NL2035652B1 - Low-cost greenhouse gas circulation system for promoting CO2 and heat circulation - Google Patents

Low-cost greenhouse gas circulation system for promoting CO2 and heat circulation Download PDF

Info

Publication number
NL2035652B1
NL2035652B1 NL2035652A NL2035652A NL2035652B1 NL 2035652 B1 NL2035652 B1 NL 2035652B1 NL 2035652 A NL2035652 A NL 2035652A NL 2035652 A NL2035652 A NL 2035652A NL 2035652 B1 NL2035652 B1 NL 2035652B1
Authority
NL
Netherlands
Prior art keywords
heat
greenhouse
pipe
air inlet
sand
Prior art date
Application number
NL2035652A
Other languages
Dutch (nl)
Inventor
Tian Yongsheng
Chen Zhifeng
Geng Xueqing
Original Assignee
Univ Zunyi Normal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Zunyi Normal filed Critical Univ Zunyi Normal
Application granted granted Critical
Publication of NL2035652B1 publication Critical patent/NL2035652B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/245Conduits for heating by means of liquids, e.g. used as frame members or for soil heating
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/18Greenhouses for treating plants with carbon dioxide or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Soil Sciences (AREA)
  • Greenhouses (AREA)

Abstract

The invention belongs to the technical field of greenhouses, in particular to a low-cost greenhouse gas circulation system for promoting C02 and heat circulation, which comprises a 5 greenhouse, a plurality of air inlet pipes, a plurality of fans and an exhaust component; the fan is fixedly connected to the inner side of the top of the greenhouse; a plurality of fans are arranged along the length direction of the greenhouse; the air inlet pipe is fixedly connected along the contour of the inner wall of the greenhouse; the air inlet of the fan is communicated with the inside of the greenhouse; the air outlet of the fan is communicated with the air inlet end of the air inlet 10 pipe; a plurality of air inlet pipes correspond to a plurality of fans one by one; the air outlet end of the air inlet pipe is communicated with the air inlet end of the exhaust component; the exhaust component is buried in the soil at the bottom of the greenhouse; the air outlet end of the exhaust component penetrates through the soil surface layer and communicates with the inside of the greenhouse. The invention can improve the root soil temperature and C02 concentration near 15 crops, and further improve crop yield and quality.

