NO117100B - - Google Patents

Download PDF

Info

Publication number
NO117100B
NO117100B NO163685A NO16368566A NO117100B NO 117100 B NO117100 B NO 117100B NO 163685 A NO163685 A NO 163685A NO 16368566 A NO16368566 A NO 16368566A NO 117100 B NO117100 B NO 117100B
Authority
NO
Norway
Prior art keywords
precipitation
pigment
potential
color
suspension
Prior art date
Application number
NO163685A
Other languages
Norwegian (no)
Inventor
F Schmidt
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Publication of NO117100B publication Critical patent/NO117100B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes

Description

Fremgangsmåte for styrt elektroforese av kolloidalt dispergert materiale. Procedure for controlled electrophoresis of colloidally dispersed material.

Tillegg til norsk patent nr. 109-135Addendum to Norwegian patent no. 109-135

Foreliggende oppfinnelse angår en fremgangsmåte for styrt élektroforese av kolloidalt dispergert materiale og nær-mere bestemt en fremgangsmåte ved drift av apparatet ifblge hovedpatentet, norsk patent 109. 135, til fremstilling under påtrykking av et potensial mellom to elektroder av en elektro-foretisk utfelling av et pigment fra en kolloidal dispersjon av pigmentet. The present invention relates to a method for controlled electrophoresis of colloidally dispersed material and, more specifically, a method by operating the apparatus according to the main patent, Norwegian patent 109.135, for the production, under the application of a potential between two electrodes, of an electrophoretic precipitation of a pigment from a colloidal dispersion of the pigment.

Kfr. kl. 4.8a-9/02Cf. at 4.8a-9/02

Nar bure en enkelt urt partikler avsettes fra en suspensjon, er Het tilsvarende nyttig å styre utfellingenes utseende enten for a fremstille utfellinger mod til en viss grad forskjel-lig utseende fra en suspensjon med bestemte egenskaper, eller for å fremstille pa suksessivt belagte arbeidsstykker utfellinger med samme utseende til tross lor uttynning av suspensjonen ved for-bruket, e11cr va r i asjone r i suspensjonens temperatur oller andre forandringer som kan opptre under arbeidets gang. When a single herb particles are deposited from a suspension, it is similarly useful to control the appearance of the precipitates either to produce precipitates with a somewhat different appearance from a suspension with certain properties, or to produce on successively coated workpieces precipitates with same appearance despite thinning of the suspension during consumption, e11cr changes in the temperature of the suspension or other changes that may occur during the course of the work.

Selv om bare et enkelt pigment avsettes,, fra et bad, f. eks. i porene av en a nod i sert overflate, har det vist seg at metningen og re f 1eksjonsev nen for den fremkomne finish kan varieres ved a forandre den spenning som påtrykkes for frembringelse av elektroforese. Generelt vil en dk et spenning oke metningen av den ferd ig-fremstilte overflate, slik at denne ennå mer tilnærmet tilsvarer selve pigmentet og den forandrer rc f 1 eksjonsevnen for den ferdige overflate, slik at denne kommer meget utruere pigmentets. Niir en suspensjon b1 i r. ntarmct , vi] s pc n u i ng s b k is i ng e n gi resultater som svarer til de man oppnår ved lavert; spenning med en ikke utarmet suspensjon. T dette tilfelle mv et enkelt pigment er det mulig at den likede kraft som virker pa de -suspenderte partikler niir den påtrykte spenning bl:cs, driver dem dypere, inn i den anodiserte overflates porer og fyller porene mer fullstendig og reduserer fortynningen ved rien anodiserte overflate av den farge som til-fores ved pigmentet. Vei! impregneringen av porbse anodiserte overflater ved el ektroforese er vanligvis cn forholdsvis kort tid for påtrykk i ny av potensialet (sa som .1 minutt) tilstrekkelig ikke bare lor impregnering av porene, men også for avsetning pa arbeidsstykkets ytre overflate av et overskudd av pigment som lett kan vaskes av. Det synes således som den fund ne virkning ikke er re-sultatet bare av anvendelsen av en storre samlet tykkelse av utfellingen, men snarere av konsentrasjonen eller tettheten av pigment avsatt i porene. Even if only a single pigment is deposited,, from a bath, e.g. in the pores of an anode in a hardened surface, it has been shown that the saturation and reflectivity of the resulting finish can be varied by changing the voltage applied to produce electrophoresis. In general, a dk a tension will increase the saturation of the finished surface, so that this corresponds even more closely to the pigment itself and it changes the rc f 1 ection ability of the finished surface, so that it becomes much more threatening than that of the pigment. Niir a suspension b1 in r. ntarmct , we] s pc n u i ng s b k is i ng e n give results that correspond to those obtained by lavert; tension with a non-depleted suspension. In this case, with a single pigment, it is possible that the equal force acting on the -suspended particles when the applied voltage bl:cs, drives them deeper into the pores of the anodized surface and fills the pores more completely and reduces the dilution by the anodized surface of the color provided by the pigment. Road! the impregnation of porous anodized surfaces by electrophoresis is usually a relatively short time for applying the new potential (say, .1 minute) sufficient not only for impregnation of the pores, but also for depositing on the outer surface of the workpiece an excess of pigment that easily can be washed off. It thus appears that the effect found is not the result only of the use of a greater overall thickness of the deposit, but rather of the concentration or density of pigment deposited in the pores.

