NO117992B - - Google Patents

Download PDF

Info

Publication number
NO117992B
NO117992B NO16532266A NO16532266A NO117992B NO 117992 B NO117992 B NO 117992B NO 16532266 A NO16532266 A NO 16532266A NO 16532266 A NO16532266 A NO 16532266A NO 117992 B NO117992 B NO 117992B
Authority
NO
Norway
Prior art keywords
titanium
metal
alkali
melt
alkaline earth
Prior art date
Application number
NO16532266A
Other languages
Norwegian (no)
Inventor
W Freeland
Original Assignee
Philips Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Nv filed Critical Philips Nv
Publication of NO117992B publication Critical patent/NO117992B/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/06Filters making use of electricity or magnetism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/04Means for releasing the attractive force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)

Description

Fremgangsmåte til fremstilling av titan. Process for the production of titanium.

Det er kjent at man for å utvinne titan It is known that in order to extract titanium

kan redusere titanhalogenid med alkali-eller jordalkalimetall. Reaksjonen blir som can reduce titanium halide with alkali or alkaline earth metal. The reaction will be like

regel utført på den måte at man anbringer rule carried out in such a way that one places

alkali- eller jordalkalimetall i en reaksjons-beholder, oppheter til en reaksjonstempe-ratur på 700—900° og deretter innfører alkali or alkaline earth metal in a reaction vessel, heated to a reaction temperature of 700-900° and then introducing

titanhalogenid, under argon som beskyttel-sesgass. Det dannede titan utskiller seg titanium halide, under argon as protective gas. The titanium formed separates

i svampaktig form. I løpet av reaksjonen in spongy form. During the reaction

oppstår det videre alkali- eller jordalkali-klorid, som ■ ved reaksjonstemperaturen further alkali or alkaline earth chloride occurs, which ■ at the reaction temperature

foreligger som smelte og som etter avslut-ning av reaksjonen fjernes ved hjelp av exists as a melt and which, after completion of the reaction, is removed with the help of

• egnede innretninger. Det klorid som forblir • suitable devices. The chloride that remains

hengende fast i titansvampen samt overskytende reduksjonsmetall blir i vidtgående stuck in the titanium sponge as well as excess reduction metal will be in wide range

grad avdestillert ved å opphete destilla-sjonsbeholderen i vakuum. Etter denne be-handlingen sitter titansvampen så fast i degree distilled off by heating the distillation vessel in a vacuum. After this treatment, the titanium sponge is then stuck in

reaksjonsbeholderen at den må fjernes ved the reaction vessel that it must be removed by

hjelp av maskinelle innretninger, som fre-sere, bor og liknende. with the help of mechanical devices, such as milling cutters, drills and the like.

Oppfinneren har funnet at man kan The inventor has found that one can

utføre reduksjonen av titanhalogenidet på perform the reduction of the titanium halide on

teknisk betydelig enklere måte hvis man technically significantly easier way if one

anvender reduksjonsmetallet i form av en uses the reducing metal in the form of a

legering med sink, kadmium, bly eller blandinger av metaller og leder det gassformige alloy with zinc, cadmium, lead or mixtures of metals and conduct the gaseous

titanhalogenid inn i denne flytende legering. Det utskilte titan blir da suspendert titanium halide into this liquid alloy. The excreted titanium is then suspended

i den samtidig dannede flytende alkali-eller jordalkalikloridsmelte, avsetter seg in the simultaneously formed liquid alkali or alkaline earth chloride melt, settles

godt i denne smelte og kan pumpes bort fra well in this melt and can be pumped away from

grenselaget mellom metallsmelten og alkali- resp. jordalkalikloridsmelten. the boundary layer between the metal melt and alkali resp. the alkaline earth chloride melt.

Som reduksjonsmetall kan man an-vende de vanlige benyttede metaller. Spe- The commonly used metals can be used as reducing metal. Spe-

sielt kan det nevnes alkali- og jordalkali-metallene, f. eks. natrium, kalsium og magnesium. Reaksjonen utføres fortrinns-vis i tempera turområdet mellom 500° og 700° C. In particular, mention can be made of the alkali and alkaline earth metals, e.g. sodium, calcium and magnesium. The reaction is preferably carried out in the temperature range between 500° and 700° C.