Description

Low-cost greenhouse gas circulation system for promoting CO: and heat circulation
TECHNICAL FIELD
The invention belongs to the technical field of greenhouses, and in particular to a low-cost greenhouse gas circulation system for promoting CO: and heat circulation.
BACKGROUND
As an important part of modern agricultural production, protected agricultural production usually adopts the data acquisition system of environmental temperature, humidity, light, CO; and other factors that affect crop growth in the facility to control crops and realize continuous production.
Greenhouse is an important agricultural facility. Its main function is to provide an environment with suitable temperature and humidity for crops in the out-of-season winter or spring and autumn, improve the yield or quality of crops, and enable people to eat fresh vegetables in the out-of-season period.
However, at present, the CO; concentration at the top of greenhouse is lower than that at the lower part of greenhouse due to CO: absorption by crops during the off-season cultivation of solar energy-saving greenhouse crops. In the off-season production of greenhouse, due to the requirement of greenhouse insulation, it is necessary to close the vent, resulting in poor gas circulation in greenhouse, uneven spatial distribution of CO», high CO: concentration at the upper part and low CO: concentration at the lower part, which affects the photosynthetic efficiency of crops and further affects the yield. After the vent communicated with the outside is closed, After sunrise, due to the continuous radiation of the sun, the hot air in the greenhouse rises, which leads to the high temperature in the upper part of the greenhouse. Because there is no heating facility in the greenhouse soil layer, the soil temperature is low in winter. The low rhizosphere soil temperature directly affects the growth of crop roots, and then affects crop yield and quality.
Therefore, there is an urgent need for a low-cost greenhouse gas circulation system to promote CO: and heat circulation.
SUMMARY
The objective of the present invention is to provide a low-cost greenhouse gas circulation system for promoting CO. and heat circulation, so as to solve the above problems.
In order to achieve the above objectives, the present invention provides the following scheme.
A low-cost greenhouse gas circulation system for promoting CO. and heat circulation comprises a greenhouse, a plurality of air inlet pipes, a plurality of fans and an exhaust component; the fan is fixedly connected to the inner side of the top of the greenhouse; a plurality of fan are arranged along that length direction of the greenhouse;
the air inlet pipe is fixedly connected along the contour of the inner wall of the greenhouse; the air inlet of the fan is communicated with the inside of the greenhouse, the air outlet of the fan is communicated with the air inlet end of the air inlet pipe, and a plurality of air inlets correspond to a plurality of fans one by one; the air outlet end of the air inlet pipe is communicated with the air inlet end of an exhaust component, the exhaust component is buried in the soil at the bottom of the greenhouse, and the air outlet end of the exhaust component penetrates through the soil surface layer to communicate with the inside of the greenhouse.
Preferably, the exhaust component comprises a frame body, wherein a plurality of air outlet main pipes are uniformly arranged on the frame body; the middle of the air outlet main pipes is communicated with air outlet branch pipes; the air outlet ends of the air outlet branch pipes extend out of the soil surface layer to communicate with the inside of the greenhouse; the air inlet ends of the air outlet main pipes are communicated with the air outlet ends of the air inlet pipes; and the air outlet pipes are embedded in the frame body.
Preferably, the greenhouse is also provided with a temperature adjusting mechanism, which can store heat energy and keep the temperature in the greenhouse suitable for a long time; the temperature regulating mechanism comprises a solar energy collecting component, a heat storage component, a heat exchanging component, a water storage tank, a heat exchanging plate, a plurality of heat dissipation components and an underground thermal storage layer; the heat exchanging plate is arranged below the frame body, the underground thermal storage layer is arranged below the heat exchanging plate, and a heat insulation part is arranged between the underground thermal storage layer and the heat exchanging plate; one end of the heat exchanging plate is communicated with the heat exchanging component through a first water pumping part, the other end of the heat exchanging plate is communicated with the water storage tank, one end of the heat dissipation component is communicated with the heat exchanging component through a second water pumping part, and the other end of the heat dissipation component is communicated with the water storage tank;
The first water pumping part and the second water pumping part can pump water in two directions, and the pumping directions of the first water pumping part and the second water pumping part are opposite;
The heat exchanging component is arranged in heat exchanging with the heat storage component, and the heat storage component is arranged in heat exchanging with the solar energy collecting component;
The solar energy collecting component is electrically connected with the heat storage component, the first water pumping part and the second water pumping part;
A plurality of heat dissipation components are arranged in the underground thermal storage layer.
Preferably, the solar energy collecting component comprises a reflective heat insulation box, the top of which is fixedly connected with a crystal diamond optical collector; the reflective heat insulation box is of a hollow structure; the inner wall of the reflective heat insulation box can reflect light; a plurality of solar panels are uniformly arranged on one inner wall of the reflective heat insulation box along the height of the reflective heat insulation box; the inner wall of the reflective heat insulation box opposite to the solar panels is arranged in heat exchanging with the heat storage component; and a plurality of the solar panels are connected with the heat storage component and the first water pump.
Preferably, the heat storage component comprises a sand storage box, wherein the top of the sand storage box is communicated with a sand inlet, and the bottom of the sand storage box is communicated with a sand outlet;
The sand storage box is of a cylindrical structure, the bottom of the sand storage box is of an inverted frustum structure, the inner side of the middle part of the sand storage box is coaxially and fixedly connected with an internal spacer plate, and a gap is arranged between the outer wall of the internal spacer plate and the inner wall of the sand storage box;
The internal spacer annular plate is coaxially and rotatably provided with a transmission shaft; the transmission shaft is in transmission connection with a driving part, and the driving part is electrically connected with the plurality of solar panels; the transmission shaft is coaxially and fixedly connected with a auger, and the conveying direction of the auger is from bottom to top; a plurality of annular plate sand outlets are arranged on the top side wall of the internal spacer annular plate at equal intervals in the circumferential direction; a plurality of annular plate sand inlets are circumferentially arranged at equal intervals on the side wall at the bottom of the internal spacer annular plate;
One side of the sand storage box exchanges heat with the reflective heat insulation box through a first heat exchanging plate; the other side of that sand storage box exchange heat with the heat exchanging component through a second heat exchanging plate; the first heat exchanging plate and the second heat exchanging plate are fixedly connected to the side wall of the sand storage box; the sand storage box is filled with fine sand.
