NL2033658A - Outer wrapping method and preparation system of continuous carbon fiber 3d printing wires - Google Patents

Outer wrapping method and preparation system of continuous carbon fiber 3d printing wires Download PDF

Info

Publication number
NL2033658A
NL2033658A NL2033658A NL2033658A NL2033658A NL 2033658 A NL2033658 A NL 2033658A NL 2033658 A NL2033658 A NL 2033658A NL 2033658 A NL2033658 A NL 2033658A NL 2033658 A NL2033658 A NL 2033658A
Authority
NL
Netherlands
Prior art keywords
fiber
carbon fiber
yarn
frame
continuous
Prior art date
Application number
NL2033658A
Other languages
Dutch (nl)
Other versions
NL2033658B1 (en
Inventor
Li Rui
Liu Yujun
Wang Ji
Liu Xiao
Wang Angang
Original Assignee
Univ Dalian Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Dalian Tech filed Critical Univ Dalian Tech
Publication of NL2033658A publication Critical patent/NL2033658A/en
Application granted granted Critical
Publication of NL2033658B1 publication Critical patent/NL2033658B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/14Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length of filaments or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • B29B15/125Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex by dipping

Abstract

UITTREKSEL The present disclosure belongs to the technical field of continuous carbon fiber composite additive manufacturing, and discloses an outer‘ wrapping' method. and 21 preparation. systenl of continuous carbon fiber 3D printing wires. The method includes the 5 steps of firstly, fixing continuous carbon fiber filaments to a continuous fiber roller frame, making the continuous carbon fiber filaments sequentially penetrate into each component of the preparation system, and winding the fiber filaments around a fiber wire wrap—up roll for fixing; secondly, adding a preimpregnation lO resin. solution. for fiber‘ preimpregnation. into a preimpregnation box, preimpregnating the continuous carbon fiber filaments with a layer of the needed preimpregnation resin solution by the preimpregnation box, and drying the continuous carbon fiber filaments by a drying barrel for hardening; and finally, l5 performing resin outer wrapping on the fiber preimpregnated filaments by a fiber outer~ wrapping member~ under the guide of driving guide wheels, trimming wire diameters of the prepared continuous carbon fiber wires by a fiber wire diameter trimming unit under the dragging of a winding motor, and wrapping up the 20 trimmed continuous carbon fiber wires by the fiber wire wrap—up roll. (+ Fig. l)