Det kan anvendes alle titanhalogenider, fortrinsvis titanklorid, for den foreliggende fremgangsmåte. Deres tilsetning til reduksjonsmetallet avpasses hensiktsmessig slik at dette siste forblir i overskudd, for å hindre opptreden av titanhalogenider i alkali- resp. jordalkalikloridsmelten. All titanium halides, preferably titanium chloride, can be used for the present method. Their addition to the reducing metal is appropriately adjusted so that the latter remains in excess, in order to prevent the appearance of titanium halides in alkali or the alkaline earth chloride melt.

Fremgangsmåten kan f. eks. utføres på den måte at man oppløser vedkommende reduksjonsmetall, f. eks. magnesium, i det flytende legeringsmetall. Deretter innleder man det gassformige titanhalogenid ved reaksjonstemperaturen på ca. 600°. Til-førselen kan skje ved hjelp av alle for den slags formål tekniske innretninger. En foretrukken utførelsesform består deri at det gassformige titanhalogenid trykkes inn i metallsmelten gjennom en for gass gjennomtrengelig bunnflate. The procedure can e.g. is carried out in such a way that the relevant reducing metal is dissolved, e.g. magnesium, in the liquid alloy metal. The gaseous titanium halide is then introduced at the reaction temperature of approx. 600°. The supply can take place using all technical devices for that purpose. A preferred embodiment consists in that the gaseous titanium halide is pressed into the metal melt through a bottom surface permeable to gas.

Det utskilte titan fordeler seg i den ved reaksjonen samtidig dannede alkali - eller jordalkalikloridsmelte, avsetter seg i denne og kan pumpes bort fra grenselaget mellom metallegeringen og den klarere alkali- resp. jordalkalikloridsmelte. Mer for-delaktig overdekker man på forhånd legeringen med de tilsvarende klorider, f. eks. med karnallitt. The separated titanium is distributed in the alkali or alkaline earth chloride melt formed at the same time during the reaction, settles in this and can be pumped away from the boundary layer between the metal alloy and the clearer alkali or alkaline earth chloride melt. More advantageously, the alloy is covered in advance with the corresponding chlorides, e.g. with carnallite.

Den videre opparbeidelse kan skje på den måte at man lar den bortpumpede titanholdige suspensjon avsette seg, hvor-etter man filtrerer. Den titanholdige filterkake kan ved en passende fremgangsmåte befris for den overskytende smeite også utføres uten lufttiigang eller under én og reduksjons- og legeringsmetallet, idet inert gass. The further processing can take place in such a way that the pumped away titanium-containing suspension is allowed to settle, after which filtering is carried out. The titanium-containing filter cake can by a suitable method be freed from the excess smelting can also be carried out without air access or under one and the reduction and alloying metal, being inert gas.

man f. eks. oppheter den i en vakuum ovn som opphetes ved hjelp av stråling. Den Eksempel 1:one e.g. heats it in a vacuum oven which is heated by means of radiation. The Example 1:

