NO119671B - - Google Patents
Download PDFInfo
- Publication number
- NO119671B NO119671B NO2411/68A NO241168A NO119671B NO 119671 B NO119671 B NO 119671B NO 2411/68 A NO2411/68 A NO 2411/68A NO 241168 A NO241168 A NO 241168A NO 119671 B NO119671 B NO 119671B
- Authority
- NO
- Norway
- Prior art keywords
- concrete
- container
- screw
- machine
- stated
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 230000006835 compression Effects 0.000 claims description 15
- 238000007906 compression Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 239000004568 cement Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- 230000002787 reinforcement Effects 0.000 claims description 9
- 238000005056 compaction Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 6
- 238000007493 shaping process Methods 0.000 claims description 5
- SPJMAPNWDLIVRR-UHFFFAOYSA-M sodium;3-chloro-2-phenylphenolate Chemical compound [Na+].[O-]C1=CC=CC(Cl)=C1C1=CC=CC=C1 SPJMAPNWDLIVRR-UHFFFAOYSA-M 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 230000003014 reinforcing effect Effects 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- 229910052742 iron Inorganic materials 0.000 claims 1
- 238000009751 slip forming Methods 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B3/00—Producing shaped articles from the material by using presses; Presses specially adapted therefor
- B28B3/20—Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
- B28B3/22—Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded by screw or worm
- B28B3/228—Slipform casting extruder, e.g. self-propelled extruder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/08—Producing shaped prefabricated articles from the material by vibrating or jolting
- B28B1/084—Producing shaped prefabricated articles from the material by vibrating or jolting the vibrating moulds or cores being moved horizontally for making strands of moulded articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B13/00—Feeding the unshaped material to moulds or apparatus for producing shaped articles; Discharging shaped articles from such moulds or apparatus
- B28B13/02—Feeding the unshaped material to moulds or apparatus for producing shaped articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B23/00—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
- B28B23/02—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
- B28B23/18—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members for the production of elongated articles
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
- Underground Or Underwater Handling Of Building Materials (AREA)
Description
Fremgangsmåte og maskin for fremstilling av langstrakte gjenstander av betong. Method and machine for the production of elongated concrete objects.
Det er kjent med horisontal glideformstopning å fremstille langstrakte betongelementer, slik som bjelker, plater m.v., idet betong mates ut gjennom en åpning ved den nedre ende av en beholder ned på et plant underlag. Beholderen med betongblanding flyttes langsomt frem på underlaget. I bevegelses-retningen regnet etter beholderen er det anbragt en med vibrator forsynt slede, med hvilken anordning det på underlaget formede betongsjikt vibreres og komprimeres. Beholderen og den vibrerende slede beveger seg med jevn hastighet over underlaget. Sleden vil således gli over den ut fra beholderen ut-matede og på underlaget utlagte betong og komprimerer derved denne. Når betongen forlater den vibrerende slede, er den ferdigkomprimert og behbver derpå ingen stbtteformer. Metoden forutsetter at betongens holdfasthet er så stor når den forlater den vibrerende slede, at det formede produkt bibeholder sin form uten å synke sammen eller å sprekke fra hverandre. Utmat-ningen av betongen fra beholderen må skje meget jevnt og nby-aktig, da man ellers får et produkt som er ujevnt med hensyn til holdfasthet, tetthet og dimensjoner. For dette byemed må ofte kostbare og kompliserte utleggere anvendes. Metoden forutsetter også at betongen har sådan konsistens og flyteevne under vibreringen at armeringen, hvor sådan forekommer, helt ut omflytes og innstbpes. It is known with horizontal sliding form filling to produce elongated concrete elements, such as beams, slabs etc., as concrete is fed out through an opening at the lower end of a container onto a flat surface. The container with concrete mixture is slowly moved forward on the surface. In the direction of movement calculated from the container, a slide equipped with a vibrator is placed, with which device the concrete layer formed on the substrate is vibrated and compressed. The container and the vibrating slide move at a constant speed over the surface. The sledge will thus slide over the concrete fed out from the container and laid out on the base and thereby compresses it. When the concrete leaves the vibrating sled, it is fully compacted and does not require any formwork. The method assumes that the holding strength of the concrete is so great when it leaves the vibrating sled, that the shaped product retains its shape without collapsing or cracking apart. Discharge of the concrete from the container must be very even and nby-like, otherwise you get a product that is uneven in terms of holding strength, density and dimensions. For this purpose, expensive and complicated pavers often have to be used. The method also assumes that the concrete has such a consistency and fluidity during vibration that the reinforcement, where this occurs, is completely reflowed and embedded.
Fra beholderen må betongen legges ut med en hoyde HQ, som er tilpasset slik at det ferdige produkts, bjelkens, hoyde H blir den riktige. Forholdet H/fcQ er omvendt proporsjonalt med forholdet mellom betongens volumvekt i ikke-sammenpakket resp. sammenpakket tilstand. Stbrrelsen av forholdet er ca. 0,5 - 0,6. I praksis betyr dette at om man onsker å oppnå en bjelke med den ferdige hoyde av f.eks. 20 cm, må man legge ut betongen for den vibrerende slede til en hoyde av ca. 40 cm. Under vibreringen vil betongen bli forflyttet vertikalt nedad, hvilket' særlig når det gjelder fremstilling av forholdsvis tynne, på den ene lengdekant stilte bjelker, er en stor ulempe og vesentlig begrenser metoden. Dels må nemlig betongen være så los at den er istand til helt å flyte omkring armeringsjernene ved betongens forflytning nedad under komprimeringen, og dels oppstår vanskeligheter med å legge betongen ut i riktig mengde. Disse vanskeligheter oker med okende hoyde og/eller minskende bredde av bjelken. Grensen for metoden tor for nærværende ligge ved bjelker med ca. 20 cm hoyde og ca. 5 cm bredde. Foråt armeringen skal innstbpes i betongen i tilstrekkelig grad, er det som regel nodvendig kontinuerlig å boye armeringsjernene om-trent samme grad som betongen forflyttes nedad under vibreringen. Det samme gjelder ved anvendelse av hullformere, dvs. ved anvendelse av som regel rorformede stenger for formning av langsgående' hull i det formede produkt. From the container, the concrete must be laid out with a height HQ, which is adjusted so that the height H of the finished product, the beam, is the correct one. The ratio H/fcQ is inversely proportional to the ratio between the volume weight of the concrete in unpacked or packed state. The size of the ratio is approx. 0.5 - 0.6. In practice, this means that if you want to achieve a beam with the finished height of e.g. 20 cm, the concrete for the vibrating sled must be laid out to a height of approx. 40 cm. During the vibration, the concrete will be moved vertically downwards, which, particularly when it comes to the production of relatively thin beams, placed on one lengthwise edge, is a major disadvantage and significantly limits the method. On the one hand, the concrete must be so loose that it is able to completely flow around the rebars when the concrete moves downwards during compaction, and on the other hand there are difficulties in placing the concrete in the right amount. These difficulties increase with increasing height and/or decreasing width of the beam. The limit for the method currently seems to lie at beams with approx. 20 cm high and approx. 5 cm width. Before the reinforcement is to be embedded in the concrete to a sufficient extent, it is usually necessary to continuously bend the reinforcing bars to approximately the same extent as the concrete is moved downwards during the vibration. The same applies when using hole formers, i.e. when using, as a rule, tube-shaped rods for forming longitudinal holes in the shaped product.