Description

P1667 /NL
OUTER WRAPPING METHOD AND PREPARATION SYSTEM OF CONTINUOUS CARBON FIBER 3D PRINTING WIRES
TECHNICAL FIELD The present disclosure belongs to the technical field of con- tinuous carbon fiber composite additive manufacturing, and relates to an outer wrapping method and a preparation system of continuous carbon fiber 3D printing wires.
BACKGROUND ART Carbon fibers have been rapidly developed into important re- inforcement fiber materials because of a series of excellent prop- erties such as high strength-to-weight ratio, high modulus, corro- sion resistance, high temperature resistance and fatigue re- sistance. In 3D printing carbon fiber reinforced composites, res- in-based composites can be used as important load-bearing compo- nents due to their advantages such as light weight, high strength and designability, which can greatly reduce the mass of products, costs and energy consumption, so they are widely used in the fields such as aerospace, automobiles and military industry. Compared with traditional structural parts printed by single polymer consumables, mechanical properties, mechanical and physi- cal properties and the like of continuous carbon fiber reinforced thermoplastic 3D printing resin materials are all significantly improved. There are still many limitations to printing continuous carbon fiber composite structural parts in the prior art. In order to change the limitations of these printed structural parts, the key is to prepare continuous carbon fiber wires.
SUMMARY The present disclosure provides an outer wrapping method and a preparation system of continuous carbon fiber 3D printing wires, which can prepare the continuous carbon fiber 3D printing wires matched with a continuous fiber 3D printer for use. The present disclosure is achieved through the following technical solutions: An outer wrapping preparation system of continuous carbon fi-
ber 3D printing wires, includes a continuous carbon fiber roller frame, a preimpregnation box, a drying barrel, a fiber outer wrap- ping unit, a fiber wire diameter trimming unit, a cooling unit and an automatic fiber wire winding unit. A structural frame is ar- ranged at a front end of the continuous carbon fiber roller frame through aluminum alloy profiles, and the front end is fixedly con- nected with a carbon fiber preimpregnation box with drying barrel in a continuous thread fastening manner; the outer wrapping unit is fixed to the independent structural frame of the aluminum alloy profiles through threads; the wire diameter trimming unit is fix- edly connected below the outer wrapping unit in a thread fastening manner; the cooling unit is independently and fixedly connected between the outer wrapping unit and the automatic winding unit; and the automatic winding unit is fixedly connected to a lowest position of the aluminum alloy profile frame.
The continuous carbon fiber roller frame includes a roller frame body, a roller shaft, a roller fastening spring, a roller fastening nut and a continucus fiber guide ring. The roller shaft penetrates into a middle of the roller frame body, the roller fas- tening spring penetrates into an outer side of the roller shaft, the fastening nut is screwed into an outer side of the spring, and the continuous fiber guide ring is fixedly connected to the front end of the fiber roller frame.
In the preimpregnation box with drying barrel, the preimpreg- nation box includes a preimpregnation box body, a fiber guide frame I, a fiber guide frame II, preimpregnation box guide wheel supports and preimpregnation box fiber guide wheels; and the dry- ing barrel includes a drying barrel body, a drying barrel protec- tive frame I, a drying barrel protective frame II, a fiber protec- tive pipe and a continuous fiber guide wheel. The preimpregnation box body is fixedly connected to the aluminum alloy profile frame, the fiber guide frame I and the fiber guide frame II are fixedly connected to front and rear ends of the preimpregnation box, the preimpregnation box guide wheel supports are fixed to a bottom end of the preimpregnation box in a welded manner, and the preimpreg- nation box fiber guide wheels are fixedly connected to the corre- sponding preimpregnation box guide wheel supports respectively in a screw fastening manner; and the drying barrel protective frame I and the drying barrel protective frame II are fixedly connected to the structural frame of the aluminum alloy profiles in a thread fastening manner, the fiber protective pipe penetrates into a mid- dle of the drying barrel, and the drying barrel body is fixed be- tween the drying barrel protective frame I and the drying barrel protective frame II in a buckled manner.
The fiber outer wrapping unit includes a fiber outer wrapping structural part body, a fiber outer wrapping structural part pro- tective shell, a fiber wire inlet throat pipe, a resin melting pool, a wire outer wrapping thread extrusion head, a resin wire inlet throat pipe, a radiating pipe I, a radiating pipe II, outer wrapping structural part heating holes, an outer wrapping struc- tural part thermometer hole, a heat insulating plate and a cushion plate.
The fiber outer wrapping structural part body is an inte- grated structural part, a conical cylindrical hole is formed in a middle thereof as the resin melting pool, the outer wrapping structural part heating holes are formed in front and rear surfac- es thereof respectively, the outer wrapping structural part ther- mometer hole is formed in the front surface thereof, and threaded holes are formed in a bottom, an upper surface and a bevel edge thereof and fixedly connected with the outer wrapping structural part body, the wire outer wrapping thread extrusion head, the fi- ber wire inlet throat pipe and the resin wire inlet throat pipe respectively; the radiating pipe I is fixedly connected to the resin wire inlet throat pipe, and the radiating pipe II is fixedly connected to the fiber wire inlet throat pipe in a thread fas- tening manner; and the cushion plate is fixedly connected to the aluminum alloy profile frame, and the heat insulating plate, the fiber outer wrapping structural part and the fiber outer wrapping structural part protective shell are fixedly connected to the cushion plate, wherein the heat insulating plate is located be- tween the cushion plate and the fiber outer wrapping structural part.
The fiber wire diameter trimming unit includes a filament trimming structural frame body, a wire diameter trimming copper mold I, a wire diameter trimming copper mold II, a wire diameter trimming copper meld III, a radiating connecting pipe I, a radiat- ing connecting pipe II, wire diameter trimming structural part thermometer holes, wire diameter trimming structural part heating holes and a round fastening cover. The three thermometer holes and the six heating holes are formed in the filament trimming struc- tural frame body and fixedly connected to the above cushion plate in a screw fastening manner, the wire diameter trimming copper mold I, the radiating connecting pipe I, the wire diameter trim- ming copper mold II, the radiating connecting pipe II and the wire diameter trimming copper mold III sequentially penetrate into the filament trimming structural frame body, and the round fastening cover 1s fixedly connected to the filament trimming structural frame body in a screw fastening manner.
The cooling unit includes a cooling fan and a cooling fan air director. The cooling fan air director is fixedly connected to an air outlet side of the cooling fan in a buckled manner, the cool- ing fan and the cooling fan air director are integrally and fixed- ly connected to the aluminum alloy profile frame in a screw fas- tening manner, and an air outlet aligns at externally wrapped fi- ber wires.
The automatic fiber wire winding unit includes a guide rail stepping motor, guide rails, a guide rail moving platform, a wind- ing gear motor, a fiber wire wrap-up roll, a limiting switch I and a limiting switch II. An overall framework of the guide rail step- ping motor is fixedly connected to a bottom end of the aluminum alloy profile frame, the guide rail moving platform penetrates through the guide rails for fixed connection, the winding gear mo- tor is fixedly connected to the guide rail moving platform in a screw fastening manner, and the fiber wire wrap-up roll is fixedly connected to the winding gear motor in a buckled manner; and the limiting switch I and the limiting switch II are both fixedly con- nected to the aluminum alloy profile frame.