Preferably, the heat exchanging component comprises a water tank; one side of the water tank is arranged in heat exchanging with the second heat exchanging plate; the water tank is fixedly connected to the outer side wall of the sand storage box; the water tank is wrapped with a thermal insulation layer; the bottom of that water tank is respectively communicated with the top of the first communicating pipe and the second communicating pipe.
Preferably, the heat exchanging plate comprises a plate body; the plate body is buried in the soil; the plate body is positioned below the frame body; a continuous S-shaped bent coil pipe is arranged in the plate body; one end of the coil pipe is communicated with the first water pumping part; the other end of the coil pipe is communicated with the water storage tank through a third communicating pipe.
Preferably, the heat dissipation component comprises a radiating main pipe; a plurality of radiating main pipes are uniformly arranged at the bottom of the underground thermal storage layer; one ends of a plurality of radiating main pipes are communicated with the same second water pumping part; the other ends of a plurality of radiating main pipes are communicated with one end of the same fourth communicating pipe; the other end of the fourth communicating pipe is communicated with the bottom of the water storage tank;
A plurality of vertically arranged radiating branch pipes are arranged on the radiating main pipe; the main radiate pipe is communicated with that branch radiate pipes, and a plurality of radiating branch pipes are arrange at equal intervals along the length direction of the radiating main pipe; the radiating branch pipes are circumferentially provided with radiating fork pipes arranged in a matrix; the radiating fork pipe is communicated with the radiating branch pipe.
Compared with the prior art, the invention has the following advantages and technical effects: when in use, air with high concentration of CO: and high temperature at the top of the greenhouse is sucked by the fan, and sent to the exhaust component at the bottom through the air inlet pipe, and the exhaust component is buried in the soil, so that the temperature of the soil is increased, and the temperature difference between the top and bottom of the greenhouse is further reduced, so that the temperature of the rhizosphere soil of crops is increased; meanwhile, CO; with high concentration is sent to the root system of crops by the exhaust component, so that the photosynthesis efficiency of crops is improved.
BRIEF DESCRIPTION OF THE FIGURES
In order to explain the embodiments of the present invention or the technical scheme in the prior art more clearly, the drawings needed in the embodiments will be briefly introduced below.
Obviously, the drawings in the following description are only some embodiments of the present invention. For ordinary people in the field, other drawings can be obtained according to these drawings without paying creative labour:
Fig. 1 is a schematic structural diagram of the present invention;
Fig. 2 is a schematic structural diagram of a solar energy collecting component, a heat storage component and a heat exchanging component of the present invention;
Fig. 3 is a schematic structural diagram of the underground thermal storage layer, heat dissipation component and exhaust component of the present invention;
Fig. 4 is a schematic structural diagram of the exhaust component of the present invention;
Fig. 5 is a schematic structural diagram of the heat exchanging plate of the present invention; where, 1. greenhouse; 2. air inlet pipe; 3. fan; 4. water storage tank; 5. solar energy collecting component; 6. heat storage component; 7. heat exchanging component; 8. soil, 9. first communicating pipe; 10. second communicating pipe; 11. first pump; 12. second pump; 13. heat dissipation component; 14. underground thermal storage layer; 15. thermal insulation plate; 16. heat exchanging plate; 17. third communicating pipe; 18. fourth communicating pipe; 19. water outlet; 20. water supply port; 21. exhaust component; 501. crystal diamond optical collector; 502. reflective heat insulation box 503. solar panel, 601. sand inlet; 602. sand storage box; 603. internal spacer annular plate; 604. transmission shaft; 605. annular plate sand outlet; 606. packing auger; 607. motor; 808. sand outlet; 609. second heat exchanging plate; 610. first heat 5 exchanging plate; 611. supporting leg; 812. annular plate sand inlet; 701. water tank; 702. thermal insulation layer; 1301. radiating branch pipe; 1302. radiating fork pipe; 1303. radiating main pipe; 1601. plate body; 1602. coil pipe; 2101. ventilation pipe; 2102. air outlet main pipe; 2103. air outlet branch pipe; 2104. frame body.
DESCRIPTION OF THE INVENTION
In the following, the technical scheme in the embodiment of the invention will be clearly and completely described with reference to the attached drawings. Obviously, the described embodiment is only a part of the embodiment of the invention, but not the whole embodiment.
Based on the embodiments in the present invention, all other embodiments obtained by ordinary technicians in the field without creative labour belong to the scope of protection of the present invention.
In order to make the above objects, features and advantages of the present invention more obvious and easy to understand, the present invention will be further described in detail with the attached drawings and specific embodiments.
Referring to Figs. 1 to 5, the invention discloses a low-cost greenhouse gas circulation system for promoting CO: and heat circulation, which comprises a greenhouse 1, a plurality of air inlet pipes 2, a plurality of fans 3 and an exhaust component 21;
The fan 3 is fixedly connected to the inside of the top of the greenhouse 1;
A plurality of fans 3 are arranged along the length direction of the greenhouse 1;
The air inlet pipe 2 is fixedly connected along the contour of the inner wall of the greenhouse 1;
The air inlet of the fan 3 is communicated with the inside of the greenhouse 1, the air outlet of the fan 3 is communicated with the air inlet end of the air inlet pipe 2, and a plurality of air inlet pipes 2 correspond to a plurality of fans 3 one by one;
The air outlet end of the air inlet pipe 2 is communicated with the air inlet end of the exhaust component 21; the exhaust component 21 is buried in the soil 8 at the bottom of the greenhouse 1; the air outlet end of the exhaust component 21 penetrates through the surface layer of the soil 8 and communicates with the inside of the greenhouse 1.
When in use, air with high concentration of CO: and high temperature at the top of greenhouse 1 is sucked by fan 3 and sent to exhaust component 21 at the bottom through air inlet pipe 2; the exhaust component 21 is buried in the soil 8, and the air with higher temperature will raise the temperature of the soil 8, thereby reducing the temperature difference between the top and bottom of the greenhouse 1 and raising the temperature of the rhizosphere soil of crops.
At the same time, CO: with higher concentration is sent to the root system of crops by the exhaust component 21, which improves the photosynthetic efficiency of crops and further improves the yield.
The fan 3 is preferably an axial fan.
Further optimized, the exhaust component 21 includes a frame body 2104; a plurality of air outlet main pipes 2102 are uniformly arranged on the frame body 2104; the middle part of the air outlet main pipe 2102 is communicated with an outlet branch pipe 2103; the air outlet end of the air outlet branch pipe 2103 extends out of the surface layer of the soil 8 to communicate with the inside of the greenhouse 1; the air inlet ends of a plurality of air outlet main pipes 2102 are communicated with the air outlet ends of the ventilation pipes 2101; the air inlet end of the ventilation pipe 2101 is communicated with the air outlet end of the air inlet pipe 2; the ventilation pipe 2101 is embedded in the frame body 2104.
