning ble fremstilt på lignende måte som beskrevet ved fremstilling av sprengstoffet i eksempel 1: An explosive with the following composition was produced in a similar way to that described in the production of the explosive in example 1:

Til dette sprengstoff ble det tilsatt ytterligere 1% ekspanderte polystyren-perler for å nedsette tettheten av blandingen til ca. 1,3. A further 1% expanded polystyrene beads were added to this explosive to reduce the density of the mixture to approx. 1.3.

Blandingen ble detonert på samme måte som beskrevet i eksempel 1 og ved et trykk på o 7 kg/cm 2. Sprengstoffet sviktet med hensyn til fullstendig utbredelse. The mixture was detonated in the same way as described in example 1 and at a pressure of o 7 kg/cm 2. The explosive failed with regard to complete propagation.

Noe av sprengstoffet som her er beskrevet, men uten perler, ble pisket for innføring av luft. Blandingen sviktet med hensyn til utbredelse da den ble utsatt for trykk pa 7 kg/cm 2. Some of the explosive described here, but without beads, was whipped to introduce air. The mixture failed in terms of propagation when subjected to a pressure of 7 kg/cm2.

Claims (1)

Ikke-selvdetonerende, plastisk sprengstoff basert på uorganiske oksyderende salter og med evne til praktisk talt fullstendig utbredelse ved detonering under trykk, karakterisert ved at det inneholder hule glasspartikler av stør-relse som varierer fra 10 til 250/U og med en partikkeltetthet som varierer fra 0,1 til 0,9 g/cm , i en mengde som er tilstrekkelig til å gi sprengstoffet en tetthet av fra 1,0 til 1,5 g/cm 3.Non-self-detonating, plastic explosive based on inorganic oxidizing salts and capable of practically complete propagation when detonated under pressure, characterized in that it contains hollow glass particles of sizes varying from 10 to 250/U and with a particle density varying from 0.1 to 0.9 g/cm , in an amount sufficient to give the explosive a density of from 1.0 to 1.5 g/cm 3 .
NO1051/68A 1967-03-20 1968-03-19 NO119829B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US62418567A 1967-03-20 1967-03-20

Publications (1)

Publication Number Publication Date
NO119829B true NO119829B (en) 1970-07-06

Family

ID=24501013

Family Applications (1)

Application Number Title Priority Date Filing Date
NO1051/68A NO119829B (en) 1967-03-20 1968-03-19

Country Status (6)

Country Link
US (1) US3456589A (en)
DE (1) DE1771007A1 (en)
FR (1) FR1562346A (en)
GB (1) GB1206243A (en)
NL (1) NL6803624A (en)
NO (1) NO119829B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987004146A1 (en) * 1986-01-10 1987-07-16 Exploweld Ab An explosive device