An outer wrapping method of continuous carbon fiber 3D print- ing wires for the preparation system is provided by adopting the above outer wrapping preparation system of the continuous carbon fiber 3D printing wires, specifically including the following steps:
Sl: fixing continuous carbon fiber filaments to the continu- ous fiber roller frame, making the continuous carbon fiber fila- ments sequentially penetrate into the preimpregnation box, the drying barrel, the fiber outer wrapping member and the fiber wire 5 diameter trimming unit, and winding the continuous carbon fiber filaments around the fiber wire wrap-up roll for fixing; S2: adding a preimpregnation solution for fiber preimpregna- tion into the preimpregnation box, and heating the drying barrel, the fiber outer wrapping member and the fiber wire diameter trim- ming unit to a preset temperature by a temperature controller; S3: setting the resin feeding stepping motor at a preset feeding rate, setting the guide rail motor and the gear motor of the automatic fiber wire winding motor at a preset rotating speed, turning on the cooling unit, and setting a rotating speed of the cooling fan; and S4: preimpregnating the continuous carbon fiber filaments with a layer of the needed preimpregnation resin solution by the preimpregnation box, and drying the continuous carbon fiber fila- ments by the drying barrel for hardening; and performing resin outer wrapping on the fiber preimpregnated filaments by the fiber outer wrapping member under the guide of driving guide wheels, trimming wire diameters of the prepared continuous carbon fiber wires by the fiber wire diameter trimming unit under the dragging of the winding motor, and wrapping up the trimmed continuous car- bon fiber wires by the fiber wire wrap-up roll.
According to the continuous carbon fiber 3D printing wires prepared by the above outer wrapping method of the continuous car- bon fiber 3D printing wires, the material selected and used during preimpregnation of the continuous carbon fiber 3D printing wires is the resin solution with a certain concentration, the material selected and used during outer wrapping is resin wires, and mate- rial components are the same as those of the preimpregnation resin solution.
The present disclosure has the beneficial effects: when con- tinuous carbon fibers pass through the preimpregnation box, inner and outer surfaces of monofilaments of the continuous carbon fi- bers can be fully preimpregnated under the action of the preim-
pregnation box fiber guide wheels at different heights, and when the preimpregnated fiber preimpregnated filaments and the resin are melted and co-extruded to form a fiber and resin bonding in- terface, mechanical engagement is formed between gullies in outer surfaces of preimpregnated filament bundles and the resin; based on the principle of "like dissolves like", bonding interfaces among the monofilaments inside the continuous carbon fiber preim- pregnated filaments will be greatly improved, which is conducive to expanding functions of continuous carbon fiber reinforcements and improving mechanical properties of continuous carbon fiber composites; when passing through the fiber outer wrapping member, the continuous carbon fiber preimpregnated filaments are subjected to uniform resin outer wrapping, and the needed continuous carbon fiber 3D printing wires are prepared; and the prepared continuous carbon fiber wires may be cut on a continuous fiber printer matched therewith at a fixed length as they are subjected to uni- form resin outer wrapping, preset printing lengths of the fiber wires may be freely set, and therefore forming structures of con- tinuous carbon fiber composite structural parts obtained after 3D printing are more diversified.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an overall structure of the present disclosure; FIG. 2 is a first schematic diagram of a partial structure of the present disclosure, namely a schematic diagram of a continuous carbon fiber roller frame; FIG. 3 is a second schematic diagram of a partial structure of the present disclosure, namely a sectional schematic diagram of a preimpregnation box with drying barrel; FIG. 4 is a third schematic diagram of a partial structure of the present disclosure, namely a sectional schematic diagram of a fiber outer wrapping unit; FIG. 5 is a fourth schematic diagram of a partial structure of the present disclosure, namely a schematic diagram of a fiber wire diameter trimming unit; FIG. 6 is a fifth schematic diagram of a partial structure of the present disclosure, namely a schematic diagram of a cooling unit; and FIG. 7 is a sixth schematic diagram of a partial structure of the present disclosure, namely a schematic diagram of an automatic fiber wire winding unit.
In the drawings: 1. Continuous carbon fiber roller frame;
101. Roller frame body; 102. Roller shaft; 103. Roller fastening spring; 104. Roller fastening nut; 105. Continuous fiber guide ring;
2. Preimpregnation box with drying barrel; 201. Preimpregna- tion box body; 202-1. Fiber guide frame I; 202-2. Fiber guide frame II; 203. Preimpregnation box guide wheel support; 204. Pre- impregnation box fiber guide wheel; 205. Drying barrel body; 206-
1. Drying barrel protective frame I; 206-2. Drying barrel protec- tive frame II; 207. Fiber protective pipe; 208. Continuous fiber guide wheel;
3. Fiber outer wrapping unit; 301. Fiber outer wrapping structural part body; 302. Fiber outer wrapping structural part protective shell; 303. Fiber wire inlet throat pipe; 304. Resin melting pool; 305. Wire outer wrapping thread extrusion head; 306.
Resin wire inlet throat pipe; 307-1. Radiating pipe I; 307-2. Ra- diating pipe II; 308. Outer wrapping structural part heating hole;
309. Outer wrapping structural part thermometer hole; 310. Heat insulating plate; 311. Cushion plate;
4. Fiber wire diameter trimming unit; 401. Filament trimming structural frame body; 402-1. Wire diameter trimming copper mold I; 402-2. Wire diameter trimming copper mold II; 402-3. Wire diam- eter trimming copper meld III; 403-1. Radiating connecting pipe I; 403-2. Radiating connecting pipe II; 404. Wire diameter trimming structural part thermometer hole; 405. Wire diameter trimming structural part heating hole; 406. Round fastening cover;
5. Cooling unit; 501. Cooling fan; 502. Cooling fan air di- rector;
6. Automatic fiber wire winding unit; 601. Guide rail step- ping motor; 602. Guide rail; 603. Guide rail moving platform; 604.
Winding gear motor; 605. Fiber wire wrap-up roll; 606-1. Limiting switch I; and 606-2. Limiting switch II.
DETAILED DESCRIPTION OF THE EMBODIMENTS Embodiment 1 As shown in FIGS. 1-7, an outer wrapping preparation system of continuous carbon fiber 3D printing wires, includes a continu- ous carbon fiber roller frame 1, a preimpregnation box 2 with dry- ing barrel, a fiber outer wrapping unit 3, a fiber wire diameter trimming unit 4, a cooling unit 5 and an automatic fiber wire winding unit 6. A structural frame is arranged at a front end of the continuous carbon fiber roller frame 1 through aluminum alloy profiles, and the front end is fixedly connected with the carbon fiber preimpregnation box 2 with drying barrel in a thread fas- tening manner, wherein a bottommost end of a groove of a driving wheel at a tail end of a preimpregnation box body 201 is kept col- linear with a central axis of a drying barrel body 205, so as to ensure that fiber preimpregnated filaments penetrate through the central axis of the drying barrel body 205; the outer wrapping unit 3 is fixedly connected to the independent structural frame of the aluminum alloy profiles in a thread fastening manner, and the continuous carbon fiber filaments penetrate through the outer wrapping unit 3 through the driving wheel; the wire diameter trim- ming unit 4 is fixedly connected below the outer wrapping unit 3 in a thread fastening manner, wherein hole diameters of the two parts are kept in alignment; the cooling unit 5 is independently and fixedly connected between the outer wrapping unit and the au- tomatic winding unit 6; and the automatic winding unit 6 is fixed- ly connected to a lowest position of the aluminum alloy profile frame.
Embodiment 2 As shown in FIGS. 1-7, the continuous carbon fiber roller frame 1 includes a roller frame body 101, a roller shaft 102, a roller fastening spring 103, a roller fastening nut 104 and a con- tinuous fiber guide ring 105. The roller shaft 102 penetrates into a middle of the roller frame body 101, and a fiber roller is fix- edly connected to the roller shaft 102 through threads on the roller shaft 102. The roller fastening spring 103 penetrates into an outer side of the roller shaft 102, and the fastening nut 104 is screwed into an outer side of the spring, so that the fiber roller has certain adjustable tension; and the continuous fiber guide ring 105 is fixedly connected to a front end of the fiber roller frame 1, a central axis of the continuous fiber guide ring 105 and a central axis of the drying barrel body 205 are kept in a collinear relationship in a horizontal direction, and the continu- ous fiber guide ring 105 is of a circular ring design, so as to prevent the fiber filaments from being scratched and disengaged from fiber driving guide wheels.
