NO117992B - - Google Patents
Download PDFInfo
- Publication number
- NO117992B NO117992B NO16532266A NO16532266A NO117992B NO 117992 B NO117992 B NO 117992B NO 16532266 A NO16532266 A NO 16532266A NO 16532266 A NO16532266 A NO 16532266A NO 117992 B NO117992 B NO 117992B
- Authority
- NO
- Norway
- Prior art keywords
- titanium
- metal
- alkali
- melt
- alkaline earth
- Prior art date
Links
- 239000010936 titanium Substances 0.000 claims description 28
- 229910052719 titanium Inorganic materials 0.000 claims description 28
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 20
- 239000003513 alkali Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 12
- -1 titanium halides Chemical class 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 10
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 230000009467 reduction Effects 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 6
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 description 29
- 239000002184 metal Substances 0.000 description 29
- 238000006243 chemical reaction Methods 0.000 description 19
- 238000005868 electrolysis reaction Methods 0.000 description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 229910002065 alloy metal Inorganic materials 0.000 description 4
- PALNZFJYSCMLBK-UHFFFAOYSA-K magnesium;potassium;trichloride;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-].[Cl-].[K+] PALNZFJYSCMLBK-UHFFFAOYSA-K 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000012065 filter cake Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- AMAICRYCMCVAHT-UHFFFAOYSA-K calcium;sodium;trichloride Chemical compound [Na+].[Cl-].[Cl-].[Cl-].[Ca+2] AMAICRYCMCVAHT-UHFFFAOYSA-K 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
- B01D35/06—Filters making use of electricity or magnetism
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/28—Magnetic plugs and dipsticks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
- H01F7/04—Means for releasing the attractive force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/18—Magnetic separation whereby the particles are suspended in a liquid
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Filtering Materials (AREA)
- Filtration Of Liquid (AREA)
Description
Fremgangsmåte til fremstilling av titan. Process for the production of titanium.
Det er kjent at man for å utvinne titan It is known that in order to extract titanium
kan redusere titanhalogenid med alkali-eller jordalkalimetall. Reaksjonen blir som can reduce titanium halide with alkali or alkaline earth metal. The reaction will be like
regel utført på den måte at man anbringer rule carried out in such a way that one places
alkali- eller jordalkalimetall i en reaksjons-beholder, oppheter til en reaksjonstempe-ratur på 700—900° og deretter innfører alkali or alkaline earth metal in a reaction vessel, heated to a reaction temperature of 700-900° and then introducing
titanhalogenid, under argon som beskyttel-sesgass. Det dannede titan utskiller seg titanium halide, under argon as protective gas. The titanium formed separates
i svampaktig form. I løpet av reaksjonen in spongy form. During the reaction
oppstår det videre alkali- eller jordalkali-klorid, som ■ ved reaksjonstemperaturen further alkali or alkaline earth chloride occurs, which ■ at the reaction temperature
foreligger som smelte og som etter avslut-ning av reaksjonen fjernes ved hjelp av exists as a melt and which, after completion of the reaction, is removed with the help of
• egnede innretninger. Det klorid som forblir • suitable devices. The chloride that remains
hengende fast i titansvampen samt overskytende reduksjonsmetall blir i vidtgående stuck in the titanium sponge as well as excess reduction metal will be in wide range
grad avdestillert ved å opphete destilla-sjonsbeholderen i vakuum. Etter denne be-handlingen sitter titansvampen så fast i degree distilled off by heating the distillation vessel in a vacuum. After this treatment, the titanium sponge is then stuck in
reaksjonsbeholderen at den må fjernes ved the reaction vessel that it must be removed by
hjelp av maskinelle innretninger, som fre-sere, bor og liknende. with the help of mechanical devices, such as milling cutters, drills and the like.
Oppfinneren har funnet at man kan The inventor has found that one can
utføre reduksjonen av titanhalogenidet på perform the reduction of the titanium halide on
teknisk betydelig enklere måte hvis man technically significantly easier way if one
anvender reduksjonsmetallet i form av en uses the reducing metal in the form of a
legering med sink, kadmium, bly eller blandinger av metaller og leder det gassformige alloy with zinc, cadmium, lead or mixtures of metals and conduct the gaseous
titanhalogenid inn i denne flytende legering. Det utskilte titan blir da suspendert titanium halide into this liquid alloy. The excreted titanium is then suspended
i den samtidig dannede flytende alkali-eller jordalkalikloridsmelte, avsetter seg in the simultaneously formed liquid alkali or alkaline earth chloride melt, settles
godt i denne smelte og kan pumpes bort fra well in this melt and can be pumped away from
grenselaget mellom metallsmelten og alkali- resp. jordalkalikloridsmelten. the boundary layer between the metal melt and alkali resp. the alkaline earth chloride melt.