Air with higher temperature and CO: concentration enters into the ventilation pipe 2101, and from the ventilation pipe 2101 enters into a plurality of evenly arranged air outlet main pipes 2102; the air outlet main pipe 2102 is buried in the soil 8, which will generate heat exchanging with the soil 8, thereby increasing the temperature near the rhizosphere of the soil 8 and reducing the temperature difference between the top and bottom of the greenhouse 1; at the same time, the air with high CO. concentration is discharged from the air outlet branch pipe 2103 in the middle of the air outlet main pipe 2102 and acts near the crops, which can effectively improve the photosynthesis efficiency of the crops.
Furthermore, the distance between the top of the air outlet main pipe 2102 and the surface layer of the soil 8 is not less than 15cm, and the height of the air outlet branch pipe 2103 is not less than 50cm.
This system has been tested in Taigu County, Jinzhong City, from 9:00 am to 11: 00 am; open from 2: 00 pm to 4: 00 pm, it can realize CO: circulation and heat circulation in greenhouse, and promote crop photosynthesis efficiency and root growth. After using this system, the tomato yield in winter can be increased by 28%.
Further optimizing the scheme, the greenhouse 1 is also provided with a temperature adjusting mechanism, which can store heat energy and keep the temperature in the greenhouse 1 suitable for a long time;
The temperature regulating mechanism comprises a solar energy collecting component 5, a heat storage component 6, a heat exchanging component 7, a water storage tank 4, a heat exchanging plate 16, a plurality of heat dissipation components 13 and an underground thermal storage layer 14;
The heat exchanging plate 16 is arranged below the frame body 2104, the underground thermal storage layer 14 is arranged below the heat exchanging plate 16, and a heat insulation part is arranged between the underground thermal storage layer 14 and the heat exchanging plate 16.
One end of the heat exchanging plate 16 communicates with the heat exchanging component 7 through the first water pumping part, the other end of the heat exchanging plate 16 communicates with the water storage tank 4, one end of the heat dissipation component 13 communicates with the heat exchanging component 7 through the second water pumping part, and the other end of the heat dissipation component 13 communicates with the water storage tank 4;
The first water pumping part and the second water pumping part can pump water in two directions, and the pumping directions of the first water pumping part and the second water pumping part are opposite;
The heat exchanging component 7 is arranged in heat exchanging with the heat storage component 6, and the heat storage component 6 is arranged in heat exchanging with the solar energy collecting component 5;
The solar energy collecting component 5 is electrically connected with the heat storage component 6, the first water pumping part and the second water pumping part;
A plurality of heat dissipation components 13 are arranged in the underground thermal storage layer 14.
In winter in most parts of China and at the turn of autumn and winter and winter and spring, the climate is cold and the temperature difference between day and night is large. Especially in northern China, the winter is cold and long, the radiation intensity of solar energy is weak, and the radiation intensity of solar energy is strong in summer, so there is an intermittent shortage of solar energy. In order to ensure the effective growth of crops planted in greenhouse in winter, it is necessary to add heating equipment inside the greenhouse for heating, which will lead to a large amount of carbon emissions and pollution to the environment.
According to the invention, through the arrangement of the solar energy collecting component 5, the heat storage component 8, the heat exchanging component 7, the water storage tank 4, the heat exchanging plate 16, a plurality of heat dissipation components 13 and the underground thermal storage layer 14, the intermittent shortage of solar energy can be effectively solved, and the effective growth of crops planted in greenhouses in winter can be ensured.
It collects solar energy through the solar energy collecting component 5 and converts the solar energy into heat and electricity, and the electricity is used to drive the heat storage component 6, the first water pumping part and the second water pumping part to operate. The heat energy is used to generate heat exchanging with the heat storage component 6 to heat the heat storage substance in the heat storage component 6, and then the water in the heat exchanging component 7 is heated by the heat storage substance in the heat storage component 6, and the water flows through the heat exchanging plate 16 and a plurality of heat dissipation components 13, so that the heat is applied to the crop rhizosphere area of the soil 8, so that the temperature in the greenhouse 1 can be kept appropriate for a long time.
The water storage tank 4 stores water with low temperature. Under the action of the first water pumping part and the second water pumping part, the cold water in the water storage tank 4 can be introduced into the heat exchanging plate 16, the heat exchanging component 7 and the heat dissipation component 13 in turn and returned to the water storage tank 4. This situation is suitable for cooling the surface soil of the soil 8 in summer when the surface temperature of the soil 8 is high, and the water will carry heat into the underground thermal storage layer 14, which stores part of heat energy.
Under the action of the first water pump part and the second water pumping part, the water in the heat exchanging component 7 can return to the heat exchanging component 7 through the heat exchanging plate 16, the water storage tank 4 and the heat dissipation component 13 in turn, which is suitable for warming the surface of the soil 8 in winter when the surface temperature of the soil 8 is low, and the water carries heat into the heat exchanging plate 16 to warm the surface of the soil 8 in winter, and then the water with reduced temperature passes through the water storage tank 4 and the underground thermal storage layer 14; Part of the residual heat energy in the underground thermal storage layer 14 heats the passing water before entering the heat exchanging component 7, so as to improve the heating efficiency of the heat exchanging component 7.
The water storage tank 4 is provided with a water outlet 19 and a water supply port 20, so as to supplement and replace the water in the pipeline.
In a further optimization scheme, the solar energy collecting component 5 comprises a reflective heat insulation box 502; the top of the reflective heat insulation box 502 is fixedly connected with a crystal diamond optical collector 501; the reflective heat insulation box 502 has a hollow structure; the inner wall of the reflective heat insulation box 502 can reflect light, a plurality of solar panels 503 are uniformly arranged on the inner wall of one side of the reflective heat insulation box 502 along the height of the reflective heat insulation box 502; the inner wall of the reflective heat insulation box 502 opposite to the solar panel 503 is arranged in heat exchanging with the heat storage component 6; a plurality of solar panels 503 are electrically connected to the heat storage component 6, the first water pumping part and the second water pumping part.
A crystal diamond optical collector 501 collects sunlight in a reflective heat insulation box 502; the sunlight is repeatedly reflected in the reflective heat insulation box 502 and irradiated on a plurality of solar panels 503 to provide electric energy; a plurality of solar panels 503 are electrically connected with storage batteries, so that electric energy can be stored in the storage batteries, and then the storage batteries are electrically connected with electrical appliances to provide electric energy.
In a further optimization scheme, the heat storage component 6 comprises a sand storage box 602, wherein the top of the sand storage box 602 is communicated with a sand inlet 601, and the bottom of the sand storage box 602 is communicated with a sand outlet 608;