Embodiment 3 As shown in FIGS. 1-7, in the preimpregnation box 2 with dry- ing barrel, the preimpregnation box includes a preimpregnation box body 201, a fiber guide frame I 202-1, a fiber guide frame II 202- 2, a plurality of preimpregnation box guide wheel supports 203 with different heights and a plurality of preimpregnation box fi- ber guide wheels 204; and a drying barrel includes a drying barrel body 205, a drying barrel protective frame I 206-1, a drying bar- rel protective frame II 206-2, a fiber protective pipe 207 and a continuous fiber guide wheel 208. The preimpregnation box body 201 is fixedly connected to an aluminum alloy profile frame, the fiber guide frame I 202-1 and the fiber guide frame II 202-2 are fixedly connected to front and rear ends of the preimpregnation box, and central axes of openings of the guide frames and a central axis of the fiber protective pipe 207 of the drying barrel are kept col- linear in a horizontal direction; the preimpregnation box guide wheel supports 203 are fixedly connected to a bottom end of the preimpregnation box body 201 in a welded manner, and the preim- pregnation box fiber guide wheels 204 are fixedly connected to corresponding positions of the preimpregnation box guide wheel supports 203 respectively in a screw fastening manner, wherein a lowest end of a groove of the guide wheel at a tail end and a cen- tral axis of the drying barrel are kept collinear in the horizon- tal direction, so as to ensure that fiber filaments may be located on the same horizontal plane; the drying barrel protective frame I 206-1 and the drying barrel protective frame II 206-2 are connect- ed to the aluminum alloy profile structural frame in a thread fas- tening manner, two ends of the fiber protective pipe 207 are both filleted, so as to prevent them from causing unnecessary scratches to the fiber filaments, and a middle portion is of a reticulate opening structure, so as to ensure that the fiber preimpregnated filaments can be fully dried when passing through the fiber pro- tective pipe; and the fiber protective pipe 207 penetrates into a middle of the drying barrel body 205, and the drying barrel body 205 is fixed between the drying barrel protective frame I 206-1 and the drying barrel protective frame II 206-2 in a buckled man- ner. A temperature needed during drying of the drying barrel body 205 is controlled by a temperature controller, so as to ensure that the fiber preimpregnated filaments can be completely dried after passing through the drying barrel body 205. In this part, the continuous carbon fiber filaments are fully preimpregnated with a resin solution in the preimpregnation box body 201, the resin solution will be attached to their surfaces and interiors, and the resin solution with which the carbon fibers are impregnat- ed is dried by the drying barrel body 205.
Embodiment 4 As shown in FIGS. 1-7, the fiber outer wrapping unit 3 in- cludes a fiber outer wrapping structural part body 301, a fiber outer wrapping structural part protective shell 302, a fiber wire inlet throat pipe 303, a resin melting pool 304, a wire outer wrapping thread extrusion head 305, a resin wire inlet throat pipe 306, a radiating pipe I 307-1, a radiating pipe II 307-2, outer wrapping structural part heating holes 308, an outer wrapping structural part thermometer hole 309, a heat insulating plate 310 and a cushion plate 311. The fiber outer wrapping structural part body 301 is an integrated structural part, a conical cylindrical hole is formed in a middle thereof as the resin melting pool 304, the integrated part can be effectively sealed and fastened, the resin melting pool 304 has stable cavity pressure accordingly, and resin stored in this part is in a molten state, so that the molten resin can be conveniently attached to continuous carbon fiber pre- impregnated filaments for outer wrapping; the outer wrapping structural part heating holes 308 are formed in front and rear surfaces of the fiber outer wrapping structural part body respec- tively for allowing heating pipes to be inserted therein, and the outer wrapping structural part thermometer hole 309 is formed in the front surface of the fiber outer wrapping structural part body for allowing a K type thermocouple to be inserted therein; a threaded hole is formed in a bottom of the fiber outer wrapping structural part body for fixed connection between the fiber outer wrapping structural part body 301 and the wire outer wrapping thread extrusion head 305; a threaded hole is formed in an upper surface of the fiber outer wrapping structural part body, the fi- ber wire inlet throat pipe 303 is fixedly connected to the thread- ed hole in a thread fastening manner, the radiating pipe II 307-2 is fixedly connected to the fiber wire inlet threat pipe 303 in a thread fastening manner, and the continuous carbon fiber preim- pregnated filaments penetrate through the radiating pipe II 307-2 under the guide of a tension wheel to enter the fiber outer wrap- ping member 301, wherein a bottommost end of a groove of a guide wheel at a tail end of the tension wheel is collinear with a cen- tral axis of the radiating pipe II 307-2 in a vertical direction, so that the fiber preimpregnated filaments are located at a cen- tral axis position, thereby ensuring uniform outer wrapping of the fibers; a threaded hole is formed in a bevel surface of the fiber outer wrapping structural part body, the resin wire inlet throat pipe 306 is fixedly connected to the threaded hole in a thread fastening manner, the radiating pipe I 307-1 is fixedly connected to the resin wire inlet throat pipe 306 in a thread fastening man- ner, and a resin feeding stepping motor is remotely connected with the radiating pipe I 307-1 through a polytetrafluoroethylene pipe, so as to effectively and stably feed resin wires; the cushion plate 311 is fixedly connected to an aluminum alloy profile frame in a screw fastening manner, and the heat insulating plate 310, the fiber outer wrapping structural part 301 and the fiber outer wrapping structural part protective shell 302 are fixedly connect- ed to the cushion plate 311 in a screw fastening manner, wherein the heat insulating plate 310 is located between the cushion plate 311 and the fiber outer wrapping structural part 301, and as the outer wrapping structural part 301 is in a high-temperature state during operation, the heat insulating plate 310 can effectively insulate heat transfer of the outer wrapping structural part so as to avoid the influence on the following process; all the members are fixedly connected in a thread fastening manner, so as to be effectively sealed to form good cavity pressure in the resin melt- ing pool 304, thereby facilitating outer wrapping of the continu- ous carbon fiber preimpregnated filaments; the radiating pipe I 307-1 and the radiating pipe II 307-2 can effectively isolate heat transfer of the outer wrapping member 301, so as to avoid the in- fluence on the continuous carbon fiber preimpregnated filaments and the resin wires; the heating pipes are inserted into the two outer wrapping structural part heating holes 308 and used for heating the outer wrapping member 301; and the K type thermocouple is inserted into the outer wrapping structural part thermometer hole 309 and used for transmitting temperature signals of the out- er wrapping structural part 301, the two heating pipes and the K type thermocouple are connected to a switching power supply and a temperature controller, the outer wrapping structural part 301 is heated at a needed temperature set by the temperature controller, the resin feeding stepping motor feeds resin at a stable feeding speed after the temperature reaches a fixed temperature during op- eration, and the continuous carbon fiber preimpregnated filaments penetrate through the outer fiber wrapping member 301 to perform uniform outer wrapping on the fibers under the guide of fiber driving wheels.