Som reduksjonsmetall kan man an-vende de vanlige benyttede metaller. Spe- The commonly used metals can be used as reducing metal. Spe-
sielt kan det nevnes alkali- og jordalkali-metallene, f. eks. natrium, kalsium og magnesium. Reaksjonen utføres fortrinns-vis i tempera turområdet mellom 500° og 700° C. In particular, mention can be made of the alkali and alkaline earth metals, e.g. sodium, calcium and magnesium. The reaction is preferably carried out in the temperature range between 500° and 700° C.
Det kan anvendes alle titanhalogenider, fortrinsvis titanklorid, for den foreliggende fremgangsmåte. Deres tilsetning til reduksjonsmetallet avpasses hensiktsmessig slik at dette siste forblir i overskudd, for å hindre opptreden av titanhalogenider i alkali- resp. jordalkalikloridsmelten. All titanium halides, preferably titanium chloride, can be used for the present method. Their addition to the reducing metal is appropriately adjusted so that the latter remains in excess, in order to prevent the appearance of titanium halides in alkali or the alkaline earth chloride melt.
Fremgangsmåten kan f. eks. utføres på den måte at man oppløser vedkommende reduksjonsmetall, f. eks. magnesium, i det flytende legeringsmetall. Deretter innleder man det gassformige titanhalogenid ved reaksjonstemperaturen på ca. 600°. Til-førselen kan skje ved hjelp av alle for den slags formål tekniske innretninger. En foretrukken utførelsesform består deri at det gassformige titanhalogenid trykkes inn i metallsmelten gjennom en for gass gjennomtrengelig bunnflate. The procedure can e.g. is carried out in such a way that the relevant reducing metal is dissolved, e.g. magnesium, in the liquid alloy metal. The gaseous titanium halide is then introduced at the reaction temperature of approx. 600°. The supply can take place using all technical devices for that purpose. A preferred embodiment consists in that the gaseous titanium halide is pressed into the metal melt through a bottom surface permeable to gas.
Det utskilte titan fordeler seg i den ved reaksjonen samtidig dannede alkali - eller jordalkalikloridsmelte, avsetter seg i denne og kan pumpes bort fra grenselaget mellom metallegeringen og den klarere alkali- resp. jordalkalikloridsmelte. Mer for-delaktig overdekker man på forhånd legeringen med de tilsvarende klorider, f. eks. med karnallitt. The separated titanium is distributed in the alkali or alkaline earth chloride melt formed at the same time during the reaction, settles in this and can be pumped away from the boundary layer between the metal alloy and the clearer alkali or alkaline earth chloride melt. More advantageously, the alloy is covered in advance with the corresponding chlorides, e.g. with carnallite.
Den videre opparbeidelse kan skje på den måte at man lar den bortpumpede titanholdige suspensjon avsette seg, hvor-etter man filtrerer. Den titanholdige filterkake kan ved en passende fremgangsmåte befris for den overskytende smeite også utføres uten lufttiigang eller under én og reduksjons- og legeringsmetallet, idet inert gass. The further processing can take place in such a way that the pumped away titanium-containing suspension is allowed to settle, after which filtering is carried out. The titanium-containing filter cake can by a suitable method be freed from the excess smelting can also be carried out without air access or under one and the reduction and alloying metal, being inert gas.