Muligheten for å gjore betongen så los at den på bnsket måte flyter under den vibrerende slede begrenses av kravet til en relativt stiv konsistens, foråt det fremstilte produkt skal be-holde sin form etter komprimeringen og for betongen er avbundet. Fra holdfasthetssynspunkt er det fordelaktig med stivest mulig konsistens og minst mulig vanninnhold. En annen faktor som begrenser metoden er friksjonen mellom betongen og glideformens sider. Om sidenes hoyde blir for stor i forhold til det formede elements bredde, fester betongen mot stopeformens sidevegger nedenfor den vibrerende slede, hvorved sprekker og hulrom kan oppstå i det ferdige produkt. The possibility of making the concrete so loose that it flows in the desired way under the vibrating sled is limited by the requirement for a relatively stiff consistency, because the manufactured product must retain its shape after compaction and before the concrete has set. From the point of view of holding strength, it is advantageous to have the stiffest possible consistency and the lowest possible water content. Another factor that limits the method is the friction between the concrete and the sides of the sliding form. If the height of the sides becomes too large in relation to the width of the shaped element, the concrete adheres to the side walls of the stop form below the vibrating slide, whereby cracks and voids can occur in the finished product.
Forslag er fremkommet for å avhjelpe ovennevnte ulemper og å muliggjbre fremstilling ved hjelp av glideformstbpning av langstrakte betonggjenstander med betydelig hoyde, f.eks. 90 - 100 Proposals have been made to remedy the above-mentioned disadvantages and to make it possible to produce elongated concrete objects with considerable height, e.g. 90 - 100
cm, og med en minste tykkelse av ca. 4 - 5 cm. Ifblge et forslag vibreres det på underlaget dannede betongsjikts sideflater direkte nedenfor den med betongmasse fylte beholder, slik at ut fra denne mates betongblanding for kompensering av det volum av betong, som kreves for den ved vibreringen i sideretning bevir-kede komprimering av det under beholderen dannede betongsjikt. Med denne metode er det mulig direkte nedenfor beholderen i sideretning å komprimere betongsjiktet til ca. 80 - 90 % og eventuelt ennu mer, hvilket altså innebærer at betongsjiktet på det sted hvor dets ovre flate avstrykes, kan utlegges med en hoyde HQ, som bare med 20 - 10 % og eventuelt ennu mindre overstiger det ferdigformede elements hoyde H. Med den etter-følgende vibrerende slede behbver således en komprimering av betongsjiktet i vertikal retning å utfores bare med ca. 10 - 5 % eller ennu mindre, mens den endelige komprimering i sideretning utfores av stbpeformens sidevegger nedenfor den vibrerende slede. Betongmassen mates eller renner ned fra beholderen ikke bare for å fylle ut mellomrommet mellom glideformens sidevegger, men også for å kompensere den av disse tilveiebragte komprimering. Ved at komprimeringen skjer ved at formens sidevegger vibreres, kan man få en meget god vibreringseffekt. Ved vibrering av bjelkeformede elementer bare ovenifra, kan ikke tilnærmelsesvis så stor komprimeringseffekt oppnås. Fremforalt fås uavhengig av elementets hoyde en homogen komprimering av bjelkeelementet i hoyderetning. Ved komprimering bare ovenifra blir elementet ufullstendig komprimert i den nedre del. Ellers må hbyere vannsementtall anvendes for å oppnå en fullgod komprimering. Man kan arbeide med betong med relativt lavt vannsementtall, dvs. vektforholdet mellom vannet og sementen i betongblandingen. Vannsementtallet kan som regel holdes så lavt som ca. 0,27 - 0,35 ved et sementinnhold på ca. 300 - 350 kg/m 3, hvilket svarer til et vanninnhold på ca. 100 - 120 l/m<3>. Takket være dette relativt lave vannsementtall fås et produkt med hoy holdfasthet. En annen fordel med denne relativt torre betong er at en klebing mellom det formede produkts sideflater og stopeformens sider hindres. Den kraftige vibrering gjor det mulig å anvende lavt sementinnhold. cm, and with a minimum thickness of approx. 4 - 5 cm. According to one proposal, the side surfaces of the concrete layer formed on the substrate are vibrated directly below the container filled with concrete mass, so that from this concrete mixture is fed to compensate for the volume of concrete required for the compression caused by the vibration in the lateral direction of the material formed under the container concrete layer. With this method, it is possible directly below the container in the lateral direction to compress the concrete layer to approx. 80 - 90% and possibly even more, which means that the concrete layer at the place where its upper surface is scraped off can be laid with a height HQ, which only exceeds the height H of the preformed element by 20 - 10% and possibly even less. subsequent vibrating sledge thus requires a compaction of the concrete layer in the vertical direction to be carried out only with approx. 10 - 5% or even less, while the final compression in the lateral direction is carried out by the side walls of the block mold below the vibrating slide. The concrete mass is fed or flows down from the container not only to fill the space between the side walls of the sliding form, but also to compensate for the compression provided by these. As the compression takes place by vibrating the side walls of the mould, you can get a very good vibrating effect. When beam-shaped elements are vibrated only from above, not nearly as great a compression effect can be achieved. Above all, regardless of the element's height, a homogeneous compression of the beam element in the vertical direction is obtained. When compacting only from above, the element is incompletely compressed in the lower part. Otherwise, higher water-cement numbers must be used to achieve a fully satisfactory compaction. You can work with concrete with a relatively low water-cement ratio, i.e. the weight ratio between the water and the cement in the concrete mixture. The water cement number can usually be kept as low as approx. 0.27 - 0.35 at a cement content of approx. 300 - 350 kg/m 3, which corresponds to a water content of approx. 100 - 120 l/m<3>. Thanks to this relatively low water cement number, a product with high holding strength is obtained. Another advantage of this relatively dry concrete is that an adhesion between the side surfaces of the shaped product and the sides of the stop mold is prevented. The strong vibration makes it possible to use a low cement content.