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3561532A (en) * 1968-03-26 1971-02-09 Talley Frac Corp Well fracturing method using explosive slurry
US3602309A (en) * 1968-12-16 1971-08-31 Continental Oil Co Method of exploding or igniting materials using adiabatic compression of gas
US3637020A (en) * 1969-07-18 1972-01-25 Shell Oil Co Tensile-stress fracturing
US3837937A (en) * 1970-12-16 1974-09-24 Ici Australia Ltd Explosive compositions with coated gaseous encapsulations
US3897284A (en) * 1971-04-30 1975-07-29 Minnesota Mining & Mfg Tagging explosives with organic microparticles
US3797392A (en) * 1973-02-12 1974-03-19 R Eckels Reversible sensitization of liquid explosives
US4060435A (en) * 1974-07-11 1977-11-29 Dow Corning Corporation Floatable incendiary composition
US4038112A (en) * 1975-05-12 1977-07-26 Talley-Frac Corporation Well-fracturing explosive composition
GB1506185A (en) * 1975-06-11 1978-04-05 Bryant & May Ltd Match-head compositions
AU515896B2 (en) * 1976-11-09 1981-05-07 Atlas Powder Company Water-in-oil explosive
US4104092A (en) * 1977-07-18 1978-08-01 Atlas Powder Company Emulsion sensitized gelled explosive composition
US4259977A (en) * 1979-04-16 1981-04-07 Atlas Powder Company Transportation and placement of water-in-oil emulsion explosives and blasting agents
US4273147A (en) * 1979-04-16 1981-06-16 Atlas Powder Company Transportation and placement of water-in-oil explosive emulsions
US4509598A (en) * 1983-03-25 1985-04-09 The Dow Chemical Company Fracturing fluids containing bouyant inorganic diverting agent and method of use in hydraulic fracturing of subterranean formations
US4662451A (en) * 1985-06-07 1987-05-05 Phillips Petroleum Company Method of fracturing subsurface formations
US5007973A (en) * 1989-10-12 1991-04-16 Atlas Powder Company Multicomponent explosives
US5916949A (en) * 1997-08-18 1999-06-29 Mattel, Inc. Moldable compositions and method of making the same
US5886083A (en) * 1997-08-18 1999-03-23 Mattel, Inc. Artificial snow and method of making the same
US6651564B1 (en) 2000-07-17 2003-11-25 Schlumberger Technology Corporation High energy explosive for seismic methods
US7134492B2 (en) * 2003-04-18 2006-11-14 Schlumberger Technology Corporation Mapping fracture dimensions
US8003578B2 (en) * 2008-02-13 2011-08-23 Baker Hughes Incorporated Method of treating a well and a subterranean formation with alkali nitrate brine
US9228424B2 (en) * 2011-05-31 2016-01-05 Riverbend, S.A. Method of treating the near-wellbore zone of the reservoir
CA2940378A1 (en) 2015-08-28 2017-02-28 Los Acquisition Co I, Llc Reservoir stimulation by energetic chemistry
CN106748590A (en) * 2016-12-21 2017-05-31 四川雅化实业集团股份有限公司 A kind of viscous explosive adhesive and preparation method thereof
US10138720B2 (en) * 2017-03-17 2018-11-27 Energy Technology Group Method and system for perforating and fragmenting sediments using blasting material
CN115057753B (en) * 2022-07-20 2023-04-07 中国矿业大学 Liquid explosive for low-permeability oil field in-situ combustion and explosion fracturing and application thereof
CN116924863B (en) * 2023-07-25 2024-05-17 山西省民爆集团有限公司 Ultrapure carbon-based mixed explosive and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1778718A (en) * 1928-12-14 1930-10-21 Atlas Powder Co Gelignite and gelatin dynamite
US2365170A (en) * 1940-04-13 1944-12-19 Hereules Powder Company Blasting explosive
US2671400A (en) * 1948-04-05 1954-03-09 Bert F Duesing Explosive construction having directional effect characteristics
US2674526A (en) * 1950-07-18 1954-04-06 Atlas Powder Co Gelatin dynamite composition containing sulfur
US2892406A (en) * 1956-07-30 1959-06-30 Dow Chemical Co Method of detonating ammonium nitrate base explosives
US3101288A (en) * 1957-04-18 1963-08-20 Du Pont Explosive composition
US3024727A (en) * 1958-10-13 1962-03-13 Dow Chemical Co Area detonation
US3094069A (en) * 1959-01-05 1963-06-18 Dow Chemical Co Method of blasting and ammonium nitrate explosive composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987004146A1 (en) * 1986-01-10 1987-07-16 Exploweld Ab An explosive device

Also Published As

Publication number Publication date
GB1206243A (en) 1970-09-23
FR1562346A (en) 1969-04-04
US3456589A (en) 1969-07-22
DE1771007A1 (en) 1971-11-25
NL6803624A (en) 1968-09-23

Similar Documents

Publication Publication Date Title
NO119829B (en)
US2867172A (en) Detonation of unprimed base charges
US3215074A (en) Apparatus for well drilling operations with explosives
EP0571477A1 (en) Explosives
Galante et al. Application of explosives in the oil industry
US4662451A (en) Method of fracturing subsurface formations
CN103922874B (en) Primary granules of polystyrene is as the application and the mixed loading emulsion explosive and preparation method thereof of physical sensitization agent in the mixed loading emulsion explosive
EP0131471B1 (en) Explosives
US6960267B1 (en) Multi-component liquid explosive composition and method
US3052578A (en) Ammonium nitrate base blasting agent
US4012246A (en) Super fine PETN thin layer slurry explosive
Mellor Controlled release of avalanches by explosives
Cook Explosives—a survey of technical advances
US5531843A (en) Explosives using glycol still bottoms
US4132574A (en) Superfine PETN thin layer slurry explosive
US3096223A (en) Slurry blasting explosives containing inorganic prechlorate or chlorate
US3912560A (en) Thin layer propagating slurry explosive
RU2190585C1 (en) Explosive composition for boreholes
US3762970A (en) Gelled nitroparaffin explosive composition containing air entrapper plus inert weighting material
US3811971A (en) Method of blasting under high pressure conditions at elevated and normal temperatures
NO129144B (en)
Rowe et al. Variable energy explosives for soft ground blasting
Cranney et al. Chemical explosives
Pingua et al. Studies on properties of unwrapped explosive to improve blasting performances: A case study
NO128609B (en)