NL2035215A - Vortex-induced vibration detection method and system for grid-connected operation of wind turbine generator set and storage medium - Google Patents

Vortex-induced vibration detection method and system for grid-connected operation of wind turbine generator set and storage medium Download PDF

Info

Publication number
NL2035215A
NL2035215A NL2035215A NL2035215A NL2035215A NL 2035215 A NL2035215 A NL 2035215A NL 2035215 A NL2035215 A NL 2035215A NL 2035215 A NL2035215 A NL 2035215A NL 2035215 A NL2035215 A NL 2035215A
Authority
NL
Netherlands
Prior art keywords
wind turbine
vortex
real
grid
turbine generator
Prior art date
Application number
NL2035215A
Other languages
Dutch (nl)
Inventor
Qiao Qiang
Li Likun
Zhao Haiyu
Duan Conggui
Sun Hao
Yi Yang
Original Assignee
Huaneng Renewables Corporation Ltd Hebei Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Renewables Corporation Ltd Hebei Branch filed Critical Huaneng Renewables Corporation Ltd Hebei Branch
Publication of NL2035215A publication Critical patent/NL2035215A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H13/00Measuring resonant frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • F03D17/009Monitoring or testing of wind motors, e.g. diagnostics characterised by the purpose
    • F03D17/015Monitoring or testing of wind motors, e.g. diagnostics characterised by the purpose for monitoring vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • F03D17/009Monitoring or testing of wind motors, e.g. diagnostics characterised by the purpose
    • F03D17/021Monitoring or testing of wind motors, e.g. diagnostics characterised by the purpose for monitoring power or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0298Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce vibrations
    • F03D7/0302Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce vibrations of the tower
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/132Stators to collect or cause flow towards or away from turbines creating a vortex or tornado effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/334Vibration measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Wind Motors (AREA)

Abstract

The present invention discloses a vortex-induced vibration detection method and system for grid-connected operation of a wind turbine generator set and a storage medium, and relates to the field of grid-connected research of a wind turbine generator set. The method comprises the 5 following steps: acquiring voltage data and current data of a port of a double-fed wind turbine generator set before and after the wind turbine generator set is connected to a grid, calculating first real-time dynamic energy and second real-time dynamic energy of the port of the double- fed wind turbine generator set according to the voltage data and the current data, wherein the first real-time dynamic energy corresponds to the port of the double-fed wind turbine generator lO set after grid connection, and the second real-time dynamic energy corresponds to an energy sum of ports of a plurality of double-fed wind turbine generator sets before grid connection; if a difference value between the first real-time dynamic energy and the second real-time dynamic energy is greater than a preset difference value, performing vortex-induced vibration detection on the wind turbine generator set, correspondingly arranging turbulent flow assemblies 15 according to a vortex-induced vibration detection result, and after the turbulent flow assemblies are arranged, repeating the above steps until the preset difference value is met. The present invention can quickly detect vortex-induced vibration in real time and thus reducing unnecessary loss.