Arbeidsstykkets porer med dets elek troutfelling ble der-dtter tettet ved hjelp av en ny fremgangsmåte. Det er vanlig a tette den porbse overflate av anodiserte materialer ved å senke arbeidsstykket ned i varmt, tilnærmet kokende vann i ca. 1/2 time. Disse arbeidsstykker ble tettet ved at de med tenger ble holdt og senket ned i cn 1 uft-muf fe1ovn, elektrisk oppvarmet ti) en temperatur psi Hf)0° C i 1 minutt. Ved denne operasjon var den temperatur arbeidsstykket nådde, ikke tilstrekkelig til a frembringe noen merkbar forandring i overflatens farge. Ktter slik tetning ble arbeidsstykket skyllet i vann for å fjerne vedhengende over-skytende pigment. The pores of the workpiece with its electrodeposition were then sealed using a new method. It is common to seal the porous surface of anodized materials by immersing the workpiece in hot, almost boiling water for approx. 1/2 hour. These workpieces were sealed by holding them with tongs and lowering them into a cn 1 uft-muf fe1oven, electrically heated to) a temperature psi Hf)0° C for 1 minute. During this operation, the temperature reached by the workpiece was not sufficient to produce any noticeable change in the color of the surface. After such sealing, the workpiece was rinsed in water to remove any adhering overshooting pigment.

Den virkelige forandring i farge som kan oppnås ved anvendelsen av en blanding av pigmenter i suspensjonen og anvendelsen av forskjellige spenninger for utfelling av disse pigmenter, er kanskje det mest fremtredende trekk ved oppfinnelsen. Imidlertid kan praktisk anvendelige resultater og sa oppnås ved anvendelsen av forskjellige spcnninger f or c 1 ekt roi' oret i sk utfelling av et enkelt pigment. Som eksempel kan nevnes at f) rove r av a 1 utni n i um 1 ege r i ng , kommersielt kjent som type 2024 ble anodisert i en 25 vektprosents vandig opplesning av svovelsyre ved cn stromtetthet på 25 A/ft^ ved 32-33° C i en time. Kt ter skylling i vann og torking ved tilnærmet romtemperatur, ble disse prover utsatt for e1ektroforetisk utfelling ved forskjellige spenninger i en suspensjon i methy1ethy 1kcton av et pigment kjent som "INDOFAST BRILLIANT SCAULliT PRF.SS GAKK" kommersielt tilgjengelig. The actual change in color which can be obtained by the use of a mixture of pigments in the suspension and the use of different voltages for the precipitation of these pigments is perhaps the most outstanding feature of the invention. However, practically applicable results and so can be obtained by the use of different voltages for the effect of precipitation of a single pigment. As an example, it can be mentioned that f) rove r of a 1 utni n i um 1 ege r i ng , commercially known as type 2024 was anodized in a 25 percent by weight aqueous reading of sulfuric acid at a current density of 25 A/ft^ at 32-33° C for one hour. After rinsing in water and drying at approximately room temperature, these samples were subjected to electrophoretic precipitation at various voltages in a suspension in methyl ethyl ketone of a pigment known as "INDOFAST BRILLIANT SCAULliT PRF.SS GAKK" commercially available.