The sand storage box 602 has a cylindrical structure; the bottom of the sand storage box 602 is an inverted frustum structure; the inner side of the middle part of the sand storage box 602 is coaxially and fixedly connected with an internal spacer annular plate 603; there is a gap between the outer wall of the internal spacer annular plate 603 and the inner wall of the sand storage box 602;
The internal spacer annular plate 603 is coaxially and rotatably provided with a transmission shaft 604; the transmission shaft 604 is drivingly connected with a driving part; the driving part is electrically connected with a plurality of solar panels 503; the transmission shaft 604 is coaxially and fixedly connected with a packing auger 606; the convey direction of that auger 606 is from bottom to top; the top side wall of the internal spacer annular plate 603 is circumferentially provided with a plurality of annular plate sand outlets 605 at equal intervals; a plurality of annular plate sand inlets 612 are arranged at equal intervals in the circumferential direction on the bottom side wall of the internal spacer annular plate 603;
One side of the sand storage box 602 exchanges heat with the reflective heat insulation box 502 through the first heat exchanging plate 610; the other side of that sand storage box 602 exchange heat with the heat exchanging component 7 through the second heat exchanging plate 609; the first heat exchanging plate 610 and the second heat exchanging plate 609 are fixedly connected to the side wall of the sand storage box 602; the sand storage box 602 is filled with fine sand.
The sand storage box 602 is fixedly connected to the surface of the soil 8 through legs 611.
Fine sand has the characteristics of storing heat and slow heat release period. The fine sand is heated by the sunlight in the first heat exchanging plate 610. In order to ensure the uniform heating of fine sand, the transmission shaft 604 is driven by the driving part to drive the packing auger 606 to rotate, so that the fine sand inside is lifted up and enters the cavity between the sand storage box 602 and the internal spacer annular plate 603 through the annular plate sand outlet 605 circumferentially opened on the top side wall of the internal spacer annular plate 603. In this cavity, the fine sand is heated by the first heat exchanging plate 610, and the heat is transferred to the water in the heat exchanging component 7 by the second heat exchanging plate 609.
Because the bottom of the sand storage box 602 is of an inverted frustum structure; fine sand will enter the internal spacer annular plate 603 through a plurality of annular plate sand inlets 612 on the bottom side wall of the internal spacer annular plate 603, and be lifted by the packing auger 606 again, and so on, sa that the fine sand in the sand storage box 602 is uniformly heated.
The driving part is preferably a motor 607, and the output shaft of the motor 607 is fixedly connected with one end of the transmission shaft 604.
In a further optimization scheme, the heat exchanging component 7 comprises a water tank 701; one side of the water tank 701 is arranged in heat exchanging with the second heat exchanging plate 809; the water tank 701 is fixedly connected to the outer side wall of the sand storage box 602; the water tank 701 is wrapped with a thermal insulation layer 702; the bottom of that water tank 701 is respectively communicated with the top of the first communicating pipe 9 and the second communicating pipe 10.
The water in the water tank 701 exchanges heat with the fine sand through the second heat exchanging plate 609. The thermal insulation layer 702 can prevent heat loss.
In a further optimization scheme, the heat exchanging plate 16 comprises a plate body 1601; the plate body 1601 is buried in the soil 8; the plate body 1601 is located below the frame body 2104; a continuous S-shaped bent coil pipe 1602 is arranged in the plate body 1601; one end of the coil pipe 1602 is communicated with the first water pumping part; the other end of the coil pipe 1602 communicates with the water storage tank 4 through a third communicating pipe 17.
The continuous S-shaped bent coil pipe 1602 increases the contact area with the soil 8, thereby improving the heat transfer efficiency.
Further optimized, the heat dissipation component 13 includes a radiating main pipe 1303; a plurality of radiating main pipes 1303 are uniformly arranged at the bottom of the underground thermal storage layer 14; one end of a plurality of radiating main pipes 1303 is communicated with the same second water pumping part; the other ends of a plurality of radiating main pipes 1303 are communicated with one end of the same fourth communicating pipe 18; the other end of the fourth communicating pipe 18 is communicated with the bottom of the water storage tank 4,
A plurality of vertically arranged radiating branch pipes 1301 are arranged on the radiating main pipe 1303; the radiating main pipe 1303 is communicated with the radiating branch pipe 1301; a plurality of radiating branch pipes 1301 are arranged at equal intervals along the length direction of the radiating main pipe 1303; the radiating branch pipe 1301 is circumferentially provided with radiating fork pipes 1302 arranged in a matrix; the radiating fork pipe 1302 communicates with the radiating branch pipe 1301.
A plurality of radiating fork pipes 1302 are arranged in a tree branch shape on the radiating branch pipe 1301; When water fills the radiating fork pipe 1302, the contact area with the heat storage medium inside the underground thermal storage layer 14 increases, effectively improving the heat transfer efficiency; the underground thermal storage layer 14 can use original sail or be filled with sand. Because the soil 8 itself can store a certain amount of heat, when water passes through the underground thermal storage layer 14, it can store a part of the heat, thus achieving the effect of energy storage and energy saving. Moreover, the heat in the underground thermal storage layer 14 can be prevented from dispersing upwards, which will affect the refrigeration effect of the soil 8 in summer.
The heat insulating part is preferably the thermal insulation plate 15.
Further, the first water pumping part includes a first pump 11; one end of the first pump 11 is communicated with the end of the first communicating pipe 9; the other end of the first pump 11 is communicated with one end of the coil pipe 1602;
The second water pumping part comprises a second pump 12, one end of which is communicated with one end of the second communicating pipe 10; the other end of the second pump 12 is communicated with one end of a plurality of radiating main pipes 1303.
The first pump 11 and the second pump 12 have the same structure; the first pump 11 and the second pump 12 are preferably gear pumps, and the first pump 11 and the second pump 12 can pump water in two directions. "vertical", "horizontal", "up", "down", "front", "back", "left", "right", "Vertical", "Horizontal", "Top", "Bottom", "Inner "top", "bottom", "inside", "outside", and the like indicate orientations or positional relationships based on those shown in the accompanying drawings, and are intended only for the convenience of describing the present invention, and are not intended to indicate or imply that the device or element referred to must have a particular orientation, be constructed and operated in a particular orientation, and therefore are not to be construed as a Limitations.
The above-described embodiments are only descriptions of the preferred manner of the present invention, and are not intended to limit the scope of the present invention. Without departing from the spirit of the design of the present invention, the various deformations and improvements made by the persons of ordinary skill in the field of the technical scheme of the present invention shall fall within the scope of protection as determined by the claims of the present invention.