Description

VORTEX-INDUCED VIBRATION DETECTION METHOD AND SYSTEM FOR
GRID-CONNECTED OPERATION OF WIND TURBINE GENERATOR SET AND
STORAGE MEDIUM
TECHNICAL FIELD
The present invention relates to the field of grid-connected research of a wind turbine generator set, and in particular to a vortex-induced vibration method and system for suppressing grid-connected operation of a wind turbine generator set and a storage medium.
BACKGROUND
With the continuous progress of wind power technology, wind turbine generator sets show a trend of large-scale development. In order to obtain higher-quality wind energy resources and meet the installation requirement of a large-diameter wind wheel, a height of a tower barrel of the wind turbine generator set is continuously increased, which leads to an increase in the flexibility of the tower barrel. Under the action of ambient wind speed, periodic shedding vortexes are easily formed at two sides of the tower barrel to generate periodic lifting force load, so that vortex-induced vibration of the tower barrel is caused; especially for an elastomer of a high-flexibility tower barrel, when the vortex shedding frequency is close to or equal to the natural frequency of the tower barrel, vortex-induced resonance can be caused, which will cause the tower barrel to vibrate greatly and cause fatigue damage. The vortex-induced vibration means that when the wind turbine generator set is stopped and the nacelle is windward, a double-column streaming phenomenon is formed by the wind as a fluid flowing through the tower barrel and outside the blade, and the acting force generated by the phenomenon is far greater than a force generated by vortex shedding of a single tower barrel. The wake shedding vortex flowing through the tower barrel can generate an acting force on the wind turbine generator set, and the shedding frequency of the force is consistent with the first-order frequency of the wind turbine generator set with a height of 90 m, so resonance can be formed.
The resonance problem is that double-column streaming superposition is generated between the long blades and the tower barrel, which amplifies the frequency value, and the frequency locking phenomenon of the shedding vortex enables the vibration of the wind turbine generator set to be continuously amplified.
In view of the above, how to effectively detect vortex-induced vibration signals and reduce 1 unnecessary losses is an urgent need for those skilled in the art to study.
SUMMARY
In view of this, the present invention provides a vortex-induced vibration detection method and system for grid-connected operation of a wind turbine generator set and a storage medium, so as to solve the problems in the background.
In order to achieve the above objective, the present invention adopts the following technical solutions.
A vortex-induced vibration detection method for grid-connected operation of a wind turbine generator set comprises the following steps: acquiring voltage data and current data of a port of a double-fed wind turbine generator set before and after the wind turbine generator set is connected to a grid; calculating first real-time dynamic energy and second real-time dynamic energy of the port of the double-fed wind turbine generator set according to the voltage data and the current data, wherein the first real-time dynamic energy corresponds to the port of the double-fed wind turbine generator set after grid connection, and the second real-time dynamic energy corresponds to an energy sum of ports of a plurality of double-fed wind turbine generator sets before grid connection; if a difference value between the first real-time dynamic energy and the second real-time dynamic energy is greater than a preset difference value M, performing vortex-induced vibration detection on the wind turbine generator set; correspondingly arranging turbulent flow assemblies according to a vortex-induced vibration detection result; and after the turbulent flow assemblies are arranged, repeating the above steps until the difference value between the first real-time dynamic energy and the second real-time dynamic energy is less than or equal to the preset difference value M.
Optionally, the acquiring voltage data and current data comprises the following specific steps: establishing a virtual wind turbine generator set based on a digital twin technology according to a running state of the wind turbine generator set and a parameter of the wind turbine generator set; measuring first voltage data and first current data of the virtual wind turbine generator set; establishing an objective function of the voltage data and current data of the virtual wind turbine generator set; 2 establishing a state prediction equation of the voltage data and current data by using the running state of the wind turbine generator set and the parameter of the wind turbine generator set based on the objective function; and correcting the first voltage data and the first current data according to the state prediction equation to obtain final voltage data and final current data.
Optionally, the turbulent flow assembly comprises a turbulent flow block and a turbulent flow rope, the turbulent flow block is arranged on a tower barrel, and the turbulent flow rope is connected to the turbulent flow block and configured to slow down vortex-induced vibration.
Optionally, the vortex-induced vibration detection comprises the following specific steps: collecting a vibration signal and a wind speed signal of the wind turbine generator set; drawing a vibration signal image, a wind speed signal image, and a related associated image of the vibration signal and wind speed signal; and determining whether the vortex-induced vibration occurs according to the vibration signal image, the wind speed signal image, and the related associated image.