Denne suspensjon ble fremstilt ved u11ra 1 yd-disperger ing av ca. 1 g pigment i 500 mml methylethylketon. Fplgende resultater ble oppnådd: _ This suspension was prepared by u11ra 1 yd dispersing of approx. 1 g of pigment in 500 mml of methyl ethyl ketone. The following results were obtained: _

Det har vist seg at når badet med det enkelte pigment blir utarmet ved kontinuerlig bruk, vil en bkning av den påtrykte spenning frembringe den samme farge som fåes ved en lavere opp-finnelig spenning med det ikke utarmede bad. Hvis på den annen side tilfeldige virkninger så som forandringer i badets temperatur gjor at fargen blir dypere enn bnsket, vil reduksjonen av spenningen forandre fargen til den bnskede valbr. Man har således funnet frem til den generelle praktiske regel at fargens tetthet for den behandlede overflate kan bkcs ved å oke spenningen som anvendes til elektroforese og omvendt. It has been shown that when the bath with the individual pigment is depleted by continuous use, a decrease in the applied voltage will produce the same color as is obtained at a lower detectable voltage with the non-depleted bath. If, on the other hand, random effects such as changes in the temperature of the bath cause the color to be deeper than desired, the reduction of the tension will change the color to the desired color. The general practical rule has thus been found that the density of the color for the treated surface can be reduced by increasing the voltage used for electrophoresis and vice versa.

Som antydet i hovedpatentet vil e1 ektroutfe11 ing av fin-delte pigmenter i porene av en anodisert overflate gi en fylling med slik kompakthet at den anodiserte overflate forsterkes og understøttes av fyllingen og blir ytterst fast overfor Sdeleg-gelse eller misfarging ved skraping eller friksjon. De foreliggende eksempler viste disse onskelige egenskaper. As indicated in the main patent, the external application of finely divided pigments in the pores of an anodized surface will give a filling with such compactness that the anodized surface is reinforced and supported by the filling and becomes extremely resistant to discolouration or discolouration by scraping or friction. The present examples showed these undesirable properties.

Claims (2)

1. Fremgangsmåte ved drift av et apparat ifblge hovedpatentet, norsk patent 109.135, til fremstilling under påtrykking av et potensial mellom to elektroder, av en e1 ektroforetisk utfelling av et pigment fra en kolloidal dispersjon av pigmentet, karakterisert ved at nevnte potensial justeres under dannelsen av nevnte utfelling for kompensering av forandringer i sammensetningen av nevnte dispersjon og derved opprett-holde fargen av utfellingen konstant.1. Procedure for operating an apparatus according to the main patent, Norwegian patent 109,135, for the production under pressure of a potential between two electrodes, of an e1 electrophoretic precipitation of a pigment from a colloidal dispersion of the pigment, characterized in that said potential is adjusted during the formation of said precipitation to compensate for changes in the composition of said dispersion and thereby maintain the color of the precipitation constant . 2. Fremgangsmåte ifblge krav 1, under anvendelse av en motelektrode'og en anodisert substratelektrode for utfelling på sistnevnte av materiale fra en kolloidal dispersjon, karakterisert ved at potensialet innstilles for styring av utfellingens utseende og at den anodiserte substratelektrode tettes ved påtrykking av varme på samme etter fremstillingen av nevnte utfelling.2. Method according to claim 1, using a counter electrode and an anodized substrate electrode for precipitation on the latter of material from a colloidal dispersion, characterized in that the potential is set to control the appearance of the precipitation and that the anodized substrate electrode is sealed by applying heat to the same after the production of said precipitation.
NO163685A 1965-06-29 1966-06-28 NO117100B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US47033065A 1965-06-29 1965-06-29

Publications (1)

Publication Number Publication Date
NO117100B true NO117100B (en) 1969-06-30

Family

ID=23867174

Family Applications (1)

Application Number Title Priority Date Filing Date
NO163685A NO117100B (en) 1965-06-29 1966-06-28

Country Status (5)