Claims (8)

CONCLUSIESCONCLUSIONS 1. Een circulatiesysteem voor broeikasgassen ter bevordering van de CO:- en warmtecirculatie met lage kosten, dat een kas (1) een aantal luchtinlaatbuizen (2), een aantal ventilatoren (3) en een uitlaatonderdeel (21) omvat,, waarbij — een ventilator (3) vast verbonden is met de binnenkant van de bovenkant van de kas (1); — een aantal ventilatoren (3) in de lengterichting van de kas (1) zijn geplaatst; — de luchtinlaatpijp (2) is vast verbonden langs de contour van de binnenwand van de kas (1); — de luchtinlaat van de ventilator (3) in verbinding staat met de binnenkant van de kas (1); — de luchtuitlaat van de ventilator (3) in verbinding staat met het luchtinlaatuiteinde van de luchtinlaatbuis {2}; — een aantal luchtinlaatpijpen (2) één-op-één passen met een aantal ventilatoren (3); — het luchtuitlaatuiteinde van de luchtinlaatpijp (2) in verbinding staat met het luchtinlaatuiteinde van het uitlaatonderdeel (21); — het uitlaatonderdeel (21) is ingegraven in de grond (8) op de bodem van de kas (1); en — het luchtuitlaatuiteinde van het uitlaatonderdeel (21) door de oppervlaktelaag van de grond (8) dringt en in verbinding staat met de binnenkant van de kas (1).1. A greenhouse gas circulation system to promote CO2 and heat circulation at low cost, comprising a greenhouse (1), a number of air inlet pipes (2), a number of fans (3) and an exhaust component (21), wherein - a fan (3) is firmly connected to the inside of the top of the greenhouse (1); - a number of fans (3) are placed in the longitudinal direction of the greenhouse (1); - the air inlet pipe (2) is firmly connected along the contour of the inner wall of the greenhouse (1); - the air inlet of the fan (3) is connected to the inside of the greenhouse (1); - the air outlet of the fan (3) is connected to the air inlet end of the air inlet pipe {2}; — a number of air inlet pipes (2) fit one-to-one with a number of fans (3); - the air outlet end of the air inlet pipe (2) is connected to the air inlet end of the exhaust part (21), - the exhaust part (21) is buried in the ground (8) at the bottom of the greenhouse (1); and - the air outlet end of the exhaust part (21) penetrates the surface layer of the ground (8) and communicates with the inside of the greenhouse (1). 2. Het circulatiesysteem voor broeikasgassen ter bevordering van de CO:- en warmtecirculatie met lage kosten volgens conclusie 1, waarbij het uitlaatonderdeel (21) een framelichaam (2104) omvat, waarbij — een aantal luchtuirlaathoofdbuizen (2102) uniform zijn gerangschikt op het framelichaam (2104); — het middelste deel van de luchtuirlaathoofdbuis(2102) in verbinding staat met een aftakking van de luchtuitlaatpijp (2103); — het luchtuitlaatuiteinde van een luchtuitlaatvertakkingspijp (2103) uit de oppervlaktelaag van de grond (8) steekt en in verbinding met het inwendige van de kas (1) staat; — de luchtinlaatuiteinden van een aantal hoofdluchtuitlaatbuizen (2102) in verbinding staan met de luchtuitlaatuiteinden van de ventilatiepijpen (2101); — het luchtinlaatuiteinde van de ventilatiepijp (2101) in verbinding staat met het luchtuitlaatuiteinde van de luchtinlaatpijp (2); en — de ventilatiepijp (2101) is ingebed in het framelichaam (2104).The greenhouse gas circulation system for promoting low-cost CO2 and heat circulation according to claim 1, wherein the exhaust part (21) includes a frame body (2104), wherein - a plurality of air exhaust main pipes (2102) are uniformly arranged on the frame body ( 2104); - the middle part of the air outlet main pipe (2102) is connected to a branch of the air outlet pipe (2103), - the air outlet end of an air outlet branch pipe (2103) protrudes from the surface layer of the ground (8) and communicates with the interior of the greenhouse (1); - the air inlet ends of a number of main air outlet pipes (2102) communicate with the air outlet ends of the ventilation pipes (2101); - the air inlet end of the ventilation pipe (2101) is connected to the air outlet end of the air inlet pipe (2), and - the ventilation pipe (2101) is embedded in the frame body (2104). 3. Het circulatiesysteem voor broeikasgassen ter bevordering van de CO-- en warmtecirculatie met lage kosten volgens conclusie 2, waarbij de kas (1) voorts een temperatuurregelmechanisme omvat, waarbijThe greenhouse gas circulation system for promoting low-cost CO and heat circulation according to claim 2, wherein the greenhouse (1) further comprises a temperature control mechanism, wherein — het temperatuurregelmechanisme warmte-energie kan opslaan en de temperatuur in de kas (1) gedurende lange tijd geschikt kan houden; — het temperatuuregelmechanisme een zonne-energiecollectoronderdeel (5), een warmteopslagonderdeel (6), een warmtewisselaaronderdeel (7), een wateropslagtank (4), een warmtewisselplaat (16), een aantal warmteafvoeronderdelen (13) en een ondergrondse warmteopslaglaag (14) omvat, waarbij — de warmtewisselingsplaat (16) onder het framelichaam (2104) is geplaatst; — de ondergrondse warmteopslaglaag (14) onder de warmtewisselplaat (16) is aangebracht; — een warmte-isolatieonderdeel is aangebracht tussen de ondergrondse warmteopslaglaag (14) en de warmtewisselplaat (16); — een uiteinde van de warmtewisselingsplaat (16) via een eerste waterpomponderdeel in verbinding met het warmtewisselaaronderdeel (7) staat; — het andere uiteinde van de warmtewisselplaat (16) in verbinding met de wateropslagtank (4) staat; — het ene uiteinde van het warmteafvoeronderdeel (13) via een tweede waterpomponderdeel in verbinding met het warmtewisselaaronderdeel (7) staat; — het andere uiteinde van het warmteafvoeronderdeel (13) in verbinding met de wateropslagtank (4) staat; — het eerste waterpomponderdeel en het tweede waterpomponderdeel water in twee richtingen kunnen pompen; — het eerste waterpomponderdeel en het tweede waterpomponderdeel water in tegengestelde richtingen pompen; — het warmtewisselaaronderdeel (7) geschikt is voor warmte-uitwisseling met het warmteopslagonderdeel (6); — het warmteopslagonderdeel (6) geschikt is voor warmte-uitwisseling met het zonne- energiecollectoronderdeel 5); — het zonne-energiecollectoronderdeel (5) elektrisch is verbonden met het warmteopslag-onderdeel (6), het eerste waterpomponderdeel en het tweede waterpomponderdeel; en — een aantal warmteafvoeronderdelen (13) in de ondergrondse warmteopslaglaag (14) zijn geplaatst.— the temperature control mechanism can store heat energy and keep the temperature in the greenhouse (1) suitable for a long time, - the temperature control mechanism includes a solar collector part (5), a heat storage part (6), a heat exchanger part (7), a water storage tank (4), a heat exchange plate (16), a number of heat dissipation parts (13) and an underground heat storage layer (14), wherein - the heat exchange plate (16) is placed under the frame body (2104); - the underground heat storage layer (14) is located under the heat exchange plate (16); - a heat insulation part is arranged between the underground heat storage layer (14) and the heat exchange plate (16); - one end of the heat exchange plate (16) is connected to the heat exchanger part (7) via a first water pump part; - the other end of the heat exchange plate (16) is connected to the water storage tank (4); - one end of the heat dissipation part (13) is connected to the heat exchanger part (7) via a second water pump part; - the other end of the heat dissipation part (13) is connected to the water storage tank (4); - the first water pump part and the second water pump part can pump water in two directions; - the first water pump part and the second water pump part pump water in opposite directions; - the heat exchanger part (7) is suitable for heat exchange with the heat storage part (6); - the heat storage part (6) is suitable for heat exchange with the solar energy collector part 5); - the solar energy collector part (5) is electrically connected to the heat storage part (6), the first water pump part and the second water pump part; and - a number of heat dissipation parts (13) are placed in the underground heat storage layer (14). 4. Het circulatiesysteem voor broeikasgassen ter bevordering van de CO»- en warmtecirculatie met lage kosten volgens conclusie 3, waarbij het zonne-energiecollectoronderdeel (5) een reflecterende warmte isolerende behuizing (502) omvat, waarbijThe greenhouse gas circulation system for promoting low-cost CO2 and heat circulation according to claim 3, wherein the solar energy collector part (5) includes a reflective heat insulating housing (502), wherein — de bovenkant van de reflecterende warmte isolerende behuizing (502) vast is verbonden met een optische kristaldiamant collector (501); — de reflecterende warmte isolerende behuizing (502) een holle structuur heeft; — de binnenwand van de reflecterende warmte isolerende behuizing (502) licht kan reflecteren; — een aantal zonnepanelen (503) gelijkmatig zijn verdeeld over de binnenwand van een zijde van de reflecterende warmte isolerende behuizing (502) langs de hoogte van de reflecterende warmte isolerende behuizing (502); — de binnenwand van de reflecterende warmte isolerende behuizing (502) tegenover het zonnepaneel (503) in warmteuitwisselende verbinding staat met het warmteopslagonderdeel (6); en — meerdere zonnepanelen (503) elektrisch verbonden zijn met het warmteopslagonderdeel (6), het eerste waterpomponderdeel en het tweede waterpomponderdeel.