Optionally, the method further comprises: estimating corresponding turbulence intensity according to the wind speed signal if the vibration signal is abnormal, determining whether the turbulence intensity meets a set condition, and if so, determining that the vibration abnormality is caused by the turbulence intensity.
A vortex-induced vibration detection system for grid-connected operation of a wind turbine generator set comprises: a voltage and current data acquisition module configured to acquire voltage data and current data of a port of a double-fed wind turbine generator set before and after the wind turbine generator set is connected to a grid; a real-time dynamic energy acquisition module configured to calculate first real-time dynamic energy and second real-time dynamic energy of the port of the double-fed wind turbine generator set according to the voltage data and the current data, wherein the first real-time dynamic energy corresponds to the port of the double-fed wind turbine generator set after grid connection, and the second real-time dynamic energy corresponds to an energy sum of ports of a plurality of double-fed wind turbine generator sets before grid connection; a vortex-induced vibration detection module configured to perform vortex-induced vibration detection on the wind turbine generator set if a difference value between the first real- time dynamic energy and the second real-time dynamic energy is greater than a preset difference value M; 3 a vortex-induced vibration suppression module configured to correspondingly arrange turbulent flow assemblies according to a vortex-induced vibration detection result; and a vortex-induced vibration secondary detection module configured to repeat the above steps until the preset difference value M is met after the turbulent flow assemblies are arranged.
A computer storage medium, wherein the computer storage medium stores computer programs, and when the computer programs are executed by a processor, the steps of the vortex- induced vibration detection method for grid-connected operation of the wind turbine generator set according to any one of the above are implemented.
It can be known from the technical solutions that, compared with the prior art, the present invention provides a vortex-induced vibration detection method and system for grid-connected operation of a wind turbine generator set and a storage medium, and has the following beneficial effects: 1. The present invention can comprehensively analyze the vortex-induced vibration, and more accurately control the wind turbine generator set according to the accurately obtained analysis result of vibration signal, which is beneficial to the operation safety of the wind turbine generator set. 2. According to the present invention, a protection mechanism is arranged outside the tower barrel to protect the tower barrel, so that the damage of the tower barrel caused by vortex- induced vibration is avoided.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to more clearly illustrate the technical solutions in the embodiments of the present invention or in the prior art, the drawings required to be used in the description of the embodiments or the prior art are briefly introduced below. It is obvious that the drawings in the description below are merely embodiments of the present invention, and those of ordinary skill inthe art can obtain other drawings according to the drawings provided without creative efforts.
FIG. 1 is a schematic flow chart according to the present invention; and
FIG. 2 is a schematic diagram of a structure according to the present invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS
The following clearly and completely describes the technical solutions in embodiments of the present invention with reference to the accompanying drawings in embodiments of the present invention. It is clear that the described embodiments are merely a part rather than all of embodiments of the present invention. Based on the embodiments of the present invention, all 4 other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
An embodiment of the present invention discloses a vortex-induced vibration detection method for grid-connected operation of a wind turbine generator set, as shown in FIG. 1, which comprises the following steps:
S1: acquiring voltage data and current data of a port of a double-fed wind turbine generator set before and after the wind turbine generator set is connected to a grid;
S2: calculating first real-time dynamic energy and second real-time dynamic energy of the port of the double-fed wind turbine generator set according to the voltage data and the current data, wherein the first real-time dynamic energy corresponds to the port of the double-fed wind turbine generator set after grid connection, and the second real-time dynamic energy corresponds to an energy sum of ports of a plurality of double-fed wind turbine generator sets before grid connection;
S3: if a difference value between the first real-time dynamic energy and the second real- time dynamic energy is greater than a preset difference value M, performing vortex-induced vibration detection on the wind turbine generator set;
S4: correspondingly arranging turbulent flow assemblies according to a vortex-induced vibration detection result; and
S5: after the turbulent flow assemblies are arranged, repeating the above steps until the difference value between the first real-time dynamic energy and the second real-time dynamic energy is less than or equal to the preset difference value M.
Further, in the S1, the acquiring voltage data and current data comprises the following specific steps:
S11: establishing a virtual wind turbine generator set based on a digital twin technology according to a running state of the wind turbine generator set and a parameter of the wind turbine generator set;
S12: measuring first voltage data and first current data of the virtual wind turbine generator set;
S13: establishing an objective function of the voltage data and current data of the virtual wind turbine generator set;
