NL2032365A - Method and system for determining seawater depth for manned submersible - Google Patents

Method and system for determining seawater depth for manned submersible Download PDF

Info

Publication number
NL2032365A
NL2032365A NL2032365A NL2032365A NL2032365A NL 2032365 A NL2032365 A NL 2032365A NL 2032365 A NL2032365 A NL 2032365A NL 2032365 A NL2032365 A NL 2032365A NL 2032365 A NL2032365 A NL 2032365A
Authority
NL
Netherlands
Prior art keywords
depth
seawater
difference
determining
manned
Prior art date
Application number
NL2032365A
Other languages
Dutch (nl)
Other versions
NL2032365B1 (en
Inventor
Yang Lei
Zhang Tongwei
Zhao Shengya
Yang Jichao
Wang Xiangxin
Original Assignee
Nat Deep Sea Ct
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Deep Sea Ct filed Critical Nat Deep Sea Ct
Publication of NL2032365A publication Critical patent/NL2032365A/en
Application granted granted Critical
Publication of NL2032365B1 publication Critical patent/NL2032365B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • G01C13/008Surveying specially adapted to open water, e.g. sea, lake, river or canal measuring depth of open water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3826Terrain data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3841Data obtained from two or more sources, e.g. probe vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hydrology & Water Resources (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

The present invention relates to a method and system for determining a seawater depth for a manned submersible. The method includes using an ultra—short baseline positioning system to determine the position and seawater depth of the deep—sea lander; 5 determining a first depth difference according to the above— mentioned position and seawater depth and the seawater depth of a corresponding position on the global gravity inversion topographic map; using the seawater depth of the above—mentioned, position; determining a second depth difference according to the above— 10 Inentioned, seawater depth and the seawater depth of the corresponding position on the global gravity inversion topographic map; determining a seawater depth difference according to the position of a predetermined, diving point of the manned submersible, the position of the deep—sea lander, the 15 corresponding position of a Hwther ship supported by the manned submersible when the Conductivity—Temperature—Depth profiler bottoms out, and the like.