Embodiment 5 As shown in FIGS. 1-7, the fiber wire diameter trimming unit 4 includes a filament trimming structural frame body 401, a wire diameter trimming copper mold I 402-1, a wire diameter trimming copper mold II 402-2, a wire diameter trimming copper mold III 402-3, a radiating connecting pipe I 403-1, a radiating connecting pipe II 403-2, wire diameter trimming structural part thermometer holes 404, wire diameter trimming structural part heating holes 405 and a round fastening cover 406. The three thermometer holes and the six heating holes are formed in the filament trimming structural frame body 401 and fixedly connected to the above cush- ion plate 311 in a screw fastening manner, and the wire diameter trimming copper mold I 402-1, the radiating connecting pipe I 403- 1, the wire diameter trimming copper mold II 402-2, the radiating connecting pipe II 403-2 and the wire diameter trimming copper mold III 402-3 sequentially penetrate into the filament trimming structural frame body 401, wherein the wire diameter trimming cop- per mold I 402-1, the wire diameter trimming copper mold II 402-2 and the wire diameter trimming copper mold III 402-3 are provided with gradient holes, and in addition, central axes of the compo- nents are kept in alignment, so as to ensure that the wire diame- ters of the externally wrapped fiber wires are uniformly trimmed by the fiber wire diameter trimming unit 4; and the round fas- tening cover 406 is fixedly connected to the filament trimming structural frame body 401 in a screw fastening manner. Correspond- ing K type thermocouples are inserted into the wire diameter trim- ming structural part thermometer holes 404, corresponding heating pipes are inserted into the wire diameter trimming structural part heating holes 405, and gradient temperatures are set at heating positions of the three parts by a temperature controller, so that the wire diameter trimming effect of the outer wrapping wires is better, and after the externally wrapped fiber wires are trimmed, the wire diameters thereof can reach needed sizes.
Embodiment 6 As shown in FIGS. 1-7, the cooling unit 5 includes a cooling fan 501 and a cooling fan air director 502. The cooling fan air director 502 is fixedly connected to an air outlet side of the cooling fan 501 in a buckled manner and integrally and fixedly connected to an aluminum alloy profile frame in a screw fastening manner, and the air outlet aligns at externally wrapped fiber wires to cool the fiber wires, so that resin wrapping the fiber wires is completely hardened, thereby achieving effective wrap-up of the prepared fiber wires.
Embodiment 7 As shown in FIGS. 1-7, the automatic fiber wire winding unit ¢ includes a guide rail stepping motor 601, guide rails 602, a guide rail moving platform 603, a winding gear motor 604, a fiber wire wrap-up roll 605, a limiting switch I 606-1 and a limiting switch II 606-2. An overall framework of the guide rail stepping motor 601 is fixedly connected to a bottom end of an aluminum al- loy profile frame, the guide rail moving platform 603 penetrates through the guide rails 602 for fixed connection, the winding gear motor 604 is fixedly connected to the guide rail moving platform 603 in a screw fastening manner, and the fiber wire wrap-up roll 605 is fixedly connected to the winding gear motor 604 in a buck- led manner; and the limiting switch I 606-1 and the limiting switch II 606-2 are both fixedly connected to the aluminum alloy profile frame and are in circuit connection with a stepping motor driver and a stepping motor controller to control the guide rail stepping motor 601 to be switched between forward rotation and re- verse rotation, so as to make the guide rail moving platform 603 swing back and forth. Appropriate rotating speeds of the guide rail stepping motor 601 and the winding gear motor 604 are set by the stepping motor controller, so as to achieve uniform and auto- matic wrap-up of externally wrapped fiber wires.
Embodiment 8 As shown in FIGS. 1-7, an outer wrapping method of continuous carbon fiber 3D printing wires is provided according to the outer wrapping preparation system of the continuous carbon fiber 3D printing wires of the present disclosure, including the following steps: Sl: Continuous carbon fiber filaments are fixed to the con- tinuous fiber roller frame 1, the continuous carbon fiber fila- ments sequentially penetrate through the preimpregnation box body 201, the drying barrel body 205, the fiber outer wrapping member 301 and the fiber wire diameter trimming unit 4, and the continu- ous carbon fiber filaments wind around the fiber wire wrap-up roll 605 for fixing.
S2: A preimpregnation solution for fiber preimpregnation is added into the preimpregnation box body 201, and the drying barrel body 205, the fiber outer wrapping member 301 and the fiber wire diameter trimming unit 4 are heated to a preset temperature by a temperature controller.
S33: The resin feeding stepping motor is set at a preset feed- ing rate, the guide rail motor 601 and the gear motor 604 of the automatic fiber wire winding motor 6 are set at a preset rotating speed, the cooling unit 5 is turned on, and a rotating speed of the cooling fan is set.
S4: The continuous carbon fiber filaments are preimpregnated with a layer of the needed preimpregnation resin solution by the preimpregnation box body 201, the continuous carbon fiber fila- ments are dried by the drying barrel body 205 for hardening, the preimpregnated fiber filaments are subjected to resin outer wrap- ping by the fiber outer wrapping member 301 under the guide of driving guide wheels, wire diameters of the prepared continuous carbon fiber wires are trimmed by the fiber wire diameter trimming unit 4 under the dragging of the winding motor 604, and the trimmed continuous carbon fiber wires are wrapped up by the fiber wire wrap-up roll 605.
Embodiment 9 A working principle of the outer wrapping preparation system of the continuous carbon fiber 3D printing wires of the present disclosure is as follows: After continuous carbon fiber filaments manually and seguen- tially penetrate through each component of the outer wrapping preparation system of the continuous carbon fiber 3D printing wires in advance, the winding gear motor 604 is started, the roll- er fastening nut 104 in the fiber roller frame 1 is adjusted to provide appropriate tension for the continuous carbon fiber fila- ments, and the running of the winding gear motor 604 suspends af- ter the nut is adjusted; the preimpregnation resin solution is added into the preimpregnation box body 201, the drying barrel body 205, the fiber filament outer wrapping member 301 and the wire diameter trimming unit 4 are heated to a needed temperature by the temperature controller, the cooling fan of the cooling unit 5 is turned on after the temperature is stable, the resin feeding rate of the resin feeding stepping motor and the rotating speed of the guide rail stepping motor 601 of the automatic fiber wire winding unit 6 are set by the stepping motor controller and the stepping motor driver, and the resin feeding stepping motor, the guide rail stepping motor 601 and the winding gear motor 205 are sequentially started; the continuous carbon fiber filaments are preimpregnated by the preimpregnation box body 201 under the guide of the continuous fiber guide ring 105 and the fiber guide frame I 202-1, the continuous carbon fibers are guided by the preimpregna- tion box fiber guide wheels 204 in an up-and-down alternating man-
ner in sequence to be fully preimpregnated with the resin solution in the preimpregnation box body 201, and the preimpregnated fiber preimpregnated filaments penetrate through the drying barrel body 205 under the guide of the fiber guide frame II 202-2, so that in- ner and outer surfaces of the fiber preimpregnated filaments pass- ing through the drying barrel body 205 are both fully dried; the dried fiber preimpregnated filaments penetrate through the fiber outer wrapping member 301 under the guide of the fiber driving wheels and the T-shaped tension wheel, and under the action of the cavity pressure in the resin melting pool 304, after the fiber preimpregnated filaments pass through the wire outer wrapping thread extrusion head 305, outer surfaces thereof are evenly wrapped with a layer of resin; the externally wrapped fiber wires penetrate through the wire diameter trimming copper mold I 402-1, the wire diameter trimming copper mold II 402-2 and the wire diam- eter trimming copper mold III 402-3 with gradient temperatures and gradient hole diameters, and the wire diameters of the fiber wires passing through the three wire diameter trimming copper molds are the needed sizes; and the trimmed fiber wires are fully cooled by the cooling unit 5 for hardening and then uniformly and orderly wrapped up by the automatic winding unit 6.