S14: establishing a state prediction equation of the voltage data and current data by using the running state of the wind turbine generator set and the parameter of the wind turbine generator set based on the objective function; and 5
S15: correcting the first voltage data and the first current data according to the state prediction equation to obtain final voltage data and final current data.
Further, in the S5, the turbulent flow assembly comprises a turbulent flow block and a turbulent flow rope, the turbulent flow block is arranged on a tower barrel, and the turbulent flow rope is connected to the turbulent flow block and configured to slow down vortex-induced vibration. A hoisting mechanism is used to adjust a length of a suspension cable, the frequency domain characteristics of the motion of the suspension cable are obtained through Fourier analysis of an acceleration signal of a tower barrel, a vibration signal caused by wind power is calculated through natural frequency calculation to obtain the wind speed, and the derived vortex-induced oscillation suppression interval is used to adjust the natural frequency of the system to achieve the purpose of suppressing vortex-induced oscillation.
Further, in the S3, the vortex-induced vibration detection comprises the following specific steps:
S31: collecting a vibration signal and a wind speed signal of the wind turbine generator set;
S32: drawing a vibration signal image, a wind speed signal image, and a related associated image of the vibration signal and wind speed signal; and
S33: determining whether the vortex-induced vibration occurs according to the vibration signal image, the wind speed signal image, and the related associated image.
Further, the method further comprises: estimating corresponding turbulence intensity according to the wind speed signal if the vibration signal is abnormal, determining whether the turbulence intensity meets a set condition, and if so, determining that the vibration abnormality is caused by the turbulence intensity. Further, in the present invention, by collecting vibration signals and wind speed signals of the wind turbine generator set, when the wind turbine generator set is determined to have abnormal vibration according to the peak value of the vibration signals, the corresponding turbulence intensity is estimated according to the wind speed signals, and when the turbulence intensity meets a set condition, it is determined that the abnormal vibration is caused by the turbulence intensity. The control strategy of the wind turbine generator set is as follows: mainly adjusting decoupling parameters of torque control and pitch control or mainly adjusting wind gust control parameters and pitch control parameters, and the control not only analyzes the collected vibration signals to determine whether a vibration fault occurs, but also considers the turbulence intensity effect of the external wind conditions in which the wind turbine generator set is located. 6
Corresponding to the method shown in FIG. 1, the present invention further discloses a vortex-induced vibration detection system for grid-connected operation of a wind turbine generator set for implementing the method shown in FIG. 1, and the specific structure of system is shown in FIG. 2 and comprises: a voltage and current data acquisition module configured to acquire voltage data and current data of a port of a double-fed wind turbine generator set before and after the wind turbine generator set is connected to a grid; a real-time dynamic energy acquisition module configured to calculate first real-time dynamic energy and second real-time dynamic energy of the port of the double-fed wind turbine generator set according to the voltage data and the current data, wherein the first real-time dynamic energy corresponds to the port of the double-fed wind turbine generator set after grid connection, and the second real-time dynamic energy corresponds to an energy sum of ports of a plurality of double-fed wind turbine generator sets before grid connection; a vortex-induced vibration detection module configured to perform vortex-induced vibration detection on the wind turbine generator set if a difference value between the first real- time dynamic energy and the second real-time dynamic energy is greater than a preset difference value M; a vortex-induced vibration suppression module configured to correspondingly arrange turbulent flow assemblies according to a vortex-induced vibration detection result; and a vortex-induced vibration secondary detection module configured to repeat the above steps until the preset difference value M is met after the turbulent flow assemblies are arranged.
An embodiment of the present invention further discloses a computer storage medium, wherein the computer storage medium stores computer programs, and when the computer programs are executed by a processor, the steps of the vortex-induced vibration detection method for grid-connected operation of the wind turbine generator set according to any one of the above are implemented.
The embodiments in the specification are all described in a progressive manner, and each embodiment focuses on differences from other embodiments, and portions that are the same and similar between the embodiments may be referred to each other. Since the device disclosed in the embodiment corresponds to the method disclosed in the embodiment, the description is relatively simple, and reference may be made to the partial description of the method.
The above description of the disclosed embodiments enables those skilled in the art to implement or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be 7 applied to other embodiments without departing from the spirit or scope of the present invention.
Thus, the present invention is not intended to be limited to these embodiments shown herein but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.
8

