NL8103261A - HEAT TRANSFERRING ELEMENTS FOR REGENERATIVE HEAT EXCHANGE. - Google Patents
HEAT TRANSFERRING ELEMENTS FOR REGENERATIVE HEAT EXCHANGE. Download PDFInfo
- Publication number
- NL8103261A NL8103261A NL8103261A NL8103261A NL8103261A NL 8103261 A NL8103261 A NL 8103261A NL 8103261 A NL8103261 A NL 8103261A NL 8103261 A NL8103261 A NL 8103261A NL 8103261 A NL8103261 A NL 8103261A
- Authority
- NL
- Netherlands
- Prior art keywords
- heat
- elements
- heat exchange
- transferring elements
- layer
- Prior art date
Links
- 230000001172 regenerating effect Effects 0.000 title claims description 4
- 230000003068 static effect Effects 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 2
- 238000009825 accumulation Methods 0.000 description 12
- 239000007789 gas Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010039509 Scab Diseases 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- -1 for example Chemical class 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28C—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
- F28C3/00—Other direct-contact heat-exchange apparatus
- F28C3/10—Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
- F28C3/12—Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
- F28C3/16—Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid the particulate material forming a bed, e.g. fluidised, on vibratory sieves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D19/00—Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
- F28D19/02—Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using granular particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/02—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
- F28D20/023—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
y a .y a.
* ; VO 2135 1 ' * • ·*; VO 2135 1 '* • ·
Warmte-overdragende elementen voor regeneratieve warmteui twisse’ling.Heat transferring elements for regenerative heat exchange.
De uitvinding heeft betrekking op. warmte-overdragende elementen voor regeneratieve warmteuitwisseling.The invention relates to. heat transferring elements for regenerative heat exchange.
De uitvinding gaat uit van bekende latente warmte-accumulatoren, welke als elementen met een grote warmtecapaciteit bekend 3 zijn.The invention is based on known latent heat accumulators, which are known as elements with a large heat capacity.
Deze latente accumulatoren dragen de warmte uit het hete bereik in het koude bereik over door middel van een indirect medium, bijvoorbeeld metallische of chemische verbindingen, welke in het hete bereik smelten en in koude toestand stollen.These latent accumulators transfer the heat from the hot range into the cold range by means of an indirect medium, for example metallic or chemical compounds, which melt in the hot range and solidify in the cold state.
10 De bekende latente accumulatiemassa' s zijn eis niet bewegende platen of als reservoirs gebouwd.The known latent accumulation masses are non-moving plates or built as reservoirs.
In vele technische gevallen, in het bijzonder bij warmteuitwisselaars tussen gassen met een hoog stof- en roetgehalte of verontreinigde vloeistoffen, vormen zich op'het warmteuitwisselende op-15 pervlak van de bekende warmteuitwisselaars korsten, welke zeer moeilijk verwijderd kunnen worden.In many technical cases, especially with heat exchangers between gases with a high dust and soot content or contaminated liquids, crusts form on the heat exchanging surface of the known heat exchangers, which are very difficult to remove.
Het probleem dat aan de uitvinding ten grondslag ligt bestaat daarin, warmt e-overdragende elementen te verschaffen, welke een probleemloze en intensieve warmteuitwisseling mogelijk maken en het rei-20 nigen zonder grote apparatieve investering kan plaatsvinden.The problem underlying the invention is to provide heat transfer elements which enable problem-free and intensive heat exchange and can be cleaned without major equipment investment.
Dit probleem wordt volgens de uitvinding opgelost, doordat de elementen als stijve, holle kogels of als holle veelvlakken uit temperatuur- en corrosiebestendig materiaal zijn uitgevoerd, waarbij de vrije binnenruimte geheel of ten dele met een latente accumulatie- .This problem is solved according to the invention in that the elements are designed as rigid, hollow balls or as hollow polyhedra of temperature- and corrosion-resistant material, the free inner space wholly or partly with a latent accumulation.
25 massa gevuld is.25 mass is filled.
Voorts kunnen de elementen volgens de uitvinding in een wervellaag,. respectievelijk een stortlaag toepassing vinden.Furthermore, the elements according to the invention can be arranged in a fluidized layer. respectively find a pour layer application.