- the top of the reflective heat insulating housing (502) is rigidly connected to an optical crystal diamond collector (501); - the reflective heat insulating housing (502) has a hollow structure; - the inner wall of the reflective heat insulating housing (502) can reflect light; - a number of solar panels (503) are evenly distributed on the inner wall of one side of the reflective heat insulating housing (502) along the height of the reflective heat insulating housing (502); - the inner wall of the reflective heat insulating housing (502) opposite the solar panel (503) is in heat-exchanging connection with the heat storage part (6); and - a plurality of solar panels (503) are electrically connected to the heat storage part (6), the first water pump part and the second water pump part. 5. Het circulatiesysteem voor broeikasgassen ter bevordering van de CO-- en warmtecirculatie met lage kosten volgens conclusie 4, waarbij het warmteopslagonderdeel (6) een zandopslagbehuizing (602) omvat, waarbij — de bovenkant van de zandopslagbehuizing (602) in verbinding staat met een zandinlaat (601); — de onderkant van de zandopslagbehuizing (602) in verbinding staat met een zanduitlaat (608) — de zandopslagbehuizing (602) een cilindrische structuur heeft; — de bodem van de zandopslagbehuizing (602) een omgekeerde afgeknotte kegelstructuur heeft, — de binnenzijde van het middelste gedeelte van de zandopslagbehuizing (602) coaxiaal en vast verbonden is met een inwendige ringvormige afstandsplaat (803); — tussen de buitenwand van de inwendige ringvormige afstandsplaat (603) en de binnenwand van de zandopslagbehuizing (602) een opening is aangebracht; — de inwendige ringvormige afstandsplaat (603) coaxiaal en draaibaar is voorzien van een overbrengingsas (604); — de overbrengingsas (604) in transmissieverbinding met een aandrijfonderdeel staat; — het aandrijfonderdeel elektrisch is verbonden met de meerdere zonnepanelen (503); — de overbrengingsas (604) coaxiaal en vast verbonden is met een verdichtende transportschroef (606); — de transportrichting van de verdichtende transportschroef (806) van onder naar boven is, — een aantal ringvormige zanduitlaten (605) met gelijke tussenafstanden rondom de bovenste zijwand van de inwendige ringvormige afstandsplaat (803) is aangebrachtThe low-cost greenhouse gas circulation system for promoting CO and heat circulation according to claim 4, wherein the heat storage component (6) comprises a sand storage housing (602), wherein - the top of the sand storage housing (602) is connected to a sand inlet (601); - the bottom of the sand storage housing (602) is connected to a sand outlet (608) - the sand storage housing (602) has a cylindrical structure; - the bottom of the sand storage housing (602) has an inverted truncated cone structure, - the inside of the middle part of the sand storage housing (602) is coaxially and rigidly connected to an internal annular spacer plate (803); - an opening is provided between the outer wall of the internal annular spacer plate (603) and the inner wall of the sand storage housing (602); - the internal annular spacer plate (603) is coaxially and rotatably provided with a transmission shaft (604); - the transmission shaft (604) is in transmission connection with a drive part; - the drive part is electrically connected to the multiple solar panels (503); - the transmission shaft (604) is coaxially and rigidly connected to a compacting conveyor screw (606); - the transport direction of the compacting screw conveyor (806) is from bottom to top, - a number of annular sand outlets (605) are arranged equally spaced around the upper side wall of the internal annular spacer plate (803) — een aantal ringvormige zandinlaten (812) met gelijke tussenafstanden rondom de onderste zijwand van de inwendige ringvormige afstandsplaat (603) is aangebracht; — een zijde van de zandopslagbehuizing (602) via een eerste warmtewisselaarplaat (610) warmte uitwisselt met de reflecterende warmte isolerende behuizing (502); — de andere zijde van de zandopslagbehuizing (602) via een tweede warmtewisselaarplaat (609) warmte uitwisselt met warmtewisselaaronderdeel (7); — de eerste warmtewisselaarplaat (610) en de tweede warmtewisselaarplaat (809) vast met de zijwand van de zandopslagbehuizing (602) zijn verbonden; en — de zandopslagbehuizing (602) gevuld is met fijn zand.- a number of annular sand inlets (812) are arranged equally spaced around the lower side wall of the internal annular spacer plate (603); - one side of the sand storage housing (602) exchanges heat with the reflective heat insulating housing (502) via a first heat exchanger plate (610); - the other side of the sand storage housing (602) exchanges heat with heat exchanger part (7) via a second heat exchanger plate (609); - the first heat exchanger plate (610) and the second heat exchanger plate (809) are firmly connected to the side wall of the sand storage housing (602); and — the sand storage housing (602) is filled with fine sand. 6. Het circulatiesysteem voor broeikasgassen ter bevordering van de CO:- en warmtecirculatie met lage kosten volgens conclusie 5, waarbij het warmtewisselaaronderdeel (7) een watertank (701) omvat, waarbij — een zijde van het waterreservoir (701) in warmte uitwisselende verbinding staat met de tweede warmtewisselaarplaat (809); — het waterreservoir (701) vast verbonden is met de buitenste zijwand van de zandopslagbehuizing (602); — het waterreservoir (701) is omhuld met een thermische isolatielaag (702); en — de bodem van de watertank (701) met respectievelijk de bovenkant van de eerste verbindingspijp (9) en de tweede verbindingspijp (10) is verbonden.The greenhouse gas circulation system for promoting low cost CO2 and heat circulation according to claim 5, wherein the heat exchanger part (7) comprises a water tank (701), wherein - one side of the water tank (701) is in heat exchanging connection with the second heat exchanger plate (809); - the water reservoir (701) is rigidly connected to the outer side wall of the sand storage housing (602); - the water tank (701) is covered with a thermal insulation layer (702); and - the bottom of the water tank (701) is connected to the top of the first connecting pipe (9) and the second connecting pipe (10), respectively. 7. Het circulatiesysteem voor broeikasgassen ter bevordering van de CO:- en warmtecirculatie met lage kosten volgens conclusie 6, waarbij de warmtewisselaarplaat (18) een plaatlichaam (1801) omvat, waarbij — het plaatlichaam (1601) in de bodem (8) is ingegraven; — het plaatlichaam (1601) zich onder het framelichaam (2104) bevindt; — een doorlopende S-vormig gebogen spiraalbuis (1602) in het plaatlichaam (1601) is aangebracht; — een uiteinde van de spoelpijp (1602) is verbonden met het eerste waterpomponderdeel; en — het andere uiteinde van de spiraalbuis (1602) via een derde verbindingsbuis (17) in verbinding staat met de wateropslagtank (4).The greenhouse gas circulation system for promoting low-cost CO2 and heat circulation according to claim 6, wherein the heat exchanger plate (18) comprises a plate body (1801), wherein - the plate body (1601) is buried in the ground (8) ; - the plate body (1601) is located under the frame body (2104); - a continuous S-shaped curved spiral tube (1602) is arranged in the plate body (1601); - one end of the flush pipe (1602) is connected to the first water pump part; and - the other end of the spiral tube (1602) is connected to the water storage tank (4) via a third connecting tube (17). 8. Het circulatiesysteem voor broeikasgassen ter bevordering van de CO-- en warmtecirculatie met lage kosten volgens conclusie 7, waarbij het warmteafvoeronderdeel (13) een uitstaal- hoofdleiding (1303) omvat, waarbijThe greenhouse gas circulation system for promoting low-cost CO and heat circulation according to claim 7, wherein the heat dissipation member (13) includes a discharge main pipe (1303), wherein — een aantal uitstraal-hoofdbuizen (1303) gelijkmatig zijn gerangschikt op de bodem van de ondergrondse warmteopslaglaag (14); — een uiteinde van een aantal uitstraal-hoofdbuizen (1303) in verbinding staat met hetzelfde tweede waterpomponderdeel; — de andere uiteinden van een aantal s uitstraal-hoofdbuizen (1303) zijn verbonden met een uiteinde van dezelfde vierde verbindingsleiding (18); — het andere uiteinde van de vierde hoofdleiding (18) in verbinding staat met de bodem van de wateropslagtank (4); — de stralende hoofdleiding (1303) is voorzien van een aantal verticaal geplaatste uitstraal- aftakkingen (1301); — de uitstraal-hoofdbuis (1303) in verbinding staat met de uitstraal-aftakking (1301); — een aantal van de uitstraal-aftakkingen (1301) op gelijke afstanden rondom de lengterichting van de stralende hoofdleiding (1303) is geplaatst; — de uitstraal-aftakkingen (1301) rondom zijn voorzien van uitstraal-vorkpijpen (1302) die in een matrix zijn gerangschikt; en — de uitstraal-vorkpijp (1302) in verbinding staat met de uitstraal-aftakking (1301).- a number of radiating main pipes (1303) are evenly arranged at the bottom of the underground heat storage layer (14); - one end of a number of main jet pipes (1303) communicates with the same second water pump part, - the other ends of a plurality of s radiating main pipes (1303) are connected to one end of the same fourth connecting pipe (18); - the other end of the fourth main pipe (18) is connected to the bottom of the water storage tank (4); - the radiating main pipe (1303) is provided with a number of vertically placed radiating branches (1301); - the radiating main pipe (1303) is connected to the radiating branch (1301); - a number of the radiating branches (1301) are placed at equal distances around the longitudinal direction of the radiating main pipe (1303); - the radiating branches (1301) are provided all around with radiating fork pipes (1302) arranged in a matrix; and - the discharge fork pipe (1302) is connected to the discharge branch (1301).
NL2035652A 2023-08-04 2023-08-22 Low-cost greenhouse gas circulation system for promoting CO2 and heat circulation NL2035652B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310975553.8A CN116762608A (en) 2023-08-04 2023-08-04 Promoting CO 2 And low cost greenhouse gas circulation system for heat circulation