Claims (7)

ConclusiesConclusions 1. Werkwijze voor het detecteren van vortex-geéxciteerde trillingen tijdens het bedrijf van netgekoppelde windturbine, waarbij de werkwijze de volgende stappen omvat: Het verkrijgen van de spannings- en stroomgegevens van een dubbel gevoede windturbinepoort voor- en nadat de windturbine aan het elektriciteitsnet wordt gekoppeld: Het respectievelijke berekenen van de eerste en tweede real-time dynamische energie van de dubbel gevoede windturbinepoort op basis van de spannings- en stroomgegevens, waarbij de eerste real-time dynamische energie overeen komt met de dubbel gevoede windturbinepoort na de netkoppeling, en de tweede real-time dynamische energie overeen komt met de som van de energie van meerdere dubbel gevoede windturbinepoorten vóór de netkoppeling; Het detecteren van de vortex-geïnduceerde trillingen van de windturbine als het verschil tussen de eerste en tweede real-time dynamische energie groter is dan het vooraf ingestelde verschil M; Het leggen van turbulente bestanddelen op basis van de detectieresultaten van de vortex- geïnduceerde trillingen; Na het leggen van de turbulente bestanddelen, het herhalen van de bovenstaande stappen totdat de eerste en tweede real-time dynamische energie kleiner zijn dan of gelijk zijn aan het vooraf ingestelde verschil M.A method for detecting vortex-excited vibrations during operation of a grid-connected wind turbine, the method comprising the steps of: Obtaining the voltage and current data from a doubly-fed wind turbine port before and after the wind turbine is connected to the power grid : Calculating the first and second real-time dynamic energy of the doubly-fed wind turbine gate, respectively, based on the voltage and current data, where the first real-time dynamic energy corresponds to the doubly-fed wind turbine gate after the grid connection, and the second real-time dynamic energy corresponds to the sum of the energy of several doubly fed wind turbine ports before the grid connection; Detecting the vortex-induced vibration of the wind turbine if the difference between the first and second real-time dynamic energy is greater than the preset difference M; Laying turbulent components based on the detection results of the vortex-induced vibrations; After laying the turbulent components, repeat the above steps until the first and second real-time dynamic energies are less than or equal to the preset difference M. 2. Werkwijze voor het detecteren van vortex-geëxciteerde trillingen tijdens het bedrijf van netgekoppelde windturbine volgens conclusie 1, met het kenmerk, dat de specifieke stappen voor het verkrijgen van spannings- en stroomgegevens zijn als volgt: Het bouwen van een virtuele windturbine op basis van de digitale twin-technologie, volgens de bedrijfstoestand en parameters van de windturbine; Het meten van de eerste spanningsgegevens en de eerste stroomgegevens van de virtuele windturbine Het vaststellen van de objectieve functie van de spannings- en stroomgegevens van de virtuele windturbine; Het vaststellen van de toestandsvoorspellingsvergelijking van de spannings- en stroomgegevens op basis van de objectieve functie met behulp van de bedrijfstoestand en parameters van de windturbine;A method for detecting vortex-excited vibrations during operation of a grid-connected wind turbine according to claim 1, characterized in that the specific steps for acquiring voltage and current data are as follows: Building a virtual wind turbine based on the digital twin technology, according to the operating condition and parameters of the wind turbine; Measuring the first voltage data and the first current data of the virtual wind turbine. Establishing the objective