In tegenstelling tot de bekende warm.teaccumnlatiemassa, s zijn de elementen volgens de uitvinding tijdens bedrijf in beweging als 30 wervel- of stortlaag.In contrast to the known heat accumulation masses, the elements according to the invention are in motion as a swirl or pour layer during operation.
Warmte-overdracht. uit een heet in een koud bereik geschiedt door cyclisch transport van de elementen tussen de hete en-de koude bereiken.Heat transfer. from a hot to a cold range is effected by cyclical transport of the elements between the hot and the cold ranges.
In de hete ruimte vindt de warmte-accumulatie in de ele- .In the hot room, the heat accumulates in the ele-.
81 03 261 \ . .81 03 261 \. .
2 t- * menten door verhitting van de wand. en de latente accumulatie als vaste stof plaats, echter ook door het smelten van de vulling en het verhitten van de vloeibare fase na het smelten van de latente accumulator.2 t * by heating the wall. and the latent accumulation takes place as a solid, but also by melting the filling and heating the liquid phase after melting the latent accumulator.
Na het transport van de elementen in de koude ruimbe 5 vindt de warmte-afgifte door koeling' van de wand en de vloeibare fase plaats tot', het stolpunt en voorts ook door de afgifte van stollingswarm-te en warmte van. de afkoeling van de latente accumulatiemassa als vaste fase.After the elements have been transported in the cold hold 5, the heat is released by cooling the wall and the liquid phase up to the freezing point and further also by the release of solidification heat and heat. the cooling of the latent accumulation mass as a solid phase.
Het beslissende voordeel van de uitvinding bestaat daar-10 in,, dat'de elementen volgens de uitvinding' gemakkelijk gereinigd kunnen wordenr d,w..z* zij reinigen zichzelf bij de-toepassing".ais wervel- of · stortlaag,The decisive advantage of the invention consists in that the elements according to the invention can be easily cleaned, ie they clean themselves when used as a swirl or pour layer,
De elementen volgens de uitvinding functioneren op de— . zelfde wijze als de latente· accumulatiemassa en hebben gelijktijdig een 1J. hoger warmte door gangsget al. op de grens gas — elementoppervlak in een vervellaag en een grotere warmtecapaciteit door de vulling met een latente accumulatiemassa»The elements according to the invention function on the. same way as the latent accumulation mass and simultaneously have a 1J. higher heat by gangsget al. at the boundary gas element surface in a paint layer and a greater heat capacity due to the filling with a latent accumulation mass »
Uitvoeringsvoorbeelden zijn in de tekening weergegeven aan de hand. waarvan de uitvinding zal worden beschreven . In de tekening 20 toont:Exemplary embodiments are shown in the drawing with reference to. the invention of which will be described. In the drawing 20 shows:
Figuur 1 het element volgens de uitvinding als holle kogel; figuur 2, 3, k en 5 verschillende opstellingen van de elementen volgens de uitvinding in een Ljungström-warmteuitvisselaar; 25 figuur β het gebruik van de elementen volgens de uitvin ding in een kolomvormige warmteuitvisselaar als wervellaag; en figuur 7 de opstelling van de elementen in een kolomvormige warmteuitwisselaar als statische laag.Figure 1 shows the element according to the invention as a hollow ball; Figures 2, 3, k and 5 show different arrangements of the elements according to the invention in a Ljungström heat exchanger; Figure β shows the use of the elements according to the invention in a columnar heat exchanger as a fluidized layer; and Figure 7 shows the arrangement of the elements in a columnar heat exchanger as a static layer.
Het element,. zoals figuur 1 dit toont, bestaat uit een 30 holle kogel 10, de wand 2 fcet of zonder capillaire structuur 5 aan de binnenzijde van de wand 2), de latente-accumulatiemassa 3 en een inert gas 1+¾ in het geval, dat de holle kogel 1 slechts ten dele met de latente accumulatiemassa gevuld is.The element,. as shown in figure 1, it consists of a hollow ball 10, the wall 2 solid or without capillary structure 5 on the inside of the wall 2), the latent accumulation mass 3 and an inert gas 1 + ¾ in the case that the hollow ball 1 is only partially filled with the latent accumulation mass.
Daarbij kan de latente accumulatiemassa uit een metaal, 35 bijvoorbeeld natrium, aluminium en voor hoge temperaturen zilver of uit chemische verbindingen, zoals bijvoorbeeld LiH, LiF, MgFg of dergelijke 8103261 > * Λ * 3 bestaan.The latent accumulation mass can consist of a metal, for example sodium, aluminum and for high temperatures silver or chemical compounds, such as, for example, LiH, LiF, MgFg or the like 8103261> * Λ * 3.