Da imidlertid det nedenfor behanolderen under glideformen sterkt komprimerte betongsjikt blir relativt fast i konsisten-sen, har det vist seg vanskelig foran den vibrerende slede å avstryke betongmassen ved den formede betonggjenstands ovre kant. Denne har nemlig vist tilboyelighet til å briste, og sprekkene strekker seg dypt ned i betonggjenstanden. Et vik-tig formål med oppfinnelsen er å avhjelpe denne mangel. Ifolge oppfinnelsen avskilles det nedenfor beholderen komprimerte betongsjikt fra den i beholderen igjenværende betongmasse ved hjelp av vindingene på en roterende skrue, som strekker seg i lengderetning av glideformen og medfblger denne under fremflyt-ningen. Skruen drives slik at betongmasse mates bakover, altså i motsatt retning av glideformens fremflytningsretning, fortrinnsvis slik at betongmassen av skruen drives bakover noe raskere enn glideformen mates fremover. Derved oppnås en viss komprimering av betongmasse i ovre sjiktet av den formede gjenstand, for den vibrerende slede utforer den vertikale vibrering. Risiko for sprekkdannelse i den formede gjenstand elimineres praktisk talt helt ved skruens bakovermatning. However, since the highly compressed concrete layer below the conveyor under the sliding form becomes relatively firm in consistency, it has proved difficult in front of the vibrating sled to wipe off the concrete mass at the upper edge of the shaped concrete object. This has shown a tendency to crack, and the cracks extend deep into the concrete object. An important purpose of the invention is to remedy this deficiency. According to the invention, the concrete layer compressed below the container is separated from the concrete mass remaining in the container by means of the windings of a rotating screw, which extends in the longitudinal direction of the sliding form and accompanies it during the advance. The screw is driven so that the concrete mass is fed backwards, i.e. in the opposite direction to the sliding form's forward movement direction, preferably so that the concrete mass is driven backwards by the screw somewhat faster than the sliding form is fed forwards. Thereby, a certain compression of concrete mass is achieved in the upper layer of the shaped object, because the vibrating slide carries out the vertical vibration. The risk of cracking in the shaped object is practically completely eliminated by the backward feed of the screw.
Ifolge en videreutvikling av oppfinnelsen kan det langsgående armeringsjern, som vanligvis anbringes ved den ovre kant av den formede betonggjenstand, innfores gjennom en aksial boring i skruen under glideformens forflytning fremad. Armeringsjernet vil da forlate boringen i skruen ved dennes bakre ende, dvs. på et sted i den formede betonggjenstand, hvor betongmassen allerede er blitt komprimert til ca. 80 %. Ved den igjenværende 20 %'ige komprimering av betongmassen - hvilken komprimering i det vesentlige skjer ved vibrering i sideretning av formens sidevegger nedenfor den vibrerende slede - vil det ikke skje noen nevneverdig forflytning av armeringsjernet i betonggjenstanden, hvorved sikres at armeringsjernet vil bibeholde sin gitte stilling, dvs. får riktig plasering i gjenstanden resp. betongbj eiken. According to a further development of the invention, the longitudinal rebar, which is usually placed at the upper edge of the shaped concrete object, can be inserted through an axial bore in the screw during the forward movement of the sliding form. The rebar will then leave the hole in the screw at its rear end, i.e. at a place in the shaped concrete object, where the concrete mass has already been compressed to approx. 80%. In the case of the remaining 20% compression of the concrete mass - which compression essentially occurs by vibrating in the lateral direction of the side walls of the form below the vibrating slide - there will be no significant movement of the rebar in the concrete object, thereby ensuring that the rebar will retain its given position , i.e. gets the correct placement in the object or concrete bj oak.
Fordelen med å mate armeringen inn gjennom skruen er ikke bare at sluttstillingen blir den riktige. Om man mater inn over-kant sarmeringen for beholderen, presses armeringen nedad av den nedadgående betong. Om-armeringen ikke holdes oppe av boy-ler eller ved at den er utspent, beveger den seg til slutt helt ned til bunnen. På den annen side, om armeringen holdes oppe (ifolge det ovenstående) presses den ned av betongen så meget at den, når den ferdige bjelke forlater maskinen, vil fjære opp igjen. Derved fås meget farlige horisontale sprekker i bjelken. Innmatningen behover imidlertid ikke å skje gjennom skruen, men kan skje f.eks. gjennom et spesielt ror. Hovedsaken er at selve innmatningen skjer etter beholderen, da komprimeringen stort sett allerede har funnet sted. The advantage of feeding the reinforcement in through the screw is not only that the final position is the correct one. If the reinforcement for the container is fed in over the edge, the reinforcement is pressed downwards by the descending concrete. If the reinforcement is not held up by the boiler or because it is stretched, it eventually moves all the way down to the bottom. On the other hand, if the reinforcement is held up (according to the above), it is pressed down by the concrete so much that, when the finished beam leaves the machine, it will spring back up. This results in very dangerous horizontal cracks in the beam. However, the input does not need to take place through the screw, but can take place e.g. through a special rudder. The main thing is that the actual feeding takes place after the container, as the compression has mostly already taken place.
Imidlertid vil ved vibreringen - såvel ved formveggenes vibrering i sideretning som den vibrerende sledes vibrering i vertikal retning - hvilken vibrering har en bakoverrettet reaksjons-kraft, betongmassen og armeringsjernet i en viss utstrekning vibrere uavhengig av hverandre. Derved oppstår risiko foråt jernet skal slite opp et langsgående hulrom i betongmassen, hvorved selvsagt virkningen av armeringsjernet i den ferdige betonggjenstand blir vesentlig redusert. For det formål ledes ifolge et videre trekk ved oppfinnelsen vann omkring armeringsjernet inn i boringen i skruen ved dennes forreste ende. Skruen heller svakt bakover nedover, og vannet forlater derfor boringen ved skruens bakre ende. Her oppmykes således kontinuerlig betongmassen i en sådan grad at denne godt vil legge seg omkring armeringsjernet, hvorved det ferdige betongelements holdfasthet okes i betydelig grad. However, during the vibration - both the vibration of the form walls in the lateral direction and the vibration of the vibrating sled in the vertical direction - which vibration has a backward reaction force, the concrete mass and the rebar will to a certain extent vibrate independently of each other. Thereby, there is a risk that the rebar will tear open a longitudinal cavity in the concrete mass, whereby of course the effect of the rebar in the finished concrete object is significantly reduced. For that purpose, according to a further feature of the invention, water is led around the rebar into the bore in the screw at its front end. The screw leans slightly backwards downwards, and the water therefore leaves the bore at the rear end of the screw. Here, the concrete mass is thus continuously softened to such an extent that it will settle well around the rebar, whereby the strength of the finished concrete element is increased to a considerable extent.