rene titansvamp kan smeltes ned på van- 2000 g kadmium smeltes og til denne lig måte. smelte settes 52 g magnesium. Metall-En spesiell fordel ved fremgangsmåten smeiten opphetes til 600° og overdekkes i henhold til oppfinnelsen består deri at med en karnallittsmelte. Deretter innleder fremgangsmåten også kan utføres konti- man titantetraklorid i beholderen gjennom nuerlig. I dette tilfelle fremstiller man en porøs bunn. Ved omsetningen dannes legeringen, som består av reduksjons- og det 203 g magnesiumklorid og ca. 52 g ti-legeringsmetallet, hensiktsmessig utenfor tanmetall i pulverform, som utskiller seg reaksjonsbeholderen og lar den flytende s°m suspensjon i karnallittsmelten. Titan-legering strømme kontinuerlig gjennom re- sus<p>ensjonen filtreres, filterkaken blir ved aksjonsrommet. Den fra reaksjonsrommet stråling opphetet i en vakuumovn, befridd uttredende legering, hvis innhold av re- for overskytende smelte og legeringsmetall duksjonsmetall er oppbrukt i vidtgående °S det erholdte titan blir på vanlig måte grad, kan etter fornyet tilsetning av re- smeltet ned i en lysbueovn. duksjonsmetall atter innføres i kretsløpet. Eksempel 2-Ompumpingen av legeringen kan en- ^ , , . , „.,.,. ten skje ved hjelp av induksjonsstrømmer , 1 en Passende elektrolysese le bnr det som samtidig tjener til oppvarmning eller fra en natriumklorid-kalsiumklondsmelte ved hjelp av mekaniske midler, i likhet med som inneholder ca. 25 pst. NaCl og 75 pst. slike som er kjent til ompumping av me- CaCk pr. time utskilt 90-100 g natrium tallisk kvikksølv i alkalikloridelektrolyse- resp tilsvarende ekvivalenter av kalsium i celler. Det flytende katodemetall strøm- de? gytende, av kadmiummetall bestående mer derunder hensiktsmessig over overløp, katode- Katodemetallet flyter over et over-slik at elektrolyseslammet holdes tilbake i ^ m<n><1><re>aksjonsbeholderen i hvilken re-cellen, fra hvilken det kan tas ut fra tid duksjonsmetallet omsettes i gassformet ti-tn o^^ov. tantetraklorid, og flyter deretter tilbake til _., , . cellen. Temperaturen i elektrolysecellen er Tilsetningen av reduksjonsmetallet 600_65o°. i reaksjonsbeholderen innledes skjer ved en foretrukken utførelsesform av time 19Q g gassformet titantetraklorid fremgangsmåten ifølge oppfinnelsen pa den jennom en for gass gjennomtrengelig mate at reduksjonsmetallet ved smelte- bunnplate. Denne mengde titantetraklorid elektrolyse under anvendelse av det fly- tilsvarer omtrent mengden av det pr. time tende legeringsmetall som kato<de> blir di- fremstnte reduksjonsmetall. Katodemetal-rekte utskilt i nødvendig mengde i leger- let inneholder ved sin inntreden i reak-ingsmetallet. Som elektrolytt kan det an- sjonsrommet ca. 5 pst. av reduksjonsmetal-vendes jordalkali resp. alkalimetallklond, le <y>ed gin uttreden ca 0 st : re. blandinger derav eller andre smelteelektr<o>- akSjonsbeholderen utskiller det seg pr. time lyter, fra hvilke man kan skille ut et re- 48 g titan <g>om titanpulver og 240 g koksalt duksjonsmetall som kan anvendes til <re>du- resp tilsvarende kalsiumkloridekvivalenter. sermg av titanforbindelser. strømtettheten i elektrolysecellen er 28-Den titansuspensjon som dannes over 30.000amp./m<2> og strømutbyttet 90—95 legeringen i smeiten av alkali- eller jord- pst. Titansuspensjonen som utskiller seg i alkalikloridene kan man likeledes pumpe alkali- resp. jordalkalikloridsmelten i reak-bort kontinuerlig eller diskontinuerlig og sjonsbeholderen blir fra tid til annen suget opparbeide den på den ovenfor angitte ut av reaksjonsrommet ved hjelp av va-måte. kuum, får avsette seg og blir filtrert. Den En videre fordel ved den foreliggende titanholdige filterkake innføres i en va-fremgangsmåte er den at den ved reduk- kuumovn som opphetes ved stråling. I .sjonen opptredende reaksjonsvarme kan denne ovn blir overskytende smelte og fjernes ved hjelp av passende kjøleinnret- overskytende reduksjonsmetall destillert ninger i legeringsmetallets kretsløp eller av. Det erholdte titan blir deretter, som fra smeiten. Derved kan det oppnås en høy vanlig, smeltet ned i en lysbueovn. Alle omsetningshastighet. Ennvidere er det lett operasjoner utføres uten lufttiigang. pure titanium sponges can be melted down in the usual way. 52 g of magnesium are added to the melt. Metal - A particular advantage of the method is that the melt is heated to 600° and covered according to the invention, with a carnallite melt. Then, the process can also be carried out conti- man titanium tetrachloride in the container through nuerlig. In this case, a porous base is produced. During the reaction, the alloy is formed, which consists of reduction and the 203 g of magnesium chloride and approx. 52 g of the ti-alloy metal, conveniently off tan metal in powder form, which separates the reaction vessel and allows it to float as a suspension in the carnallite melt. Titanium alloy flow continuously through the resus<p>ence is filtered, the filter cake remains at the action room. The from the reaction chamber radiation heated in a vacuum furnace, freed exiting alloy, whose content of re- for excess melt and alloy metal duction metal is used up in wide °S the obtained titanium is in the usual way degree, can after renewed addition of re- melted down in a arc furnace. induction metal is reintroduced into the circuit. Example 2-The repumping of the alloy can en- ^ , , . , „.,.,. ten happen with the help of induction currents , 1 a Suitable electrolysis le bnr that which simultaneously serves for heating or from a sodium chloride-calcium clot melt with the help of mechanical means, similar to which contains approx. 25 per cent NaCl and 75 per cent such as are known to repump me- CaCk per hour secreted 90-100 g of sodium tallic mercury in alkali chloride electrolysis or corresponding equivalents of calcium in cells. The liquid cathode metal flowed? spawning, of cadmium metal consisting more below appropriately over overflow, cathode- The cathode metal flows over an over-so that the electrolysis sludge is retained in the ^ m<n><1><re>action vessel in which the re-cell, from which it can be taken out from time the duction metal is converted into gaseous ti-tn o^^ov. tan tetrachloride, and then flows back to _., , . the cell. The temperature in the electrolysis cell is The addition of the reducing metal 600_65o°. in the reaction vessel, the method according to the invention first takes place in a preferred embodiment of hour 19Q g gaseous titanium tetrachloride on the through a gas permeable feed that the reducing metal at the melting bottom plate. This amount of titanium tetrachloride electrolysis using the fly- roughly corresponds to the amount of it per time tende alloy metal as catho<de> becomes di- produced reduction metal. Cathode metal directly secreted in the necessary quantity in the layer contains upon its entry into the reacting metal. As an electrolyte, the anion room can approx. 5 percent of the reducing metal is converted to alkaline earth resp. alkali metal klond, le <y>ed gin the exit about 0 st : re. mixtures thereof or other melt electr<o>- action container it separates per hour lytes, from which a re- 48 g of titanium <g>om titanium powder and 240 g of coke salt duction metal can be separated which can be used for <re>du- or corresponding calcium chloride equivalents. sermg of titanium compounds. the current density in the electrolysis cell is 28-The titanium suspension that is formed above 30,000 amp./m<2> and the current yield 90-95 the alloy in the smelting of alkali or earth pst. The titanium suspension that separates in the alkali chlorides can also be pumped alkali- or the alkaline earth chloride melt in the reaction continuously or discontinuously and the reaction container is from time to time suctioned to work it up on the above stated out of the reaction space by means of va-way. kuum, is allowed to settle and is filtered. The A further advantage of the present titanium-containing filter cake is introduced in a va method is that it by reduction furnace which is heated by radiation. In the .sion occurring reaction heat, this furnace can become excess melt and be removed by means of suitable cooling equipment excess reduction metal distilled nings in the alloy metal circuit or off. The obtained titanium then becomes, as from the forge. Thereby, a high standard can be obtained, melted down in an electric arc furnace. All turnover rate. Furthermore, it is easy to carry out operations without air access.