De wand 2 kan daarbij uit metaal of een niet-met aal bestaan.The wall 2 can consist of metal or a non-metal eel.
De figuren 2 - ^' tonen een rotor van een Ljungstrom-5 warmteuitvisselaar β met verticaal staande as T· Volgens figuur 2 bevinden de. elementen 1 volgens de uitvinding zich boven de normale accumulatiemassa 8, bij figuur- 3 daaronder. Figuur 4 toont een Ljung-ström-warmteuitwisseiaar zonder conventionele accumulatiemassa slechts met elementen 1 volgens de uitvinding. Door 9 is de koude gastoevoer 10' en met 10: die voor heet gas aangeduid. Al naar gelang de richting, waar-- in de- elementen 1 doorstroomd worden, vormt zich een statische— of een wervellaag. De wervellaag vormt zich alleen dan, wanneer de gasstroom van onderen inde warmt eui twisselaar wordt gevoerde Wanneer bijvoorbeeld de as T van de rotor 6 horizontaal is aangebracht (figuur 5), en de ele— 15 menten 10 als statische laag zijn uitgevoerd, vindt het reinigen van de elementen door het omwentelen in de sectorruimte zonder extra energiebehoefte voor een afblaasinrichting, plaats. Figuur 6 toont een kolom— vomige warmte-uitwisselaar met een wervellaag, waarbij het hete gas bij 11 toegevoerd wordt, de elementen 1 verwarmt erbij 12 de kolom weer ver-20 laat.Figures 2 - 'show a rotor of a Ljungstrom-5 heat exchanger β with vertical shaft T. According to figure 2 the. elements 1 according to the invention are above the normal accumulation mass 8, with figure 3 below. Figure 4 shows a Ljung-ström heat exchanger without conventional accumulation mass only with elements 1 according to the invention. 9 indicates the cold gas supply 10 'and 10: that for hot gas. Depending on the direction in which elements 1 flow through, a static or fluidized layer is formed. The fluidized bed layer only forms when the gas flow is fed from the bottom of the heat exchanger. For example, when the shaft T of the rotor 6 is arranged horizontally (Figure 5), and the elements 10 are designed as a static layer, cleaning the elements by revolutionizing the sector space without additional energy requirement for a blow-off device, place. Figure 6 shows a columnar fluid exchanger with a fluidized layer, the hot gas being supplied at 11, the elements 1 heating at 12, leaving the column again.
Het koude gas treedt bij 13 naar binnen en verlaat de kolom bij 1.U, De verhitte elementen zakken door een inrichting 15 naar omlaag in het onderste gedeelte van de kolom en worden via een niet nader weergegeven pneumatisch of mechanisch transportsysteem 16 naar het - 25 bovenste deel van de kolom teruggevoerd.The cold gas enters at 13 and exits the column at 1.U. The heated elements drop down through a device 15 into the lower part of the column and are conveyed via a pneumatic or mechanical conveying system 16 (not shown in more detail) to the column. top part of the column returned.
Figuur T toont een kolomvormige warnrte-uitwisselaar met een statische laag, waarbij de verwarmde elementen 1 door middel van bijvoorbeeld een cellenwiel 1T portiegewijs in het onderste deel van de kolom komen, aldaar het koude gas verwarmen en via het transportsysteem 30 16 in het bovenste deel van de kolom teruggevoerd worden.Figure T shows a columnar heat exchanger with a static layer, wherein the heated elements 1 enter portionwise into the bottom part of the column by means of, for example, a cell wheel 1T, heat the cold gas there and through the transport system 30 16 into the top part. from the column.