Metoden muliggjor også fremstilling av renneformede betongelementer, idet to parallelle, tynne og forholdsvis hbye sidevegger fremstilles ved glideformstopning ifolge det ovenstående og formes kontinuerlig på ét kort tid for formet relativt tynt betongsjikt, som eksempelvis ifolge den i svensk utlegningsskrift nr. 309.556 angitte metode er blitt utlagt på et underlag. The method also enables the production of channel-shaped concrete elements, as two parallel, thin and relatively high side walls are produced by sliding mold filling according to the above and are formed continuously in a short time for a formed relatively thin layer of concrete, which, for example, according to the method specified in Swedish design document no. 309,556, has been laid out on a substrate.
Oppfinnelsen vedrorer også en maskin for å utfore fremgangs-måten ifolge det ovenstående, hvilken maskin omfatter et over et underlag fremflyttbart stativ med en eller flere for opptagelse av betongblandingen beregnede beholdere med utmatnings-épning nedentil for betongblandingen og med foran og bak beholderen forlopende sidevegger for formning av det på underlaget dannede betongsjikts sideflater, av hvilke sidevegger i det minste den ene er anordnet for å vibreres i sideretning, samt med anordning for vertikal vibrering av det formede betongsjikts ovre flate. Karakteristisk for oppfinnelsen er at det nedentil i beholderen er en roterbart drevet i beholderens fremflytningsretning forlopende skrue, anordnet for under glideformstopningen med sine vindinger å avskille i beholderen igjenværende betongmasse fra den under beholderen allerede formede, i" sideretning vibrerte betonggjenstand. The invention also relates to a machine for carrying out the method according to the above, which machine comprises a stand that can be moved over a base with one or more containers intended for receiving the concrete mixture with a discharge opening below for the concrete mixture and with side walls extending in front and behind the container for shaping of the side surfaces of the concrete layer formed on the substrate, of which side walls at least one is arranged to be vibrated laterally, as well as with a device for vertical vibration of the upper surface of the formed concrete layer. Characteristic of the invention is that at the bottom of the container there is a rotatably driven screw extending in the forward direction of the container, arranged to separate the concrete mass remaining in the container from the concrete object already formed under the container, vibrated in the lateral direction, during the sliding form filling with its windings.
©vrige karakteristiske trekk vil fremgå av det etterfølgende under henvisning til de skjematiske tegninger, hvor: Fig. 1 er et vertikalt lengdesnitt gjennom en maskin ifolge oppfinnelsen. Fig. 2 viser i storre målestokk et vertikalt lengdesnitt gjennom maskinens roterbart lagrede skrue. Other characteristic features will be apparent from what follows with reference to the schematic drawings, where: Fig. 1 is a vertical longitudinal section through a machine according to the invention. Fig. 2 shows on a larger scale a vertical longitudinal section through the machine's rotatably stored screw.
rig. 3 er et sideoppriss delvis i lengdesnitt av et glideform-aggregat for fremstilling av renneformede betongelementer. rich. 3 is a side elevation, partly in longitudinal section, of a sliding form assembly for the production of channel-shaped concrete elements.
Fig. 4 viser aggregatet sett i plan. Fig. 4 shows the aggregate seen in plan.
Fig. 5 viser i storre målestokk et vertikalt tverrsnitt etter linjen V-V i fig. 3i og Fig. 6 viser i ennu storre målestokk et lignende vertikalt tverrsnitt gjennom den venstre del av aggregatet ifolge fig. 5. Fig. 5 shows on a larger scale a vertical cross-section along the line V-V in fig. 3i and Fig. 6 show on an even larger scale a similar vertical cross-section through the left part of the aggregate according to fig. 5.
Den i fig. 1 og 2 viste formmaskin består av en beholder 1 med en åpning 2 nedentil for utmatning av den i beholderen innforte betongblanding 3. Beholderen 1 bæres av et stativ 4 (se fig. The one in fig. The molding machine shown in 1 and 2 consists of a container 1 with an opening 2 at the bottom for dispensing the concrete mixture 3 contained in the container. The container 1 is supported by a stand 4 (see fig.