Country Link
US (1) US3502563A (en)
BE (1) BE683379A (en)
CH (1) CH489615A (en)
NL (1) NL6601626A (en)
NO (1) NO117100B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3627661A (en) * 1969-02-13 1971-12-14 Ransburg Electro Coating Corp Electronic apparatus and method
AT337829B (en) * 1974-10-28 1977-07-25 Vianova Kunstharz Ag MEASURING ARRANGEMENT FOR DETERMINING THE HANDLING PARAMETERS OF ELECTRO-DIPPING LAMPS
US4270317A (en) * 1978-10-10 1981-06-02 Midland-Ross Corporation Apparatus used in the treatment of a continuous strip of metal and method of use thereof
US4210505A (en) * 1978-11-14 1980-07-01 Shinto Paint Co., Ltd. Method and apparatus for electrodeposition coating
JPS5658656A (en) * 1979-10-18 1981-05-21 Olympus Optical Co Ltd Apparatus for coloring, decoloring and drying of holder for electrophoresis
JPS5670456A (en) * 1979-11-13 1981-06-12 Olympus Optical Co Ltd Dyeing, decolorizing and drying device for supporting body in electrophoresis
CA2308092C (en) 2000-05-10 2008-10-21 Partho Sarkar Production of hollow ceramic membranes by electrophoretic deposition
DE102008011298A1 (en) * 2007-03-16 2008-09-18 Süddeutsche Aluminium Manufaktur GmbH Partial pigmentation of a cover layer to avoid interference with aluminum components or aluminum-containing components

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL111927C (en) * 1956-06-14
GB817838A (en) * 1956-06-22 1959-08-06 British Cotton Ind Res Assoc Method and means for the automatic regulation of the continuous application of specified amounts of solids or liquids to a moving sheet of material
US2973686A (en) * 1957-10-11 1961-03-07 Gen Precision Inc Apparatus for spectrophotometric monitoring of thin film coatings
CH365430A (en) * 1958-12-17 1962-11-15 Huber Willy Device for automatic regulation of a predetermined local current density and variables dependent on this in a galvanic bath
US3081194A (en) * 1959-08-07 1963-03-12 Gen Motors Corp Plating thickness indicating apparatus and method
US3077858A (en) * 1960-03-17 1963-02-19 Gen Electric Canada Apparatus for controlling and measuring the thickness of thin electrically conductive films
BE624738A (en) * 1961-11-15
US3157535A (en) * 1962-01-15 1964-11-17 Lear Siegler Inc Monitoring apparatus for automatic production of microcircuits

Also Published As

Publication number Publication date
US3502563A (en) 1970-03-24
CH489615A (en) 1970-04-30
NL6601626A (en) 1966-12-30
BE683379A (en) 1966-12-01

Similar Documents

Publication Publication Date Title
DE2063238C3 (en) Method of manufacturing an electrode for use in electrolytic processes
DK171452B1 (en) Process for coating aluminum or aluminum alloys
NO117100B (en)
NO790150L (en) METHOD OF PROCESSING COLORED ALUMINUM
NO163685B (en) SHIPPING POINT FOR FITTING IN A VEHICLE TIRE.
US2081121A (en) Decorating metals
US1936058A (en) Production of corrosion-resistant coatings on aluminum and aluminum alloys
DE2538331A1 (en) LIQUID CRYSTAL DISPLAY ELEMENT
CA1048963A (en) Process for electrolytically coloring aluminum and aluminum alloys
US4043880A (en) Method for producing green-colored anodic oxide film on aluminum or aluminum base alloy articles
Tajima et al. Electron-microscopic and optical studies on the electrocrystallization of alpha-alumina (corundum) films on aluminium
DE2338549B2 (en)
JPS63297592A (en) Anodic oxidation treatment for titanium and titanium alloy
Napoli et al. Titanium alloys anodic oxidation: Effect of experimental parameters on surface colouring
US1965683A (en) Coating aluminum
US4798656A (en) Process for electrolytically dyeing an anodic oxide layer on aluminum or aluminum alloys
Hurlen et al. Model studies on passive metal electrodes
US3977948A (en) Process for coloring, by electrolysis, an anodized aluminum or aluminum alloy piece
GB2053972A (en) Electrolytic colouring of anodized aluminium
Rattanasatitkul et al. An effect of process parameters to anodic thickness in hard anodizing process
US4808280A (en) Method for electrolytic coloring of aluminim or aluminum alloys
US2899368A (en) Methods of sealing anodic aluminium
US2788317A (en) Aluminum and process applicable thereto
AU1002799A (en) A process for producing colour variations on electrolytically pigmented anodized aluminium
KR100288653B1 (en) How to color glass using titanium deposition