function of the voltage and current data of the virtual wind turbine; Establishing the state prediction equation of the voltage and current data based on the objective function using the wind turbine operating state and parameters; Het corrigeren van de eerste spanningsgegevens en de eerste stroomgegevens volgens de toestandsvoorspellingsvergelijking om de uiteindelijke spannings- en stroomgegevens te verkrijgen.Correcting the first voltage data and the first current data according to the state prediction equation to obtain the final voltage and current data. 3. Werkwijze voor het detecteren van vortex-geëxciteerde trillingen tijdens het bedrijf van netgekoppelde windturbine volgens conclusie 1, met het kenmerk, dat de turbulente bestanddelen een turbulente blok en een turbulente kabel omvat, waarbij het turbulente blok op de toren wordt geplaatst en het turbulente touw met het turbulente blok wordt aangesloten voor het verminderen van de vortex-geëxciteerde trillingen.A method for detecting vortex-excited vibrations during operation of a grid-connected wind turbine according to claim 1, characterized in that the turbulent components comprises a turbulent block and a turbulent cable, the turbulent block being placed on the tower and the turbulent rope with the turbulent block is connected for reducing the vortex-excited vibrations. 4. Werkwijze voor het detecteren van vortex-geéxciteerde trillingen tijdens het bedrijf van netgekoppelde windturbine volgens conclusie 1, met het kenmerk, dat de specifieke stappen van de vortex-geinduceerde trillingsdetectie zijn als volgt: Het verzamelen van trillings- van windsnelheidssignalen van de windturbines; Het respectievelijke tekenen van trillingssignaalbeelden, windsnelheidssignaalbeelden, en gerelateerde beelden van de trillingssignalen en windsnelheidssignalen; Het bepalen of de vortex-geïnduceerde trillingen optreden volgens de trillingssignaalbeelden, windsnelheidssignaalbeelden en gerelateerde beelden.A method for detecting vortex-excited vibration during operation of a grid-connected wind turbine according to claim 1, characterized in that the specific steps of the vortex-induced vibration detection are as follows: Collecting vibration of wind speed signals from the wind turbines; Drawing vibration signal images, wind speed signal images, and related images of the vibration signals and wind speed signals, respectively; Determining whether the vortex-induced vibrations occur according to the vibration signal images, wind speed signal images and related images. 5. Werkwijze voor het detecteren van vortex-geëxciteerde trillingen tijdens het bedrijf van netgekoppelde windturbine volgens conclusie 4, met het kenmerk, dat de werkwijze omvat ook: als het trillingssignaal abnormaal is, het schatten van de bijbehorende turbulentie- intensiteit op basis van het windsnelheidssignaal, en het beoordelen of de turbulentie-intensiteit voldoet aan de gestelde voorwaarden, waarbij als hieraan wordt voldaan, het bepalen of de trillingsafwijking wordt veroorzaakt door de turbulentie-intensiteit.A method for detecting vortex-excited vibrations during operation of a grid-connected wind turbine according to claim 4, characterized in that the method also comprises: if the vibration signal is abnormal, estimating the associated turbulence intensity based on the wind speed signal , and judging whether the turbulence intensity meets the set conditions, where if it is met, determining whether the vibration anomaly is caused by the turbulence intensity. 