6) med lopehjul 5 for maskinens forflytning på et plant underlag 6. For formning av det med maskinen utlagte betongsjikts eller betonggjenstandens 7 sider tjener parallelle sidevegger 8, som strekker seg såvel fremover som bakover forbi beholderen 1 (se fig. 1). Maskinen er dessuten forsynt med en slede 9 for formning av gjenstanens 7 ovre flate 10. Sleden 9 er forsynt med en vibrator 11 for komprimering av betongsjiktet 7 i vertikal retning. Sleden 9 er ved fjærende organ 12 opphengt på stativet 4, slik at den kan utfore vibrasjoner i et vertikal-plan. Med 13 betegnes en avstryker ved beholderens 1 bakre kant av åpningen 2, beregnet for å avjevne den ovre flate av betongmassen, etterat denne har forlatt beholderen 1. Ved den bakre ende er sleden 9 forsynt med en noe fjærende stålplate-14, som hindrer betongsjiktet ved sledens bakre ende fra å dan-ne en tversgående valk, en såkalt trykkbanke. I det minste den ene formvegg 8, fortrinnsvis den indre (ifolge fig. 6 den hoyre) formvegg er forsynt med en vibrator 15 og er ved fjærende organ 16 opphengt på stativet 4 således at den kan vibrere i et hori-sontalt plan. Vibratorene 11 og 15 er anordnet således at en 6) with an idler wheel 5 for moving the machine on a level surface 6. Parallel side walls 8, which extend both forwards and backwards past the container 1, are used to shape the sides of the concrete layer or concrete object laid out by the machine 7 (see fig. 1). The machine is also provided with a sled 9 for shaping the upper surface 10 of the object 7. The sled 9 is provided with a vibrator 11 for compressing the concrete layer 7 in the vertical direction. The sled 9 is suspended on the stand 4 by springing member 12, so that it can perform vibrations in a vertical plane. 13 denotes a scraper at the rear edge of the container 1 of the opening 2, designed to level the upper surface of the concrete mass after it has left the container 1. At the rear end, the slide 9 is provided with a somewhat springy steel plate 14, which prevents the concrete layer at the rear end of the sled from forming a transverse wall, a so-called pressure bank. At least one mold wall 8, preferably the inner (according to Fig. 6 the right-hand) mold wall is provided with a vibrator 15 and is suspended by springing member 16 on the stand 4 so that it can vibrate in a horizontal plane. The vibrators 11 and 15 are arranged so that a
skrått bakoverrettet kraft tilfores mot det formede betongsjikts 7 ovre flate resp. sideflater 17. For ved vibreringen av sideveggene 8 å hindre dannelse av en tversgående valk på sideflatene 17, er også veggene 8 ved den bakre ende forsynt med hver sin fjærende stålplate 18 (fig. 4). Platene 14 og 18 medforer på grunn av vibreringen også en viss såkalt stålslip-ning av betonggjenstanden 7. An obliquely backward force is applied to the upper surface of the formed concrete layer 7 or side surfaces 17. In order to prevent the formation of a transverse valley on the side surfaces 17 during the vibration of the side walls 8, the walls 8 at the rear end are also each provided with a springy steel plate 18 (fig. 4). Due to the vibration, the plates 14 and 18 also cause a certain so-called steel grinding of the concrete object 7.
Maskinens fremtrekning over underlaget 6 tenkes utfort ved hjelp av en elektrisk motor 19 over en kjede 20 til lopehjulene 5. The machine's traction over the substrate 6 is carried out by means of an electric motor 19 via a chain 20 to the running wheels 5.
I åpningen 2 er roterbart lagret med den ene ende 21 i et lager 22 en i stativets 4 lengderetning forlopende, bakover nedover hellende skrue 23. Skruen tenkes drevet av en elektrisk motor 24 over et par tannhjul 25 og 26. Aksielt i skruen er tatt ut en boring 27, gjennom hvilken et armeringsjern 28 kan fores. Ovenfor en i den forreste ende av skruens 23 boring 27 utmun-nende renne 29 er anbragt et til trykkvannledning 30 koblet munnstykke 31, som tilforer vann gjennom boringen 27 til betongmassen ved skruens 23 borterste ende 32. In the opening 2, a screw 23 is rotatably stored with one end 21 in a bearing 22 in the longitudinal direction of the stand 4, sloping backward downwards. a bore 27, through which a rebar 28 can be fed. Above a chute 29 opening at the front end of the screw 23's bore 27 is a nozzle 31 connected to a pressurized water line 30, which supplies water through the bore 27 to the concrete mass at the far end 32 of the screw 23.
Når maskinen forflyttes i pilens 33 retning i fig. 1, mates eller glir den forholdsvis torre betongblanding (vannsementtallet eksempelvis 0,27 - 0,30) gjennom åpningen 2 ned på underlager 6. På dette er utlagt horisontale og vertikalt boyede armeringsjern 34 resp. 35. Rommet mellom maskinens sidevegger 8 utfylles med betongmasse fra beholderen 1. På grunn av vibreringen vil en kraftig komprimering finne sted av betongmassen i sideretning, og ny masse renner kontinuerlig ned fra beholderen for å kompensere den ved komprimeringen forbrukte betongmasse. Nedenfor avstrykeren 13, hvor betongmassen 7 har hoyden HQ, tenkes gjenstanden allerede å være blitt komprimert til ca. 90 %. Ytterligere komprimering av betonggjenstanden skjer med veggene 8 nedenfor sleden 9. Denne komprimering i sideretning tenkes å foregå med ytterligere ca. 5 %. Med sleden 9 behbver således bare å komprimeres de gjenstående ca. 5 %. Dette innebærer altså at hoyde- og breddedimensjonene for be-tonggj enstandens tverrsnitt nedenfor avstrykeren 13 ved komprimering må reduseres med bare ca. 10 % eller mindre. Den ferdigformede gjenstand blir meget fast og homogen. Hoyden H av denne kan derfor gjbres betydelig og bredden forholdsvis liten. Den allerede hårdt komprimerte masse nedenfor beholderen 1 avskilles fra den igjenværende betongmasse 3 i beholderen ved hjelp av vindingene for skruen 23, som drives med en sådan hastighet at betongmassen av skruevindingene presses bakover noe hurtigere enn maskinen forflyttes fremover (i retning av pilen 33). Samtidig styres et armeringsjern 28 gjennom boringen 27 i skruen 23 inn i støpeformen. Ettersom noen nevneverdig ytterligere komprimering av betonggjenstanden 7 ikke forekommer i vertikal retning av sleden 9, vil armeringsjernet 28 i betong-gj enstanden innta riktig avstand fra dennes ovre flate 10, idet denne avstand 36 bestemmes ved hellingen av skruen 23 og utlop-ets hoydestilling. Det kan derfor være gunstig å gjore lageret 22 for skruen 23 innstillbart, slik at onsket helling av skruen When the machine is moved in the direction of the arrow 33 in fig. 1, the relatively dry concrete mixture (water-cement ratio, for example 0.27 - 0.30) is fed or slides through the opening 2 onto substrates 6. On this are laid horizontal and vertically curved rebars 34 resp. 35. The space between the machine's side walls 8 is filled with concrete mass from the container 1. Due to the vibration, a strong compression of the concrete mass will take place in the lateral direction, and new mass continuously flows down from the container to compensate for the concrete mass consumed during the compaction. Below the scraper 13, where the concrete mass 7 has the height HQ, the object is thought to have already been compressed to approx. 90%. Further compaction of the concrete object takes place with the walls 8 below the slide 9. This compaction in the lateral direction is thought to take place with a further approx. 5%. With the slide 9, the remaining approx. 5%. This therefore means that the height and width dimensions of the cross-section of the concrete structure below the scraper 13 must be reduced by only approx. 10% or less. The finished object becomes very solid and homogeneous. The height H of this can therefore be increased considerably and the width relatively small. The already hard compacted mass below the container 1 is separated from the remaining concrete mass 3 in the container by means of the windings for the screw 23, which is driven at such a speed that the concrete mass is pushed backwards by the screw windings somewhat faster than the machine is moved forward (in the direction of arrow 33). At the same time, a rebar 28 is guided through the bore 27 in the screw 23 into the mould. As any significant further compression of the concrete object 7 does not occur in the vertical direction of the slide 9, the rebar 28 in the concrete object will occupy the correct distance from its upper surface 10, this distance 36 being determined by the inclination of the screw 23 and the height of the outlet. It may therefore be advantageous to make the bearing 22 for the screw 23 adjustable, so that the desired inclination of the screw
23 lett kan tilveiebringes. 23 can easily be provided.