å overvåke og regulere det ønskede under- to monitor and regulate the desired sub-

skudd av titanhalogenider i forhold til Eksempel <3: >reduksjonsmetallet. Det gås i prinsippet frem som i eksem-Hvis nødvendig kan fremgangsmåten pel 2. I stedet for kadmium anvendes sink shot of titanium halides in relation to Example <3: >the reducing metal. In principle, the procedure is the same as in eczema - If necessary, the procedure pel 2 can be used. Instead of cadmium, zinc is used

som legeringsmetall og magnesium elektro-lyseres inn i sinken fra en karnallittsmelte. as alloy metal and magnesium are electrolyzed into the zinc from a carnallite melt.

Pr. time utskilles det 52 g magnesium og 52 g of magnesium and

dette omsettes i reaksjonscellen med den this is reacted in the reaction cell with it

teoretiske mengde titantetraklorid. Det theoretical amount of titanium tetrachloride. The

dannes 204 g magnesiumklorid og 51 g ti-tanmetall. Temperaturen i elektrolysecellen er 700—750°. Som i eksempel 2 arbeides 204 g of magnesium chloride and 51 g of titanium metal are formed. The temperature in the electrolysis cell is 700-750°. As in example 2 is worked

det med et overskudd av magnesiummetall that with an excess of magnesium metal

som forblir i kretsløpet. which remains in the circuit.