man f. eks. oppheter den i en vakuum ovn som opphetes ved hjelp av stråling. Den Eksempel 1:one e.g. heats it in a vacuum oven which is heated by means of radiation. The Example 1:
rene titansvamp kan smeltes ned på van- 2000 g kadmium smeltes og til denne lig måte. smelte settes 52 g magnesium. Metall-En spesiell fordel ved fremgangsmåten smeiten opphetes til 600° og overdekkes i henhold til oppfinnelsen består deri at med en karnallittsmelte. Deretter innleder fremgangsmåten også kan utføres konti- man titantetraklorid i beholderen gjennom nuerlig. I dette tilfelle fremstiller man en porøs bunn. Ved omsetningen dannes legeringen, som består av reduksjons- og det 203 g magnesiumklorid og ca. 52 g ti-legeringsmetallet, hensiktsmessig utenfor tanmetall i pulverform, som utskiller seg reaksjonsbeholderen og lar den flytende s°m suspensjon i karnallittsmelten. Titan-legering strømme kontinuerlig gjennom re- sus<p>ensjonen filtreres, filterkaken blir ved aksjonsrommet. Den fra reaksjonsrommet stråling opphetet i en vakuumovn, befridd uttredende legering, hvis innhold av re- for overskytende smelte og legeringsmetall duksjonsmetall er oppbrukt i vidtgående °S det erholdte titan blir på vanlig måte grad, kan etter fornyet tilsetning av re- smeltet ned i en lysbueovn. duksjonsmetall atter innføres i kretsløpet. Eksempel 2-Ompumpingen av legeringen kan en- ^ , , . , „.,.,. ten skje ved hjelp av induksjonsstrømmer , 1 en Passende elektrolysese le bnr det som samtidig tjener til oppvarmning eller fra en natriumklorid-kalsiumklondsmelte ved hjelp av mekaniske midler, i likhet med som inneholder ca. 25 pst. NaCl og 75 pst. slike som er kjent til ompumping av me- CaCk pr. time utskilt 90-100 g natrium tallisk kvikksølv i alkalikloridelektrolyse- resp tilsvarende ekvivalenter av kalsium i celler. Det flytende katodemetall strøm- de? gytende, av kadmiummetall bestående mer derunder hensiktsmessig over overløp, katode- Katodemetallet flyter over et over-slik at elektrolyseslammet holdes tilbake i ^ m<n><1><re>aksjonsbeholderen i hvilken re-cellen, fra hvilken det kan tas ut fra tid duksjonsmetallet omsettes i gassformet ti-tn o^^ov. tantetraklorid, og flyter deretter tilbake til _., , . cellen. Temperaturen i elektrolysecellen er Tilsetningen av reduksjonsmetallet 600_65o°. i reaksjonsbeholderen innledes skjer ved en foretrukken utførelsesform av time 19Q g gassformet titantetraklorid fremgangsmåten ifølge oppfinnelsen pa den jennom en for gass gjennomtrengelig mate at reduksjonsmetallet ved smelte- bunnplate. Denne mengde titantetraklorid elektrolyse under anvendelse av det fly- tilsvarer omtrent mengden av det pr. time tende legeringsmetall som kato<de> blir di- fremstnte reduksjonsmetall. Katodemetal-rekte utskilt i nødvendig mengde i leger- let inneholder ved sin inntreden i reak-ingsmetallet. Som elektrolytt kan det an- sjonsrommet ca. 5 pst. av reduksjonsmetal-vendes jordalkali resp. alkalimetallklond, le <y>ed gin uttreden ca 0 st : re. blandinger derav eller andre smelteelektr<o>- akSjonsbeholderen utskiller det seg pr. time lyter, fra hvilke man kan skille ut et re- 48 g titan <g>om titanpulver og 240 g koksalt duksjonsmetall som kan anvendes til <re>du- resp tilsvarende kalsiumkloridekvivalenter. sermg av titanforbindelser. strømtettheten i elektrolysecellen er 28-Den titansuspensjon som dannes over 30.000amp./m<2> og strømutbyttet 90—95 legeringen i smeiten av alkali- eller jord- pst. Titansuspensjonen som utskiller seg i alkalikloridene kan man likeledes pumpe alkali- resp. jordalkalikloridsmelten i reak-bort kontinuerlig eller diskontinuerlig og sjonsbeholderen blir fra tid til annen suget opparbeide den på den ovenfor angitte ut av reaksjonsrommet ved hjelp av va-måte. kuum, får avsette seg og blir filtrert. Den En videre fordel ved den foreliggende titanholdige filterkake innføres i en va-fremgangsmåte er den at den ved reduk- kuumovn som opphetes ved stråling. I .sjonen opptredende reaksjonsvarme kan denne ovn blir overskytende smelte og fjernes ved hjelp av passende kjøleinnret- overskytende reduksjonsmetall destillert ninger i legeringsmetallets kretsløp eller av. Det erholdte titan blir deretter, som fra smeiten. Derved kan det oppnås en høy vanlig, smeltet ned i en lysbueovn. Alle omsetningshastighet. Ennvidere er det lett operasjoner utføres uten lufttiigang. pure titanium sponges can be melted down in the usual way. 52 g of magnesium are added to the melt. Metal - A particular advantage of the method is that the melt is heated to 600° and covered according to the invention, with a carnallite melt. Then, the process can also be carried out conti- man titanium tetrachloride in the container through nuerlig. In this case, a porous base is produced. During the reaction, the alloy is formed, which consists of reduction and the 203 g of magnesium chloride and approx. 