På grunn av vanntilstromningen gjennom munnstykket 31 til betongmassen ved skruens 23 bakre ende 3 2 fås onsket hoyere vannsementtall for massen omkring armeringsjernet 28. Due to the water inflow through the nozzle 31 to the concrete mass at the rear end 3 2 of the screw 23, the desired higher water cement number is obtained for the mass around the rebar 28.
I fig. 3-6 vises fremstillingen av en renneformet gjenstand 37 (fig. 5 - 6) av betong. Denne gjenstand 37 ex en renneformet bjelke med en bunndel 38 og fra denne oppstående vegger 39. Bunnen 38 fremstilles forst på underlaget 6 og kan fortrinnsvis utfores med en glideformmaskin 40 (fig. 3 til hoyre), for hvilken nærmere er redegjort i svensk utlegningsskrift nr. 309.556. Ved forflytning av maskinen 40 i retning av pilen 41 i fig. 3 renner den relativt torre betongblanding 42, som i dette tilfelle kan ha et så lavt vannsementtall som ca. 0,25 - 0,27, gjennom åpningen 43 i beholderen 44 ned på underlaget 6, idet en fremad og nedad hellende skråning 45 av betongblandingen 42 med en viss rasvinkel dannes nedenfor åpningens forkant 46. På denne skråning 45 sproytes vann fra munnstykket 47 så jevnt som mulig. En del av vannet renner da ned mot underlaget 6, hvor således vannsementtallet i sjiktet 48 blir storst. Betong-sjiktets ovre flate avjevnes automatisk med avstrykeren 49. Forkanten 46 ligger på et lavere nivå enn avstrykeren 49. Med maskinens 40 slede 50 komprimeres betongsjiktet ved vibrering med sledens vibrator 51, hvorved onsket tetthet fås for sjiktet. Ved komprimeringen presses en del av vannet i sjiktet 48 opp-over, slik at en viss utjevning av vanninnholdet i hele sjiktet fås. Vanninnholdet ved den ovre flate blir imidlertid aldri så hoyt at det oppstår risiko for at sleden 50 skal klebe mot sjiktet. Derved sikres et jevnt, fast sjikt på den ferdige bunnplate 38 også ved den ovre.flate. Bunnplaten blir meget fast, og noen risiko for at den skal deformeres, etterat maskinens 40 sidevegger 52 har forlatt den> foreligger ikke. In fig. 3-6 shows the production of a channel-shaped object 37 (fig. 5 - 6) made of concrete. This object 37 is a trough-shaped beam with a bottom part 38 and walls 39 rising from this. The bottom 38 is first produced on the substrate 6 and can preferably be lined with a sliding molding machine 40 (fig. 3 to the right), which is explained in more detail in Swedish design document no. .309,556. When moving the machine 40 in the direction of the arrow 41 in fig. 3, the relatively dry concrete mixture 42 flows, which in this case can have a water cement number as low as approx. 0.25 - 0.27, through the opening 43 in the container 44 down onto the substrate 6, a forward and downward sloping slope 45 of the concrete mixture 42 with a certain slope angle is formed below the front edge 46 of the opening. On this slope 45 water is sprayed from the nozzle 47 so evenly as possible. Part of the water then runs down towards the substrate 6, where the water cement number in the layer 48 is thus the largest. The concrete layer's upper surface is automatically leveled with the squeegee 49. The leading edge 46 is at a lower level than the squeegee 49. With the sled 50 of the machine 40, the concrete layer is compressed by vibrating with the sled's vibrator 51, whereby the desired density is obtained for the layer. During the compression, part of the water in the layer 48 is pressed upwards, so that a certain equalization of the water content in the entire layer is achieved. However, the water content at the upper surface never becomes so high that there is a risk of the slide 50 sticking to the layer. This ensures an even, firm layer on the finished bottom plate 38 also on the upper surface. The bottom plate becomes very firm, and there is no risk of it being deformed after the side walls 52 of the machine 40 have left it.
Som vist i fig. 6 er bunnplatens 38 langsgående sider forsynt med et oppad-rettet parti 53 med en sådan hoyde,-som med eksempelvis to til tre ganger overstiger bunnplatens tykkelse. Disse oppstående partier 53 danner, som det vil fremgå av fig. 6, styring for veggene 8 på den i fig. 3 viste etterfølgende glideformmaskin 54. As shown in fig. 6, the longitudinal sides of the bottom plate 38 are provided with an upwardly directed part 53 with a height that exceeds the thickness of the bottom plate by, for example, two to three times. These raised parts 53 form, as will be seen from fig. 6, control for the walls 8 on the one in fig. 3 showed subsequent slide molding machine 54.
Umiddelbart etterat sjiktet 48 er blitt komprimert, utlegges med to på noen avstand fra hverandre beliggende og av et felles stativ 55 bårne beholdere 1 to sjikt av betong, som av sideveggene 8 og sledene 9 vibreres på den foran i forbindelse med fig. 1 ,og 2 beskrevne måte. Med aggregatet ifolge fig. 3 og 4 er det således mulig ved glideformstopning å fremstille armerte, renneformede bjelker med relativt tynne og hoye vegger 39. Denne bjelke får således tross det relativt beskjedne material-forbruk særlig hoy holdfasthet-og bæreevne. Immediately after the layer 48 has been compacted, two layers of concrete are laid out with two containers 1 located at some distance from each other and carried by a common stand 55, which are vibrated by the side walls 8 and the slides 9 on the front in connection with fig. 1 and 2 described way. With the unit according to fig. 3 and 4, it is thus possible to produce reinforced, channel-shaped beams with relatively thin and high walls 39 by means of sliding form filling. This beam thus, despite the relatively modest material consumption, has particularly high strength and load-bearing capacity.