Claims (2)

1. Fremgangsmåte til fremstilling av titan- av titanhalogenider ved reduksjon1. Process for the production of titanium from titanium halides by reduction med alkali- eller jordalkalimetaller, karakterisert ved at alkali- eller jordalkalimetal-lene løses opp i sink, kadmium, bly eller blandinger av disse, og at titanhalogenid-ene innledes i denne flytende legering.with alkali or alkaline earth metals, characterized in that the alkali or alkaline earth metals are dissolved in zinc, cadmium, lead or mixtures of these, and that the titanium halides are introduced into this liquid alloy. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at den flytende legering overdekkes med en alkali- resp. jordalkalikloridsmelte, fra hvilken det dannede titan pumpes bort.2. Method according to claim 1, characterized in that the liquid alloy is covered with an alkali or alkaline earth chloride melt, from which the formed titanium is pumped away.
NO16532266A 1965-10-26 1966-10-24 NO117992B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB4526765A GB1129516A (en) 1965-10-26 1965-10-26 Improvements in or relating to magnetic filters

Publications (1)

Publication Number Publication Date
NO117992B true NO117992B (en) 1969-10-20

Family

ID=10436541

Family Applications (1)

Application Number Title Priority Date Filing Date
NO16532266A NO117992B (en) 1965-10-26 1966-10-24

Country Status (6)

Country Link
BE (1) BE688856A (en)
DE (1) DE1275717B (en)
ES (1) ES332684A1 (en)
GB (1) GB1129516A (en)
NL (1) NL6615001A (en)
NO (1) NO117992B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2134819A (en) * 1983-01-28 1984-08-22 Univ Southampton Magnetic collection of particles from a fluid
GB2137536A (en) * 1983-02-10 1984-10-10 Tecalemit Electronics Ltd Magnetic particle collector
DE4036648B4 (en) * 1989-11-20 2005-07-07 Kropp, Ellen Device for influencing liquids by magnetic fields
GB2361441A (en) * 2000-04-19 2001-10-24 Eclipse Magnetics Ltd Magnetic filter in association with a porous filter
US7604748B2 (en) 2005-10-20 2009-10-20 Eclipse Magnetics Limited Magnetic filter
GB2450335A (en) * 2007-06-19 2008-12-24 Fluid Conditioning Systems Ltd A separator device
CN112717534B (en) * 2021-01-08 2024-06-14 临武县舜水环境治理有限公司 Magnetic material filtering and recycling device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2149764A (en) * 1937-06-10 1939-03-07 Bendix Aviat Corp Magnetic filter
US2317774A (en) * 1938-04-01 1943-04-27 Hartford Nat Bank & Trust Co Magnetic filter
NL84420C (en) * 1950-12-12
DE934843C (en) * 1953-12-31 1955-11-03 Philips Nv Magnetic filter with a permanent magnet that can be deactivated

Also Published As

Publication number Publication date
GB1129516A (en) 1968-10-09
BE688856A (en) 1967-04-25
NL6615001A (en) 1967-04-27
DE1275717B (en) 1968-08-22
ES332684A1 (en) 1967-07-16

Similar Documents

Publication Publication Date Title
JP2018048402A5 (en)
US2861030A (en) Electrolytic production of multivalent metals from refractory oxides
US2734856A (en) Electrolytic method for refining titanium metal
US3114685A (en) Electrolytic production of titanium metal
US3798140A (en) Process for producing aluminum and silicon from aluminum silicon alloys
NO862234L (en) PROCEDURE FOR PREPARING CALCIUM AND HIGH-PURITY Alloys.
US2757135A (en) Electrolytic manufacture of titanium
NO117992B (en)
US3677926A (en) Cell for electrolytic refining of metals
US2904428A (en) Method of reducing titanium oxide
US1299947A (en) Electrolysis of fused electrolytes.
US3765878A (en) Aluminum-silicon alloying process
US2351383A (en) Process for the manufacture of zinc
US1905882A (en) Metallic columbium and process for making the same
US3450524A (en) Process for the preparation of pure manganese
US1567318A (en) Method of making metallic magnesium
US1740857A (en) Process for the production of metallic beryllium
US4124461A (en) Production of metallic lead
US4135997A (en) Electrolytic production of metallic lead
US2893928A (en) Preparation of plutonium
US2850443A (en) Method of treating alloys
JPH02259092A (en) Production of calcium
US1563188A (en) Treating molten metals with calcium-copper alloys
US1505494A (en) Process for extracting metals
US1882525A (en) Process for the electrolytic production of metals of the alkalis or alkaline earths