Claims (8)

CONCLUSIESCONCLUSIONS 1. Systeem voor het vervaardigen van een buitenwikkel van doorlo- pende driedimensionaal (3D) geprint koolstofvezelgaren, omvattende een doorlopend koolstofvezel rolframe (1), een pre-impregnatiebox en droogcilindergedeelte (2), een vezelbuitenwikkeleenheid (3), een vezelgarendiameter insteleenheid (4), een koeleenheid (5) en een automatische vezelgarenwikkeleenheid (6), waarbij het doorlo- pende koolstofvezel rolframe (1) een structureel frame bevat dat is gevormd uit profielframe van aluminiumlegering en vast is ver- bonden met de koolstofvezel pre-impregatiebox en het droogcilin- dergedeelte (2) op een doorlopende schroefdraadbevestigingswijze; waarbij de buitenste wikkeleenheid (3) is bevestigd aan het onaf- hankelijke structureel profielframe van aluminiumlegering via schroefdraden; waarbij de garendiameter insteleenheid (4) vast is verbonden met een lager deel van de buitenste wikkeleenheid (3); de koeleenheid (5) onafhankelijk vast is verbonden tussen de bui- tenwikkel eenheid (4) en de automatische wikkeleenheid (6); en waarbij de automatische wikkeleenheid (6) vast is verbonden met een laagste positie van het profielframe van aluminiumlegering.A system for manufacturing an outer wrap of continuous three-dimensional (3D) printed carbon fiber yarn, comprising a continuous carbon fiber roll frame (1), a pre-impregnation box and drying cylinder part (2), a fiber outer winding unit (3), a fiber yarn diameter adjusting unit (4 ), a cooling unit (5) and an automatic fiber yarn winding unit (6), wherein the continuous carbon fiber roller frame (1) includes a structural frame formed of aluminum alloy profile frame and fixedly connected with the carbon fiber pre-impregation box and the dry cylinder portion (2) in a continuous threaded attachment manner; wherein the outer winding unit (3) is attached to the independent aluminum alloy structural profile frame via screw threads; wherein the yarn diameter adjusting unit (4) is fixedly connected to a lower part of the outer winding unit (3); the cooling unit (5) is independently fixedly connected between the outer wrapping unit (4) and the automatic wrapping unit (6); and wherein the automatic winding unit (6) is fixedly connected to a lowest position of the aluminum alloy profile frame. 2. Systeem voor het vervaardigen van een buitenwikkel van doorlo- pende 3D-geprint koolstofvezelgaren volgens conclusie 1, waarbij het doorlopende koolstofvezel rolframe (1) bestaat uit een rol- framelichaam (101), een rolas (102), een rolbevestigingsveer (103), een rolbevestigingsmoer (104) en een doorlopende vezelge- leidingsring {105}; en de rolas (102) dringt door in het midden van het rolframelichaam (101), de rolbevestigingsveer (103) dringt door in de buitenzijde van de rolas (102), de bevestigingsmoer (104) wordt in een buitenzijde van de veer geschroefd en de vezel- geleidingsring (105) is vast verbonden met de voorkant van het ve- zelrolframe (1).The system for manufacturing an outer wrap of continuous 3D printed carbon fiber yarn according to claim 1, wherein the continuous carbon fiber roller frame (1) consists of a roller frame body (101), a roller shaft (102), a roller fixing spring (103) , a roller fixing nut (104) and a continuous fiber guide ring {105}; and the roller shaft (102) penetrates the center of the roller frame body (101), the roller fixing spring (103) penetrates the outer side of the roller shaft (102), the fixing nut (104) is screwed into an outer side of the spring, and the fiber guide ring (105) is rigidly connected to the front of the fiber roller frame (1). 3. Systeem voor het vervaardigen van een buitenwikkel van doorlo- pende 3D-geprint koolstofvezelgaren volgens conclusie 1 of 2, waarbij in de pre-impregnatiebox en het droogcilindergedeelte (2),The system for manufacturing an outerwrap of continuous 3D printed carbon fiber yarn according to claim 1 or 2, wherein in the pre-impregnation box and the drying cylinder part (2), een pre-impregnatiebox bestaat uit een pre-impregatieboxbehuizing (201), een vezelgeleidingsframe I (202-1), een vezelgeleidingsfra- me II (202-2), geleidingswielsteun (203) van de pre-impregnatiebox, en een vezelgeleidingswiel (204) van de pre-impregnatiebox; een droogcilinder bestaat uit een droogcilinderlichaam (205), een be- schermframe I (206-1) van de droogcilinder, een beschermframe II (206-2) van de droogcilinder, een vezelbeschermbuis (207) en een doorlopend vezelgeleidingswiel (208); en de pre-impregatiebox- behuizing (201) is vast verbonden met het profielframe van alumi- niumlegering , het vezelgeleidingsframe I (202-1) en het vezelge- leidingsframe II (202-2) zijn vast verbonden met de voorkant en de achterkant van de pre-impregatiebox (201), de geleidingswielsteun (203) van de pre-impregatiebox is vast verbonden met het onderste uiteinde van de pre-impregatiebox , het vezelgeleidingswiel (204) van de pre-impregatiebox is vast verbonden met de geleidingswiel- steun (203) van de pre-impregnatiebox, het beschermframe I (206-1) van de droogcilinder en het beschermframe II (206-2) van de droog- cilinder zijn vast verbonden met het structurele profielframe van aluminiumlegering, de vezel beschermbuis (207) dringt door in het midden van het droogcilinderlichaam (205) en het droogcilinderli- chaam (205) wordt bevestigd tussen het beschermframe I (206-1) van de droogcilinder en het beschermframe II (206-2) van de droog- cilinder met bevestigingsmiddelen.a pre-impregnation box consists of a pre-impregnation box housing (201), a fiber guide frame I (202-1), a fiber guide frame II (202-2), guide wheel support (203) of the pre-impregnation box, and a fiber guide wheel (204) of the pre-impregnation box; a drying cylinder consists of a drying cylinder body (205), a drying cylinder protection frame I (206-1), a drying cylinder protection frame II (206-2), a fiber protection tube (207), and a continuous fiber guide wheel (208); and the pre-impregnation box housing (201) is fixedly connected with the aluminum alloy profile frame, the fiber guide frame I (202-1) and the fiber guide frame II (202-2) are fixed with the front and the back of the pre-impregation box (201), the guide wheel support (203) of the pre-impregation box is fixedly connected to the lower end of the pre-impregation box, the fiber guide wheel (204) of the pre-impregation box is firmly connected to the guide wheel support ( 203) of the pre-impregnation box, the drying cylinder protection frame I (206-1) and the drying cylinder protection frame II (206-2) are firmly connected to the aluminum alloy structural profile frame, the fiber protection tube (207) penetrates through the center of the drying cylinder body (205) and the drying cylinder body (205) is fixed between the drying cylinder protection frame I (206-1) and the drying cylinder protection frame II (206-2) with fasteners. 4. Systeem voor het vervaardigen van een buitenwikkel van doorlo- pende 3D-geprint koolstofvezelgaren volgens conclusie 3, waarbij de vezelbuitenwikkel-eenheid (3) bestaat uit een structureel ve- zelbuitenwikkel-element (301), een beschermende schaal (302) van een structureel vezelbuitenwikkel-element, een vezelgaren toevoer- buis (303), een harssmeltbad (304), een garenbuitenwikkelsdraad extrusiekop (305), een toevoerbuis van harsgaren (306), een stra- lingsbuis I (307-1), een stralingsbuis II (307-2), verwarmingsga- ten (308) van het structurele vezelbuitenwikkel-element, een tem- peratuurmeetgat (309) van het structurele vezelbuitenwikkel- element, een warmte-isolatieplaat (310) en een kussenplaat (311}; het structurele vezelbuitenwikkel-element (301) is een geïnte- greerd structureel element, een conisch cilindrisch gat is gevormd in een midden van het structureel vezelbuitenwikkel-element en vormt het harsensmeltbad (304), de verwarmingsgaten (308) van het structureel vezelbuitenwikkel-element worden respectievelijk ge- vormd in een vooroppervlak en een achteroppervlak van het structu- reel vezelbuitenwikkel-element, het temperatuurmeetgat (309) wordt gevormd in het vooroppervlak van het structureel vezelbuitenwik- kel-element, schroefdraadgaten worden gevormd in een bodem, een bovenoppervlak en een schuine rand van het structureel vezelbui- tenwikkel-element en zijn respectievelijk vast verbonden met het structureel vezelbuitenwikkel-element (301); de garenbuitenwik- kelsdraad extrusiekop (305), de vezelgarentoevoerbuis (303) en de harsgarentoevoerbuis (306) en de stralingsbuis I (307-1) zijn vast verbonden met de harsgarentoevoerbuis (306); de stralende buis II (307-2) is op draadbevestigingswijze vast verbonden met de vezel- garentoevoerbuis (303); en de kussenplaat (311) is vast verbonden met het profielframe van aluminiumlegering, en de warmte- isolatieplaat (310), het structureel vezelbuitenwikkel-element (301) en de beschermende schaal (302) van het structureel vezel- buitenwikkel-element zijn vast verbonden met de kussenplaat (311).A system for manufacturing an overwrap of continuous 3D printed carbon fiber yarn according to claim 3, wherein the fiber overwrap unit (3) consists of a structural fiber overwrap member (301), a protective shell (302) of a structural fiber outer winding member, a fiber yarn supply tube (303), a resin melt bath (304), a yarn outer winding thread extrusion head (305), a resin yarn supply tube (306), a radiation tube I (307-1), a radiation tube II ( 307-2), heating holes (308) of the structural fiber outer wrap member, a temperature measuring hole (309) of the structural fiber outer wrap member, a heat insulation plate (310), and a pad plate (311}; the structural fiber outer wrap member element (301) is an integrated structural element, a conical cylindrical hole is formed in a center of the structural fiber outer wrap member and forms the resin melt bath (304), the heating holes (308) of the structural fiber outer wrap nickel member are formed in a front surface and a back surface of the structural fiber outer wrap member respectively, the temperature measuring hole (309) is formed in the front surface of the structural fiber outer wrap member, threaded holes are formed in a bottom, a upper surface and an inclined edge of the structural fiber outer wrap member and are respectively fixedly connected to the structural fiber outer wrap member (301); the yarn outer wrap wire extrusion head (305), the fiber yarn feed tube (303) and the resin yarn feed tube (306) and the radiation tube I (307-1) are fixedly connected to the resin yarn feed tube (306); the radiating tube II (307-2) is fixedly connected to the fiber yarn supply tube (303) in a wire-fastening manner; and the pad plate (311) is fixedly connected to the aluminum alloy profile frame, and the heat insulation plate (310), the structural fiber outer wrap member (301) and the protective shell (302) of the structural fiber outer wrap member are fixedly connected with the pad plate (311). 