Publications (1)

Publication Number Publication Date
NL2035652B1 true NL2035652B1 (en) 2024-02-09

Family

ID=87974509

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2035652A NL2035652B1 (en) 2023-08-04 2023-08-22 Low-cost greenhouse gas circulation system for promoting CO2 and heat circulation

Country Status (2)

Country Link
CN (1) CN116762608A (en)
NL (1) NL2035652B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396028B1 (en) * 2000-12-29 2003-08-27 이석건 solar energy hot house using condensed heat of gravels
CN204206850U (en) * 2014-11-09 2015-03-18 吉林市东北生态农业发展有限责任公司 A kind of air collector
CN105766807A (en) * 2016-03-27 2016-07-20 朱增伟 Cryptotympana atrata cultivation greenhouse
CN110089317A (en) * 2019-03-29 2019-08-06 塔里木大学 A kind of heliogreenhouse water curtain thermal-arrest floor heating Heating system and its application method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396028B1 (en) * 2000-12-29 2003-08-27 이석건 solar energy hot house using condensed heat of gravels
CN204206850U (en) * 2014-11-09 2015-03-18 吉林市东北生态农业发展有限责任公司 A kind of air collector
CN105766807A (en) * 2016-03-27 2016-07-20 朱增伟 Cryptotympana atrata cultivation greenhouse
CN110089317A (en) * 2019-03-29 2019-08-06 塔里木大学 A kind of heliogreenhouse water curtain thermal-arrest floor heating Heating system and its application method

Also Published As

Publication number Publication date
CN116762608A (en) 2023-09-19

Similar Documents

Publication Publication Date Title
CN201163911Y (en) Solar energy heat storing type greenhouse
CN201319779Y (en) Hot-cold regulating device for ground source greenhouse
CN110268882A (en) Novel agricultural Greenhouse System and solar energy accumulation energy supplying system
CN205124553U (en) System of heating in root district is planted to sunlight greenhouse nature soil
CN206061687U (en) A kind of greenhouse of active control soil air humiture
CN102792864A (en) Device and method for heating soil in sunlight greenhouse by solar energy
CN106171659A (en) A kind of new energy greenhouse
NL2035652B1 (en) Low-cost greenhouse gas circulation system for promoting CO2 and heat circulation
CN205682013U (en) A kind of Multifunctional greenhouse
CN103032972B (en) Solar heat collection and storage system used for greenhouse
CN111771811A (en) Aquaculture facility and water body heating and heat storage method thereof
CN218897728U (en) Temperature control system of solar greenhouse
CN208046544U (en) A kind of condensation photovoltaic-thermal coupling cogeneration cultivation heat preservation house
CN202340539U (en) Warming device for greenhouse
CN114532122A (en) Comprehensive system combining solar photo-thermal cross-season storage and agriculture
CN211129137U (en) Hydrologic cycle control by temperature change big-arch shelter
CN217407212U (en) Plant factory with ultra-low energy consumption
CN106614099A (en) Solar constant-temperature and heat-storage incubator
CN111406555A (en) Portable photo-thermal plant growing bin
CN202663916U (en) Auto-rotatable soilless cultivation greenhouse capable of acquiring natural energy multi-directionally
CN206078585U (en) Solar energy constant temperature heat -retaining incubator
CN216874179U (en) Air-assisted simple water circulation greenhouse warming equipment
CN204518655U (en) Greenhouse by solar heat
CN218868858U (en) Automatic heat storage device for sunlight greenhouse
CN220875272U (en) Temperature-control heat-storage greenhouse for intelligent agriculture