Også maskinen 54 for formning av gjenstanden 7, resp. veggene 39 kan være forsynt med munnstykker 47 (ikke vist) forbundet med vannledning for sprbyting av vann mot skråningen 56 av den fra maskinens 54 beholdere 1 nedadrennende betongmasse 3. I Also the machine 54 for shaping the object 7, resp. the walls 39 can be provided with nozzles 47 (not shown) connected to a water line for spraying water towards the slope 56 of the concrete mass 3 flowing down from the machine's 54 containers 1. In
så fall fås en liten anrikning av vann i betongmassen nær den formede plates 38 ovre flate, dvs. på oversiden av de oppstående langsgående partier 53 av bunnplaten. Ved den etterføl-gende vibrering og komprimering av betongmassen med sideveggene 8 og sledene 9 fås en utjevning av vanninnholdet i den ferdigformede betonggjenstand. I de tilfeller da de på hbykant stilte betongvegger 39 skal være forsynt med armering ved den nedre kant, er det fordelaktig med slik vannbesprbytning av in this case, a small enrichment of water is obtained in the concrete mass near the upper surface of the shaped plate 38, i.e. on the upper side of the upright longitudinal parts 53 of the bottom plate. By the subsequent vibration and compression of the concrete mass with the side walls 8 and the slides 9, an equalization of the water content in the finished concrete object is achieved. In cases where the concrete walls 39 placed on the upper edge are to be provided with reinforcement at the lower edge, it is advantageous to have such a water spray of
betongmassen 3 ved maskinens forreste ende, ettersom derved sikres en god omhylling av betongmassen omkring armeringsjernene ved den etterfølgende vibrering. the concrete mass 3 at the front end of the machine, as this ensures a good envelopment of the concrete mass around the rebars during the subsequent vibration.
De viste og beskrevne utforelsesformer er å betrakte bare som eksempler, og glideformmaskinene 40 og 54 kan konstruktivt end-res på flere måter innenfor rammen av kravene. Således kan ma-skinene 40, 54 i stedet for med lopehjul 5 glidbart understøt-tes av langsgående bjelker eller skinner i taket av det lokale, hvor glideformningen utfores. I stedet for renneformede bjelker er det med aggregatet ifolge oppfinnelsen mulig å fremstille i tverrsnitt L- eller T-formede sådanne, i hvilket tilfelle det på bunnplaten 38 stopes en enkelt langsgående vegg 39. The shown and described embodiments are to be regarded as examples only, and the slipform machines 40 and 54 can be constructively changed in several ways within the scope of the requirements. Thus, the machine rails 40, 54, instead of with running wheels 5, can be slidably supported by longitudinal beams or rails in the ceiling of the room, where the sliding forming is carried out. Instead of channel-shaped beams, with the aggregate according to the invention it is possible to produce L- or T-shaped ones in cross-section, in which case a single longitudinal wall 39 is stopped on the bottom plate 38.
Om det ved den ovre kant av veggene 39 skal anbringes to innbyrdes parallelle armeringsjern, kan det være hensiktsmessig i beholderens 1 åpning 2 roterbart å lagre to med aksial boring 27 forsynte, parallelle, roterbart drevne skruer 23. Armer-ingsj ernene kan i stedet- for gjennom en boring i skruen eller skruene styres ned i stopeformen gjennom ett eller flere skrått nedover bakover rettede ror, i hvis munning eventuelt også kan innfores vann. If two mutually parallel rebars are to be placed at the upper edge of the walls 39, it may be appropriate to rotatably store two parallel, rotatably driven screws 23 provided with an axial bore 27 in the opening 2 of the container 1. The rebars can instead- for through a bore in the screw or screws are guided down into the stop mold through one or more rudders directed obliquely downwards to the rear, into the mouth of which water can possibly also be introduced.
Problemet med å avstryke betongmassen uten at det oppstår sprekker i den formede gjenstand, bjelken, er ennu mer markant, om bjelken har et smalt liv og dette med en hals går over i et bredere, langs bjelkens ovre del forlopende parti, hvor selve trykksonen ligger. I dette tilfelle blir de under formningen igjenholdende krefter betydelig mindre enn de som vil skyve betongmassen fremover, ettersom jo trykksonen er bredere enn livet. For i dette tilfelle å få materialet i livet tilstrekkelig hårdt sammenpakket og samtidig hindre betongmassen fra å "knipe" fast i halsen, dvs. i overgangen mellom"det bredere ovre parti og det smalere nedre parti av bjelken, må halsen bringes til å helle bakover, nedover under sleden 9 som det fremgår av fig. 1. Takket være anvendelsen av materskruen 23 og bakoverhellingen av det halsen formende partiet av støpe-formen fås en sprekkfri bjelke. The problem of removing the concrete mass without cracks occurring in the shaped object, the beam, is even more marked if the beam has a narrow web and this with a neck transitions into a wider section running along the upper part of the beam, where the actual pressure zone is located . In this case, the forces retained during shaping are significantly smaller than those that will push the concrete mass forward, as the pressure zone is wider than life. In this case, in order to get the material in the life sufficiently tightly packed and at the same time prevent the concrete mass from "pinching" in the neck, i.e. in the transition between the "wider upper part and the narrower lower part of the beam, the neck must be made to tilt backwards , downwards under the carriage 9 as can be seen from Fig. 1. Thanks to the use of the feed screw 23 and the backward inclination of the neck-forming part of the casting mold, a crack-free beam is obtained.