5. Systeem voor het vervaardigen van een buitenwikkel van doorlo- pende 3D-geprint koolstofvezelgaren volgens conclusie 1, 2 of 4, waarbij vezelgarendiameter insteleenheid (4) bestaat uit een garen instellend structureel framelichaam (401), een garendiameter in- stellend koperen mal I (402-1), garendiameter instellend koperen mal II (402-2), garendiameter instellend koperen mal III (402-3), een uitstralende verbindingsbuis I (403-1), een uitstralende ver- bindingsbuis II (403-2), temperatuurmeetgaten (404) van een garen- diameter instellend structureel element, verwarmingsgaten (405) van het garendiameterverstellend structurele element, en een be- vestigend rond afdeksel (406); en het garen instellende structu- reel framelichaam (401) is voorzien van de drie temperatuurmeetga- ten (404) en de zes verwarmingsgaten (405) en is vast verbonden met de hierboven beschreven kussenplaat (311), en de garendiameter instellend koperen mal I (402-1) aanpast, de uitstralende verbin- dingsbuis I (403-1), de garendiameter instellend koperen mal IT (402-2), de uitstralende verbindingsbuis II (403-2) en de garendi-The system for manufacturing an outer wrap of continuous 3D printed carbon fiber yarn according to claim 1, 2 or 4, wherein fiber yarn diameter adjusting unit (4) consists of a yarn adjusting structural frame body (401), a yarn diameter adjusting copper mold I (402-1), yarn diameter adjusting copper template II (402-2), yarn diameter adjusting copper template III (402-3), a radiating connecting tube I (403-1), a radiating connecting tube II (403-2), temperature measuring holes (404) of a yarn diameter adjusting structural member, heating holes (405) of the yarn diameter adjusting structural member, and an attaching circular cover (406); and the yarn adjusting structural frame body (401) is provided with the three temperature measurement holes (404) and the six heating holes (405) and is fixedly connected to the pad plate (311) described above, and the yarn diameter adjusting copper mold I ( 402-1), the radiating connecting tube I (403-1), the yarn diameter setting copper mold IT (402-2), the radiating connecting tube II (403-2) and the yarn diameter ameter instellend koperen mal III (402-3) dringen achtereenvolgens door in het garenverstellende structurele framelichaam (401) en zijn vast verbonden met het garen dat structurele framelichaam {401) via de bevestigend rond afdeksel (406).ameter adjusting copper mold III (402-3) successively penetrate the yarn adjusting structural frame body (401) and are fixedly connected to the yarn adjusting structural frame body {401) through the fixing round cover (406). 6. Systeem voor het vervaardigen van een buitenwikkel van doorlo- pende 3D-geprint koolstofvezelgaren volgens conclusie 5, waarbij de koeleenheid (5) bestaat uit een koelventilator (501) en een luchtgeleidingsdeksel (502) van de koelventilator; en de luchtge- leidingsklep (502) van de koelventilator is vast aangesloten op een luchtuitlaatzijde van de koelventilator (501) en is vast aan- gesloten op het profielframe van aluminiumlegering als geheel.The system for manufacturing an outerwrap of continuous 3D printed carbon fiber yarn according to claim 5, wherein the cooling unit (5) consists of a cooling fan (501) and an air guide cover (502) of the cooling fan; and the air guide valve (502) of the cooling fan is fixedly connected to an air outlet side of the cooling fan (501) and is fixedly connected to the aluminum alloy profile frame as a whole. 7. Systeem voor het vervaardigen van een buitenwikkel van doorlo- pende 3D-geprint koolstofvezelgaren volgens conclusie 1, 2, 4, or 6, automatische vezelgarenwikkeleenheid {6} omvat een geleidings- railstappenmotor (601), een geleidingsrail (602), een geleidings- rail bewegend platform (603), een wikkelreductiemotor (604), een vezelgarenwikkelrol (605), een eindschakelaar I {606- 1), en een eindschakelaar II (606-2); een geïntegreerd frame van de gelei- dingsrailstappenmotor (601) is vast verbonden met een onderste uiteinde van het profielframe van aluminiumlegering, het gelei- dingsrail bewegend platform (603) gaat door de geleiderail (602), de wikkelreductiemotor (604) is vast verbonden met het geleidings- rail bewegend platform (603), en de vezelgarenwikkelrol (605) is vast verbonden met de wikkelreductiemotor (604); en zowel de eind- schakelaar I (606-1) als de eindschakelaar II (606-2) zijn vast verbonden met het profielframe van aluminiumlegering.A system for manufacturing an outer wrap of continuous 3D printed carbon fiber yarn according to claim 1, 2, 4, or 6, automatic fiber yarn winding unit {6} comprising a guide rail stepping motor (601), a guide rail (602), a guide - rail moving platform (603), a winding gear motor (604), a fiber yarn winding roller (605), a limit switch I {606-1), and a limit switch II (606-2); an integrated frame of the guide rail stepping motor (601) is fixedly connected with a lower end of the aluminum alloy profile frame, the guide rail moving platform (603) passes through the guide rail (602), the winding gear motor (604) is fixedly connected with the guide rail moving platform (603), and the fiber yarn winding roller (605) is fixedly connected to the winding gear motor (604); and both the limit switch I (606-1) and the limit switch II (606-2) are rigidly connected to the aluminum alloy profile frame. 8. Werkwijze waarbij gebruik wordt gemaakt van een systeem voor het vervaardigen van een buitenwikkel van doorlopende 3D-geprint koolstofvezelgaren volgens een van de conclusies 1 tot en met 7, omvattende de volgende stappen: Sl: bevestiging van een doorlopend koolstofvezelgaren op een door- lopende koolstofvezelrolframe (1), waardoor het doorlopende kool- stofvezelgaren in volgorde door een pre-impregatiebox (201), een droogcilinder (205), een vezelbuitenwikkeleselement (301) en een vezelgarendiameter insteleenheid (4) kan gaan, en het doorlopende koolstofvezelgaren op een vezelgarenwikkelrol (605) kan opwinden voor bevestiging; S2: het toevoegen van een pre-impregnatie-oplossing voor het pre- impregneren van vezels in de pre-impregnatiebox (201) en het ver- warmen van de droogcilinder (205), het vezelbuitenwikkelselement (301) en de vezelgarendiameter insteleenheid (4) tot een vooraf ingestelde temperatuur via een temperatuurregelaar; S3: het instellen van een vooraf ingestelde toevoersnelheid voor een stappenmotor voor harstoevoer, het instellen van vooraf inge- stelde rotatiesnelheden voor een geleiderailmotor (601) en een re- ductiemotor (604) van de automatische vezelgarenwikkeleenheid (6), het inschakelen van een koeleenheid (5) en het instellen van een rotatiesnelheid van een koelventilator; en S4: pre-impregneren van het continue koolstofvezelgaren met een laag vereiste pre-impregnatieharsoplossing via de pre-impregnatie- box (201), het drogen en uitharden via de droogcilinder (205), het uitvoeren van harsbuitenwikkel op het voorgeimpregneerde vezelga- ren via de vezelbuitenwikkel element (301) onder geleiding van een aangedreven geleidingswiel, het instellen van een garendiameter van het geprepareerde doorlopende koolstofvezelgaren via een ve- zelgarendiameter insteleenheid (4) onder de tractie van de wikkel- motor (604) en het opwinden van het aangepaste doorlopende kool- stofvezelgaren door een vezelgarenwikkelrol (605).A method using a system for manufacturing an outer wrap of continuous 3D printed carbon fiber yarn according to any one of claims 1 to 7, comprising the steps of: S1: attaching a continuous carbon fiber yarn to a continuous carbon fiber roll frame (1), which allows the continuous carbon fiber yarn to pass through a pre-impregnation box (201), a drying cylinder (205), a fiber outer winding element (301) and a fiber yarn diameter adjusting unit (4) in sequence, and the continuous carbon fiber yarn on a fiber yarn winding roll (605) can wind up for confirmation; S2: Adding a pre-impregnation solution for pre-impregnating fibers into the pre-impregnation box (201) and heating the drying cylinder (205), the fiber outer winding element (301) and the fiber yarn diameter adjusting unit (4) to a preset temperature via a temperature controller; S3: Setting a preset feeding speed for resin feeding stepper motor, setting preset rotational speeds for a guide rail motor (601) and a gear motor (604) of the automatic fiber yarn winding unit (6), turning on a cooling unit (5) and setting a rotational speed of a cooling fan; and S4: pre-impregnating the continuous carbon fiber yarn with a low required pre-impregnation resin solution through the pre-impregnation box (201), drying and curing through the drying cylinder (205), performing resin overwrap on the pre-impregnated fiber yarn through the fiber outer winding member (301) under the guidance of a driven guide wheel, setting a yarn diameter of the prepared continuous carbon fiber yarn through a fiber yarn diameter adjusting unit (4) under the traction of the winding motor (604), and winding the adjusted continuous carbon fiber yarn through a fiber yarn winding roll (605).
NL2033658A 2021-12-03 2022-12-02 Outer wrapping method and preparation system of continuous carbon fiber 3d printing wires NL2033658B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111465832.7A CN114193658B (en) 2021-12-03 2021-12-03 Continuous carbon fiber 3D printing wire outer wrapping method and preparation system