52 g of the ti-alloy metal, conveniently off tan metal in powder form, which separates the reaction vessel and allows it to float as a suspension in the carnallite melt. Titanium alloy flow continuously through the resus<p>ence is filtered, the filter cake remains at the action room. The from the reaction chamber radiation heated in a vacuum furnace, freed exiting alloy, whose content of re- for excess melt and alloy metal duction metal is used up in wide °S the obtained titanium is in the usual way degree, can after renewed addition of re- melted down in a arc furnace. induction metal is reintroduced into the circuit. Example 2-The repumping of the alloy can en- ^ , , . , „.,.,. ten happen with the help of induction currents , 1 a Suitable electrolysis le bnr that which simultaneously serves for heating or from a sodium chloride-calcium clot melt with the help of mechanical means, similar to which contains approx. 25 per cent NaCl and 75 per cent such as are known to repump me- CaCk per hour secreted 90-100 g of sodium tallic mercury in alkali chloride electrolysis or corresponding equivalents of calcium in cells. The liquid cathode metal flowed? spawning, of cadmium metal consisting more below appropriately over overflow, cathode- The cathode metal flows over an over-so that the electrolysis sludge is retained in the ^ m<n><1><re>action vessel in which the re-cell, from which it can be taken out from time the duction metal is converted into gaseous ti-tn o^^ov. tan tetrachloride, and then flows back to _., , . the cell. The temperature in the electrolysis cell is The addition of the reducing metal 600_65o°. in the reaction vessel, the method according to the invention first takes place in a preferred embodiment of hour 19Q g gaseous titanium tetrachloride on the through a gas permeable feed that the reducing metal at the melting bottom plate. This amount of titanium tetrachloride electrolysis using the fly- roughly corresponds to the amount of it per time tende alloy metal as catho<de> becomes di- produced reduction metal. Cathode metal directly secreted in the necessary quantity in the layer contains upon its entry into the reacting metal. As an electrolyte, the anion room can approx. 5 percent of the reducing metal is converted to alkaline earth resp. alkali metal klond, le <y>ed gin the exit about 0 st : re. mixtures thereof or other melt electr<o>- action container it separates per hour lytes, from which a re- 48 g of titanium <g>om titanium powder and 240 g of coke salt duction metal can be separated which can be used for <re>du- or corresponding calcium chloride equivalents. sermg of titanium compounds. the current density in the electrolysis cell is 28-The titanium suspension that is formed above 30,000 amp./m<2> and the current yield 90-95 the alloy in the smelting of alkali or earth pst. The titanium suspension that separates in the alkali chlorides can also be pumped alkali- or the alkaline earth chloride melt in the reaction continuously or discontinuously and the reaction container is from time to time suctioned to work it up on the above stated out of the reaction space by means of va-way. kuum, is allowed to settle and is filtered. The A further advantage of the present titanium-containing filter cake is introduced in a va method is that it by reduction furnace which is heated by radiation. In the .sion occurring reaction heat, this furnace can become excess melt and be removed by means of suitable cooling equipment excess reduction metal distilled nings in the alloy metal circuit or off. The obtained titanium then becomes, as from the forge. Thereby, a high standard can be obtained, melted down in an electric arc furnace. All turnover rate. Furthermore, it is easy to carry out operations without air access.
å overvåke og regulere det ønskede under- to monitor and regulate the desired sub-
skudd av titanhalogenider i forhold til Eksempel <3: >reduksjonsmetallet. Det gås i prinsippet frem som i eksem-Hvis nødvendig kan fremgangsmåten pel 2. I stedet for kadmium anvendes sink shot of titanium halides in relation to Example <3: >the reducing metal. In principle, the procedure is the same as in eczema - If necessary, the procedure pel 2 can be used. Instead of cadmium, zinc is used
som legeringsmetall og magnesium elektro-lyseres inn i sinken fra en karnallittsmelte. as alloy metal and magnesium are electrolyzed into the zinc from a carnallite melt.
Pr. time utskilles det 52 g magnesium og 52 g of magnesium and
dette omsettes i reaksjonscellen med den this is reacted in the reaction cell with it
teoretiske mengde titantetraklorid. Det theoretical amount of titanium tetrachloride. The
dannes 204 g magnesiumklorid og 51 g ti-tanmetall. Temperaturen i elektrolysecellen er 700—750°. Som i eksempel 2 arbeides 204 g of magnesium chloride and 51 g of titanium metal are formed. The temperature in the electrolysis cell is 700-750°. As in example 2 is worked
det med et overskudd av magnesiummetall that with an excess of magnesium metal
som forblir i kretsløpet. which remains in the circuit.