6. Systeem voor het detecteren van vortex-geëxciteerde trillingen tijdens het bedrijf van netgekoppelde windturbine, met het kenmerk, dat het systeem omvat: Spannings- en stroomgegevensacquisitiemodule: voor het verkrijgen van de spannings- en stroomgegevens van de dubbel gevoede windturbinepoort voor- en nadat de windturbine op het elektriciteitsnet wordt gekoppeld; Real-time dynamische energieacquisitiemodule: voor het respectievelijke berekenen van de eerste en tweede real-time dynamische energie van de dubbel gevoede windturbinepoort op basis van de spannings- en stroomgegevens, waarbij de eerste real-time dynamische energie overeen komt met de dubbel gevoede windturbinepoort na de netkoppeling, en de tweede real- time dynamische energie overeen komt met de som van de energie van meerdere dubbel gevoede windturbinepoorten vóór de netkoppeling; Vortex-geïnduceerde trillingsdetectiemodule: voor het detecteren van de vortex- geïnduceerde trillingen van de windturbine als het verschil tussen de eerste en tweede real-time dynamische energie groter is dan het vooraf ingestelde verschil M; Vortex-geïnduceerde trillingsonderdrukmodule: voor het leggen van turbulente bestanddelen op basis van de detectieresultaten van de vortex-geïnduceerde trillingen; Secondaire vortex-geïnduceerde trillingsdetectiemodule: voor het herhalen van de bovenstaande stappen na het leggen van de turbulente bestanddelen totdat het vooraf ingestelde verschil M is bereikt.6. System for detecting vortex-excited vibrations during operation of grid-connected wind turbine, characterized in that the system comprises: Voltage and current data acquisition module: for acquiring the voltage and current data from the dual-fed wind turbine port before and after the wind turbine is connected to the electricity grid; Real-time dynamic energy acquisition module: to calculate the first and second real-time dynamic energy of the doubly-fed wind turbine port based on the voltage and current data, respectively, with the first real-time dynamic energy corresponding to the doubly-fed wind turbine port after the grid connection, and the second real-time dynamic energy corresponds to the sum of the energy of several doubly fed wind turbine ports before the grid connection; Vortex-induced vibration detection module: for detecting the vortex-induced vibration of the wind turbine when the difference between the first and second real-time dynamic energy is greater than the preset difference M; Vortex-Induced Vibration Negative Pressure Module: For laying turbulent constituents based on the detection results of the vortex-induced vibrations; Secondary Vortex Induced Vibration Detection Module: For repeating the above steps after laying the turbulent components until the preset difference M is reached. 7. Medium voor computeropslag, met het kenmerk, dat het medium voor computeropslag wordt opgeslagen met een computerprogramma, waarbij het computerprogramma door de processor wordt uitgevoerd om de werkwijze voor het detecteren van vortex-geëxciteerde trillingen tijdens het bedrijf van netgekoppelde windturbine volgens een van de conclusies 1-5 te implementeren.7. A computer storage medium, characterized in that the computer storage medium is stored with a computer program, the computer program being executed by the processor to implement the method of detecting vortex-excited vibrations during operation of a grid-connected wind turbine according to one of the following: implement conclusions 1-5.
NL2035215A 2023-05-22 2023-06-29 Vortex-induced vibration detection method and system for grid-connected operation of wind turbine generator set and storage medium NL2035215A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310575244.1A CN116576961A (en) 2023-05-22 2023-05-22 Wind turbine generator grid-connected operation vortex-induced vibration detection method, system and storage medium