Publications (2)

Publication Number Publication Date
NL2033658A true NL2033658A (en) 2022-12-19
NL2033658B1 NL2033658B1 (en) 2023-05-31

Family

ID=80650356

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2033658A NL2033658B1 (en) 2021-12-03 2022-12-02 Outer wrapping method and preparation system of continuous carbon fiber 3d printing wires

Country Status (2)

Country Link
CN (1) CN114193658B (en)
NL (1) NL2033658B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101333A (en) * 1982-12-01 1984-06-11 Ube Nitto Kasei Kk Method and apparatus for regulating surface of continuous rodlike item of fiber reinforced synthetic resin
CN210283271U (en) * 2019-06-18 2020-04-10 北京卫星制造厂有限公司 Double-channel 3D printing head based on aerogel wrapping layer and used on rail
CN113172853A (en) * 2021-04-16 2021-07-27 固纤(苏州)智能科技有限公司 3D prints with continuous carbon-fibre composite's dry and wet preparation facilities

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452837A (en) * 1987-05-18 1989-02-28 Sumitomo Chemical Co Method for opening fiber
CN2594225Y (en) * 2002-10-14 2003-12-24 刘祚时 Automatic metal wire winder
CN2811376Y (en) * 2005-04-07 2006-08-30 上海人造板机器厂有限公司 Damping rolling cylinder
EP3424690B1 (en) * 2017-07-03 2023-09-13 Solidian GmbH Method and device for producing a reinforcement grid
CN111201124A (en) * 2017-09-12 2020-05-26 滕忆先 Additive manufacturing apparatus and method
CN108995168B (en) * 2018-09-21 2020-10-16 安徽工程大学 3D printing consumables wire drawing device
CN111497170B (en) * 2020-04-03 2021-05-11 武汉理工大学 3D prints preparation facilities with filiform carbon-fibre composite
CN111186138B (en) * 2020-04-13 2021-04-23 北京化工大学 3D printing device and process for continuous fiber melt impregnation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101333A (en) * 1982-12-01 1984-06-11 Ube Nitto Kasei Kk Method and apparatus for regulating surface of continuous rodlike item of fiber reinforced synthetic resin
CN210283271U (en) * 2019-06-18 2020-04-10 北京卫星制造厂有限公司 Double-channel 3D printing head based on aerogel wrapping layer and used on rail
CN113172853A (en) * 2021-04-16 2021-07-27 固纤(苏州)智能科技有限公司 3D prints with continuous carbon-fibre composite's dry and wet preparation facilities

Also Published As

Publication number Publication date
CN114193658B (en) 2022-12-23
NL2033658B1 (en) 2023-05-31
CN114193658A (en) 2022-03-18

Similar Documents

Publication Publication Date Title
CN108372667A (en) A kind of fibre reinforced composites twine molded technique and device
JP7060277B2 (en) Fiber reinforced 3D printing
US5114516A (en) Method for pultruding fiber-reinforced, thermoplastic stock
US20180065314A1 (en) Radius filler for composite structure
KR930000743B1 (en) Process for the production of profiles of a thermoplastic resin reinforced with continual fibers device for obtaining them
CN109176962A (en) A kind of pre-dispersed and surface treatment continuous fiber reinforced thermoplastic resin base impregnates the moulding integrated device of band and its forming method
CN108724525A (en) Continuous fiber reinforced thermoplastic composite material unidirectional prepreg tape Preparation equipment and method
EP0300321A3 (en) Method of manufacturing continuous fiber-reinforced thermoplastic prepregs and an apparatus for carrying out the same
CN107856298A (en) A kind of continuous fiber reinforced composite materials swinging 3D printer
CN106903906B (en) A kind of continuous fiber reinforced thermoplastic resin melt impregnation device and preparation method
JP6664392B2 (en) Manufacture of various multi-fiber composite components for mass production in a continuous process
CN208697736U (en) Ultrasound suspending liquid method prepares the molding machine of continuous fiber reinforced thermoplastic prepreg
CN101439586A (en) Method for manufacturing continuous fiber reinforced plastic pre-impregnated material and used impregnation mold thereof
CN107866954B (en) Method and apparatus for manufacturing continuous fiber reinforced thermoplastic resin prepreg tape
CA2720705A1 (en) Method for manufacturing a frc/frp-component from rovings with a moulding tool and moulding tool for implementing the method
KR890001528B1 (en) Method and apparatus for rectifying continuously extruded bar-like molding
US4772438A (en) Method and apparatus for continuous shaping of carbon-fiber-reinforced plastic tubes
CN108772976A (en) Ultrasound suspending liquid method prepares the molding machine of continuous fiber reinforced thermoplastic prepreg
CN112477117A (en) Continuous fiber reinforced composite material preimpregnation 3D printing device and method
NL2033658B1 (en) Outer wrapping method and preparation system of continuous carbon fiber 3d printing wires
US5336526A (en) Primary processing of laminated thermoplastic sheets
CN112847925A (en) Continuous fiber reinforced 3D printing composite material melt impregnation system and method
US5282915A (en) Method and apparatus for producing continuous plastic-fabric bicomponent lamina
CN212555127U (en) High-shrinkage high-barrier film blowing production equipment
US20010001408A1 (en) Method and apparatus to febricate a fuly-consolidated fiber- reinforced tape from polymer powder preimpregnated fiber tow bundles for automated tow placement