Claims (10)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9602/67*A SE322720B (en) | 1967-06-29 | 1967-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
NO119671B true NO119671B (en) | 1970-06-15 |
Family
ID=20277068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO2411/68A NO119671B (en) | 1967-06-29 | 1968-06-19 |
Country Status (11)
Country | Link |
---|---|
US (1) | US3608012A (en) |
BE (1) | BE717413A (en) |
CH (1) | CH480927A (en) |
DE (1) | DE1759903A1 (en) |
DK (1) | DK121848B (en) |
FI (1) | FI49251C (en) |
FR (1) | FR1575956A (en) |
GB (1) | GB1225518A (en) |
NL (1) | NL6809123A (en) |
NO (1) | NO119671B (en) |
SE (1) | SE322720B (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3926541A (en) * | 1970-06-29 | 1975-12-16 | Frederick M Hewitt | Extruder with interacting auger and care means |
US3906069A (en) * | 1970-12-15 | 1975-09-16 | Nilcon Ab Ing Firman | Method for the manufacture of elongate concrete building blocks |
US3922124A (en) * | 1971-08-12 | 1975-11-25 | Georg Bjorhaag | Sliding mould for concrete piles including slipform and rollers |
US3994639A (en) * | 1973-01-11 | 1976-11-30 | Hewitt Frederick M | Apparatus for extruding concrete |
GB1552214A (en) * | 1975-07-23 | 1979-09-12 | Ici Ltd | Production of fibrecontaining articles |
WO1981000375A1 (en) * | 1979-08-09 | 1981-02-19 | Tarmac Ind Holdings Ltd | Method and apparatus for the production of composite sheet material and a sheet material produced thereby |
FI64072C (en) * | 1981-11-10 | 1983-10-10 | Partek Ab | CONTAINER FOR CONTAINER CONTAINING AV FOEREMAOL AV STYV GJTMASSA OCH GLIDGJUTNINGSFORM FOER GENOMFOERANDE AV FOERFA RADET |
GB2119703B (en) * | 1982-04-30 | 1985-10-23 | Bpb Industries Plc | Cementitious board manufacture |
FI73170C (en) * | 1984-04-24 | 1990-02-16 | Partek Ab | FARING EQUIPMENT FOR THE PRODUCTION OF CONCRETE PRODUCTS. |
DE3585007D1 (en) * | 1984-08-24 | 1992-02-06 | Lohja Parma Eng Lpe | METHOD AND DEVICE FOR PRODUCING HOLLOW PANELS AND OTHER BUILDING ELEMENTS, preferably FROM CONCRETE. |
US4642042A (en) * | 1985-07-05 | 1987-02-10 | International Fuel Cells Corporation | Apparatus for making composite sheets |
DE4022364A1 (en) * | 1990-07-13 | 1992-01-23 | Roth Technik Maschinenbau Gmbh | METHOD FOR THE PRODUCTION OF STEEL CONCRETE CARRIERS AND SLIDER FOR THE IMPLEMENTATION OF THE METHOD AND STEEL CONCRETE CARRIERS MANUFACTURED THEREFOR |
US5618476A (en) * | 1995-08-03 | 1997-04-08 | Mogel; Richard L. | Process for slip form production of prestressed concrete railroad ties |
FI20020193A0 (en) * | 2002-02-01 | 2002-02-01 | Addtek Res & Dev Oy Ab | Method and apparatus for casting concrete product |
FI20030733A (en) * | 2003-05-15 | 2004-11-16 | X Tec Oy Ltd | Method and arrangement for producing a concrete product |
WO2010055497A2 (en) * | 2008-11-17 | 2010-05-20 | Peter Hermann Schmalfuss | Precast concrete panel and method for making the precast concrete panel |
FI126878B (en) * | 2014-06-27 | 2017-07-14 | Fimatec Finnish Intelligent Module Apartments Oy | Hardware for construction |
FI20165851L (en) | 2016-11-14 | 2018-05-15 | Elematic Oyj | Method and apparatus for casting prefabricated concrete products |
CN107253267A (en) * | 2017-05-10 | 2017-10-17 | 宁波北新建材有限公司 | A kind of mixer siccative charging gear |
CN115431398B (en) * | 2021-06-04 | 2024-06-07 | 周兆弟 | Preparation process of prefabricated pile wall and prefabricated pile wall |
-
1967
- 1967-06-29 SE SE9602/67*A patent/SE322720B/xx unknown
-
1968
- 1968-06-19 NO NO2411/68A patent/NO119671B/no unknown
- 1968-06-19 US US738276A patent/US3608012A/en not_active Expired - Lifetime
- 1968-06-20 DE DE19681759903 patent/DE1759903A1/en active Pending
- 1968-06-24 GB GB1225518D patent/GB1225518A/en not_active Expired
- 1968-06-25 CH CH938468A patent/CH480927A/en not_active IP Right Cessation
- 1968-06-26 FR FR1575956D patent/FR1575956A/fr not_active Expired
- 1968-06-27 FI FI681818A patent/FI49251C/en active
- 1968-06-28 NL NL6809123A patent/NL6809123A/xx unknown
- 1968-06-28 BE BE717413D patent/BE717413A/xx unknown
- 1968-07-01 DK DK322568AA patent/DK121848B/en unknown
Also Published As
Publication number | Publication date |
---|---|
SE322720B (en) | 1970-04-13 |
DK121848B (en) | 1971-12-06 |
FR1575956A (en) | 1969-07-25 |
GB1225518A (en) | 1971-03-17 |
BE717413A (en) | 1968-12-02 |
FI49251C (en) | 1975-05-12 |
NL6809123A (en) | 1968-12-30 |
DE1759903A1 (en) | 1971-07-15 |
US3608012A (en) | 1971-09-21 |
CH480927A (en) | 1969-11-15 |
FI49251B (en) | 1975-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO119671B (en) | ||
US4128975A (en) | Prefabricated building components of expanded material and cement | |
US4272230A (en) | Slip form for building components | |
US3217375A (en) | Apparatus for forming concrete planks or slabs having acoustical properties | |
NO160357B (en) | PROCEDURE FOR DEHYDROGENERATION OF HYDROCARBONES. | |
US3423492A (en) | Method and machine for the manufacture of lengthened objects of concrete | |
US4131670A (en) | Method of making prefabricated building components of expanded material and cement | |
US2090959A (en) | Paving and canal lining machine and method | |
CN1984758A (en) | Processing line for producing multilayer building blocks provided with a decorative face | |
CN101638895B (en) | Slope masonry machine with modes of discharging, vibrating and sliding | |
US11077582B2 (en) | Method and system for recycling concrete mass in a slipform casting process, and casting machine | |
US2094974A (en) | Concrete placing and finishing machine | |
US3475800A (en) | Apparatus for forming continuous pre-stressed concrete slabs | |
US3608011A (en) | Method of forming continuous pre-stressed concrete slabs | |
CN110939273A (en) | A auxiliary device that puts in storage for archaize building backing plate concrete placement | |
US3002247A (en) | Apparatus for forming concrete blocks | |
US1594310A (en) | Method and apparatus for feeding concrete and the like | |
CN1200065A (en) | Method and apparatus for producing concrete elements | |
US2039204A (en) | Machine for making reenforced concrete beams | |
CN104760116A (en) | Semi-automatic forming device for precast concrete unit | |
CN108068194A (en) | For pouring the method and apparatus of pre-cast concrete products | |
NO116751B (en) | ||
CN113898181B (en) | A watering device for construction | |
CN216399973U (en) | A pour device for civil engineering | |
RU2694671C1 (en) | Molding stationary complex for production of concrete products |