81032618103261
Claims (2)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3035386A DE3035386C2 (en) | 1980-09-19 | 1980-09-19 | Use of heat-transferring elements designed as hollow spheres or as hollow polyhedra in a regenerative heat exchanger |
DE3035386 | 1980-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
NL8103261A true NL8103261A (en) | 1982-04-16 |
Family
ID=6112377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NL8103261A NL8103261A (en) | 1980-09-19 | 1981-07-08 | HEAT TRANSFERRING ELEMENTS FOR REGENERATIVE HEAT EXCHANGE. |
Country Status (8)
Country | Link |
---|---|
JP (1) | JPS5755397A (en) |
DE (1) | DE3035386C2 (en) |
FI (1) | FI812670L (en) |
FR (1) | FR2490801B1 (en) |
GB (1) | GB2084311B (en) |
NL (1) | NL8103261A (en) |
SE (1) | SE8104777L (en) |
ZA (1) | ZA816327B (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3213988A1 (en) * | 1982-04-16 | 1983-10-20 | L. & C. Steinmüller GmbH, 5270 Gummersbach | METHOD FOR CLEANING GAS FLOWED HEAT EXCHANGERS |
DE3213972C1 (en) * | 1982-04-16 | 1983-10-27 | L. & C. Steinmüller GmbH, 5270 Gummersbach | Heat transfer elements for regenerative heat exchange in gas-gas fluidized bed heat exchangers |
DE3214958C2 (en) * | 1982-04-22 | 1986-10-30 | L. & C. Steinmüller GmbH, 5270 Gummersbach | Regenerative gas-gas heat exchanger in column design with heat transferring elements as a fluidized bed |
DE3227553C2 (en) * | 1982-07-23 | 1986-04-24 | Thyssen Industrie Ag, 4300 Essen | Device for dry flue gas cleaning |
IL69390A (en) * | 1983-06-13 | 1987-01-30 | Pennwalt Corp | Thermal energy storage products and their production |
DE3905706A1 (en) * | 1989-02-24 | 1990-08-30 | Deutsche Forsch Luft Raumfahrt | HEAT STORAGE WITH EXPANSION EXCEPTIONS |
DE3907767A1 (en) * | 1989-03-10 | 1990-09-13 | Man Technologie Gmbh | Heat exchanger for high-temperature applications |
DE4014243C2 (en) * | 1990-05-04 | 1999-06-17 | Gerd Hoermansdoerfer | Latent heat storage |
EP0609572A1 (en) * | 1993-02-03 | 1994-08-10 | Shell Internationale Researchmaatschappij B.V. | Heat regenerator |
FR2722561B1 (en) * | 1994-07-12 | 1996-09-20 | Aerospatiale | DEVICE FOR GENERATING A HOT AIR STREAM |
WO2001006195A1 (en) * | 1999-07-19 | 2001-01-25 | The University Of Dayton | Heat storage pellets of phase change material and method of manufacturing same |
SE523686C2 (en) * | 2002-05-06 | 2004-05-11 | Instchemas Ab | Accumulator |
GB2412427A (en) * | 2004-03-25 | 2005-09-28 | Zafer Ure | Latent heat storage module comprising phase change material within metallic sphere |
DE102008048655B4 (en) * | 2008-09-24 | 2010-12-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for transporting heat, transport system for a heat transfer medium and its use |
DE102009007176A1 (en) * | 2009-02-03 | 2010-10-14 | Karlsruher Institut für Technologie | Process and apparatus for isothermal pyrolysis with autothermal partial gasification |
DE102009059090A1 (en) * | 2009-12-18 | 2011-06-22 | Bombardier Transportation GmbH, 10785 | Preheating an internal combustion engine |
CN101788239B (en) * | 2010-03-04 | 2012-02-08 | 武汉理工大学 | Method for preparing ceramic thermal storage ball coating phase-change materials |
JP6037159B2 (en) * | 2012-07-12 | 2016-11-30 | アイシン精機株式会社 | Chemical heat storage device |
US20150184950A1 (en) * | 2013-01-02 | 2015-07-02 | Rolf Miles Olsen | Thermal Ratchet Stopping Shovel Wall |
FR3019640B1 (en) * | 2014-04-03 | 2019-12-20 | IFP Energies Nouvelles | FLUIDIZED BED HEAT STORAGE SYSTEM |
FR3044749B1 (en) * | 2015-12-07 | 2017-12-22 | Ifp Energies Now | SYSTEM AND METHOD FOR CROSS-CURRENT HEAT EXCHANGE BETWEEN A FLUID AND HEAT STORAGE PARTICLES |