Publications (1)

Publication Number Publication Date
NL2035215A true NL2035215A (en) 2023-08-11

Family

ID=87540976

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2035215A NL2035215A (en) 2023-05-22 2023-06-29 Vortex-induced vibration detection method and system for grid-connected operation of wind turbine generator set and storage medium

Country Status (2)

Country Link
CN (1) CN116576961A (en)
NL (1) NL2035215A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060066111A1 (en) * 2004-09-30 2006-03-30 Shashikanth Suryanarayanan Vibration damping system and method for variable speed wind turbines
CN107740752A (en) * 2017-11-21 2018-02-27 北京金风科创风电设备有限公司 Surround apparatus and method for suppressing vibration of building envelope
CN211116416U (en) * 2019-09-18 2020-07-28 浙江运达风电股份有限公司 Flexible pylon vortex device of wind generating set
CN111878324A (en) * 2020-08-28 2020-11-03 国电联合动力技术有限公司 Wind power plant tower drum vortex-induced vibration early warning method and early warning system
CN112943844A (en) * 2021-02-25 2021-06-11 中国华能集团清洁能源技术研究院有限公司 Tower barrel structure vibration damper of high-flexibility tower wind generating set
CN113463783A (en) * 2020-03-30 2021-10-01 江苏金风科技有限公司 Turbulence device for inhibiting vibration of tower drum, tower drum and wind generating set
CN114000991A (en) * 2021-11-22 2022-02-01 南通河海大学海洋与近海工程研究院 Vortex-reducing vibration damper for inhibiting vortex-induced phenomenon of wind turbine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060066111A1 (en) * 2004-09-30 2006-03-30 Shashikanth Suryanarayanan Vibration damping system and method for variable speed wind turbines
CN107740752A (en) * 2017-11-21 2018-02-27 北京金风科创风电设备有限公司 Surround apparatus and method for suppressing vibration of building envelope
CN211116416U (en) * 2019-09-18 2020-07-28 浙江运达风电股份有限公司 Flexible pylon vortex device of wind generating set
CN113463783A (en) * 2020-03-30 2021-10-01 江苏金风科技有限公司 Turbulence device for inhibiting vibration of tower drum, tower drum and wind generating set
CN111878324A (en) * 2020-08-28 2020-11-03 国电联合动力技术有限公司 Wind power plant tower drum vortex-induced vibration early warning method and early warning system
CN112943844A (en) * 2021-02-25 2021-06-11 中国华能集团清洁能源技术研究院有限公司 Tower barrel structure vibration damper of high-flexibility tower wind generating set
CN114000991A (en) * 2021-11-22 2022-02-01 南通河海大学海洋与近海工程研究院 Vortex-reducing vibration damper for inhibiting vortex-induced phenomenon of wind turbine

Also Published As

Publication number Publication date
CN116576961A (en) 2023-08-11

Similar Documents

Publication Publication Date Title
CN109296506B (en) Vibration detection method, control method and device for wind turbine generator
US10107259B2 (en) Control method for a wind turbine, and wind turbine
CN201408112Y (en) Loading test device for fan blade of wind generating set
CN102954857B (en) Vane unbalance fault diagnosis method of wind turbine generator set based on current signal
Gong et al. Simulation investigation of wind turbine imbalance faults
CN102980651A (en) Monitoring method and monitoring device and monitoring system of wind turbine generator condition
CN105756864B (en) Blade imbalance fault diagnostic method based on double-fed wind power generator group stator current
JP2008274953A (en) Wind turbine operating method and wind turbine
CN107192446B (en) Method for monitoring natural frequency of tower of wind generating set
Oh et al. Development of a 20 kW wind turbine simulator with similarities to a 3 MW wind turbine
CN103018601A (en) Primary fault diagnosis method of converter in wind turbine system
CN103925155A (en) Self-adaptive detection method for abnormal wind turbine output power
Shahriar et al. Performance analysis of electrical signature analysis-based diagnostics using an electromechanical model of wind turbine
KR101086185B1 (en) Wind turbine control method for reducing peak load
CN103047078A (en) Methods for using site specific wind conditions to determine when to install a tip feature on a wind turbine rotor blade
Xie et al. An integration fault detection method using stator voltage for marine current turbines
Gardels et al. Simulation studies on imbalance faults of wind turbines
Yang Condition monitoring of offshore wind turbines
Wakui et al. Wind speed sensorless performance monitoring based on operating behavior for stand-alone vertical axis wind turbine
NL2035215A (en) Vortex-induced vibration detection method and system for grid-connected operation of wind turbine generator set and storage medium
CN105332862A (en) Method, device and system for detecting working state of wind turbine generator set
Macquart et al. A stall-regulated wind turbine design to reduce fatigue
Gao et al. Real-time monitoring, fault prediction and health management for offshore wind turbine systems
Liu et al. Data-driven fault identification of ageing wind turbine
Fontanella et al. Model-inversion feedforward control for wave load reduction in floating wind turbines