Claims (2)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB4526765A GB1129516A (en) | 1965-10-26 | 1965-10-26 | Improvements in or relating to magnetic filters |
Publications (1)
Publication Number | Publication Date |
---|---|
NO117992B true NO117992B (en) | 1969-10-20 |
Family
ID=10436541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO16532266A NO117992B (en) | 1965-10-26 | 1966-10-24 |
Country Status (6)
Country | Link |
---|---|
BE (1) | BE688856A (en) |
DE (1) | DE1275717B (en) |
ES (1) | ES332684A1 (en) |
GB (1) | GB1129516A (en) |
NL (1) | NL6615001A (en) |
NO (1) | NO117992B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2134819A (en) * | 1983-01-28 | 1984-08-22 | Univ Southampton | Magnetic collection of particles from a fluid |
GB2137536A (en) * | 1983-02-10 | 1984-10-10 | Tecalemit Electronics Ltd | Magnetic particle collector |
DE4036648B4 (en) * | 1989-11-20 | 2005-07-07 | Kropp, Ellen | Device for influencing liquids by magnetic fields |
GB2361441A (en) * | 2000-04-19 | 2001-10-24 | Eclipse Magnetics Ltd | Magnetic filter in association with a porous filter |
US7604748B2 (en) | 2005-10-20 | 2009-10-20 | Eclipse Magnetics Limited | Magnetic filter |
GB2450335A (en) * | 2007-06-19 | 2008-12-24 | Fluid Conditioning Systems Ltd | A separator device |
CN112717534B (en) * | 2021-01-08 | 2024-06-14 | 临武县舜水环境治理有限公司 | Magnetic material filtering and recycling device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2149764A (en) * | 1937-06-10 | 1939-03-07 | Bendix Aviat Corp | Magnetic filter |
US2317774A (en) * | 1938-04-01 | 1943-04-27 | Hartford Nat Bank & Trust Co | Magnetic filter |
NL84420C (en) * | 1950-12-12 | |||
DE934843C (en) * | 1953-12-31 | 1955-11-03 | Philips Nv | Magnetic filter with a permanent magnet that can be deactivated |
-
1965
- 1965-10-26 GB GB4526765A patent/GB1129516A/en not_active Expired
-
1966
- 1966-10-22 NL NL6615001A patent/NL6615001A/xx unknown
- 1966-10-22 DE DE1966N0029385 patent/DE1275717B/en active Pending
- 1966-10-24 ES ES0332684A patent/ES332684A1/en not_active Expired
- 1966-10-24 NO NO16532266A patent/NO117992B/no unknown
- 1966-10-25 BE BE688856D patent/BE688856A/xx unknown
Also Published As
Publication number | Publication date |
---|---|
GB1129516A (en) | 1968-10-09 |
BE688856A (en) | 1967-04-25 |
NL6615001A (en) | 1967-04-27 |
DE1275717B (en) | 1968-08-22 |
ES332684A1 (en) | 1967-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018048402A5 (en) | ||
US2861030A (en) | Electrolytic production of multivalent metals from refractory oxides | |
US2734856A (en) | Electrolytic method for refining titanium metal | |
US3114685A (en) | Electrolytic production of titanium metal | |
US3798140A (en) | Process for producing aluminum and silicon from aluminum silicon alloys | |
NO862234L (en) | PROCEDURE FOR PREPARING CALCIUM AND HIGH-PURITY Alloys. | |
US2757135A (en) | Electrolytic manufacture of titanium | |
NO117992B (en) | ||
US3677926A (en) | Cell for electrolytic refining of metals | |
US2904428A (en) | Method of reducing titanium oxide | |
US1299947A (en) | Electrolysis of fused electrolytes. | |
US3765878A (en) | Aluminum-silicon alloying process | |
US2351383A (en) | Process for the manufacture of zinc | |
US1905882A (en) | Metallic columbium and process for making the same | |
US3450524A (en) | Process for the preparation of pure manganese | |
US1567318A (en) | Method of making metallic magnesium | |
US1740857A (en) | Process for the production of metallic beryllium | |
US4124461A (en) | Production of metallic lead | |
US4135997A (en) | Electrolytic production of metallic lead | |
US2893928A (en) | Preparation of plutonium | |
US2850443A (en) | Method of treating alloys | |
JPH02259092A (en) | Production of calcium | |
US1563188A (en) | Treating molten metals with calcium-copper alloys | |
US1505494A (en) | Process for extracting metals | |
US1882525A (en) | Process for the electrolytic production of metals of the alkalis or alkaline earths |