CN105953606A (en) * | 2016-05-23 | 2016-09-21 | 肥西县鑫山机械厂 | Granular substance cooling and cleaning fluidized bed |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1614387A (en) * | 1923-05-30 | 1927-01-11 | Pereda Celedonio Vicente | Apparatus for the transmission of heat and cold |
GB708369A (en) * | 1950-12-28 | 1954-05-05 | Svenska Rotor Maskiner Ab | Improvements in rotary regenerative air preheaters or like rotary drum apparatus |
US3159910A (en) * | 1957-12-12 | 1964-12-08 | Linde Eismasch Ag | Packing units for heat exchangers operating at extremely low temperatures |
NL111094C (en) * | 1961-08-17 | |||
AT251164B (en) * | 1963-08-02 | 1966-12-27 | Nikex Nehezipari Kulkere | Regenerative heat exchanger |
US3872918A (en) * | 1974-02-21 | 1975-03-25 | Stalker Corp | Heat exchanger |
-
1980
- 1980-09-19 DE DE3035386A patent/DE3035386C2/en not_active Expired
-
1981
- 1981-07-08 NL NL8103261A patent/NL8103261A/en not_active Application Discontinuation
- 1981-07-20 GB GB8122261A patent/GB2084311B/en not_active Expired
- 1981-07-24 JP JP56115457A patent/JPS5755397A/en active Pending
- 1981-08-11 SE SE8104777A patent/SE8104777L/en not_active Application Discontinuation
- 1981-08-28 FI FI812670A patent/FI812670L/en not_active Application Discontinuation
- 1981-09-11 ZA ZA816327A patent/ZA816327B/en unknown
- 1981-09-17 FR FR8117577A patent/FR2490801B1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE3035386A1 (en) | 1982-04-08 |
FR2490801A1 (en) | 1982-03-26 |
GB2084311B (en) | 1985-02-20 |
JPS5755397A (en) | 1982-04-02 |
SE8104777L (en) | 1982-03-20 |
DE3035386C2 (en) | 1985-08-29 |
FR2490801B1 (en) | 1988-07-08 |
FI812670L (en) | 1982-03-20 |
ZA816327B (en) | 1982-11-24 |
GB2084311A (en) | 1982-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NL8103261A (en) | HEAT TRANSFERRING ELEMENTS FOR REGENERATIVE HEAT EXCHANGE. | |
EP3523840B1 (en) | Battery box for automotive battery temperature management | |
CA1305899C (en) | Thermal storage with tubular containers of storage mediums | |
EP2693148B1 (en) | Heat storage device, and system provided with heat storage device | |
NL8103849A (en) | HEAT ACCUMULATION MASS FOR REGENERATIVE HEAT EXCHANGE. | |
CN104136842B (en) | Heat-transfer pipe in the layer of fluidized bed boiler | |
NL8005306A (en) | HEAT TRANSFERRING ELEMENTS. | |
CN105371677B (en) | A kind of directly contact phase-change type regenerative apparatus | |
US4221259A (en) | Process for storing calories | |
Priyadarsini et al. | Effect of trapezoidal fin on heat transfer enhancement in pcm thermal energy storage system: A computational approach | |
EP3959477A1 (en) | Caloric store | |
US4099558A (en) | Method of heat accumulation and a thermal accumulator for the application of said method | |
NL8202463A (en) | HEAT TRANSFERRING ELEMENTS FOR REGENERATIVE HEAT EXCHANGE IN GAS-GAS FLUID-HEAT EXCHANGERS. | |
Almadhoni et al. | A review—An optimization of macro-encapsulated paraffin used in solar latent heat storage unit | |
KR20200002438A (en) | Latent heat storage apparatus using phase change material | |
CN108592672A (en) | A kind of Latent Heat Storage Exchanger | |
EP0173698A4 (en) | Heated railway tank car. | |
AT504794A4 (en) | HEAT STORAGE | |
HU188494B (en) | High-capacity heat accumulator | |
NL8103850A (en) | HEAT TRANSFER ELEMENTS FOR REGENERATIVE HEAT EXCHANGE. | |
Nagata et al. | The heat transfer performance of a gas-solid contactor with regularly arranged baffle plates | |
JPS60196547A (en) | Electric hot water boiler | |
US3825059A (en) | Method for charging a heat storage vessel | |
RU2101645C1 (en) | Regenerative-recuperative heat exchanger | |
Garzoli | Design of rock piles for greenhouse energy storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A85 | Still pending on 85-01-01 | ||
BV | The patent application has lapsed |