Description

P1424 /NL
METHOD AND SYSTEM FOR DETERMINING SEAWATER DEPTH FOR MANNED
SUBMERSIBLE
TECHNICAL FIELD
The present invention relates to the field of deep-sea di- ving, and in particular to a method and system for determining the seawater depth for a manned submersible.
BACKGROUND ART
As a special type of deep-sea submersible, a large-depth man- ned submersible has a maximum diving depth of more than 4500 me- ters, and usually, it can carry three people to reach the deep sea seabed, giving full play to human's subjective initiative for a human to mainly carry out observation camera, geologi- cal/biological sampling, in-situ experiments, and other surveying operations.
Compared with ROV, AUV, and like unmanned submersibles, the manned submersible carries 3 people, so its safety is very impor- tant. In order to ensure the safety of a manned submersible, it is necessary to know the seabed topographic map of the diving area, i.e., to define the seawater depth at the diving point. In the ac- tual diving process, according to the operation procedure, when the manned submersible is diving to a distance of 300 meters from the seabed (namely, when the depth of the submersible is the sea- water depth minus 300 meters), the diver turns on the acoustic doppler log (the maximum acting distance is 300 meters) and the collision avoidance sonar (the maximum acting distance is 150 me- ters) to find the bottom, and the manned submersible is prepared to drop the load and perform sitting on the bottom. When the dis- tance from the seabed is 30-50 meters, two diving ballast irons are formally discarded, and the detection operation is directly started or sitting on the bottom is slowly performed with the aid of a propeller.
Because the seawater depth in the diving area is very impor- tant, it is necessary to acquire the seabed topographic map of the target diving area from the historical survey data materials in the planning and designing stage of a diving mission of the manned submersible. The seabed topographic map is usually referred to as a multi-beam topographic map, which is obtained by shipborne deep- sea multi-beam sonar detection. The detection accuracy is high, and the water depth error is between a few meters and 20-30 me- ters, which can meet the requirements of manned submersible di- ving. In addition, after the manned submersible supports the mo- ther ship to carry the manned submersible to a predetermined di- ving area, it is also necessary to use the manned submersible to support the deep-sea multi-beam sonar or deep-sea single-beam so- nar on the mother ship to further check the seawater depth. If the deep-sea multi-beam sonar is installed on the mother ship sup- ported by the manned submersible, the deep-sea multi-beam sonar is used to further scan the terrain and compare with the historical seabed topographic map; if the deep-sea multi-beam sonar is not installed on the mother ship supported by the manned submersible, the deep-sea single-beam sonar is used for continuous single-point sounding to form a continuous side line, which is compared with the historical seabed topographic map. In this way, the seawater depth recheck in the diving area is completed.
However, some manned submersibles support mother ships, such as Xiangyanghong 09 ship which is not installed with a deep-sea multi-beam sonar but installed with a deep-sea single-beam sonar and can only complete single-point sounding. More importantly, the limited number of ocean-going scientific research ships, concen- trated survey areas, and relatively fixed navigation routes make the sea area where multi-beam topographic maps are available limi- ted, and most deep sea and high sea do not have a multi-beam topo- graphic map. If the manned submersible supports that the mother ship does not have deep-sea multi-beam sonar installed, and the predetermined diving area lacks the multi-beam topographic map, then only the global gravity inversion topographic map can be used. Compared with the multi-beam topographic map, the accuracy of the global gravity inversion topographic map is low, especially in a sea area where the topographic fluctuation is severe.
In some diving missions of a manned submersible, the follo-
wing situations are just met. (1) There is no multi-beam topo- graphic map for a predetermined diving area, only a global gravity inversion topographic map. (2) The manned submersible supports a mother ship having no deep-sea multi-beam sonar and only having a deep-water single-beam sonar, wherein the single-beam sonar cannot be used due to damage during the shipping. It can be seen that in the case where the manned submersible supports a mother ship wit- hout deep-sea multi-beam and single-beam sonar available and only with global gravity inversion topographic map, how to use the man- ned submersible to support the mother ship's existing equipment, and combine with routine survey operations to achieve the water depth estimation of the predetermined diving area, evaluate the accuracy of the global gravity inversion topographic map, and en- sure the diving safety of the manned submersible is an urgent pro- blem for manned deep diving scientific research sites to solve.
SUMMARY
It is an object of the present invention to provide a method and system for determining the seawater depth for a manned sub- mersible, which can estimate the seawater depth in a predetermined diving area of a manned submersible and check the global gravity inversion topographic map in the absence of a shipborne multi-beam sonar, a single-beam sonar, and a multi-beam topographic map.
In order to achieve the above object, the invention provides the following scheme: a method for determining a seawater depth for manned sub- mersible, comprising: pairing an acoustic releaser on a deep-sea lander with an ul- tra-short baseline positioning system, and then positioning the acoustic releaser by using the ultra-short baseline positioning system to determine the position of the deep-sea lander and the seawater depth; determining a first depth difference according to the posi- tion and seawater depth of the deep-sea lander and the seawater depth of a corresponding position on the global gravity inversion topographic map; determining the seawater depth of a corresponding position of the mother ship supported by the manned submersible when the Con- ductivity-Temperature-Depth profiler bottoms out by using a Con- ductivity-Temperature-Depth profiler; determining a second depth difference according to the seawa- ter depth of the corresponding position of the mother ship sup- ported by the manned submersible and the seawater depth of the corresponding position on the global gravity inversion topographic map when the Conductivity-Temperature-Depth profiler bottoms out; determining the seawater depth difference at the position of a predetermined diving point of the manned submersible according to the position of the predetermined diving point of the manned submersible, the position of the deep-sea lander, the correspon- ding position of the mother ship supported by the manned submersi- ble when the Conductivity-Temperature-Depth profiler bottoms out, the first depth difference, and the second depth difference; and correcting the seawater depth at the corresponding posi- tion on the global gravity inversion topographic map by using the seawater depth difference at the position of the predetermined di- ving point of the manned submersible.
A system for determining a seawater depth for manned sub- mersible, comprising: a deep-sea lander position and seawater depth determination module for pairing an acoustic releaser on a deep-sea lander with an ultra-short baseline positioning system, and then positioning the acoustic releaser by using the ultra-short baseline positio- ning system to determine a position and the seawater depth of the deep-sea lander; a first depth difference determination module for determining a first depth difference according to the position and seawater depth of the deep-sea lander and the seawater depth of a corres- ponding position on a global gravity inversion topographic map; a seawater depth determination module for the corresponding position of a mother ship supported by the manned submersible when a Conductivity-Temperature-Depth profiler bottoms out, for deter- mining the seawater depth of a corresponding position of the mo- ther ship supported by the manned submersible when the Conductivi- ty-Temperature-Depth profiler bottoms out by using a Conductivity-
Temperature-Depth profiler; a second depth difference determination module for determi- ning a second depth difference according to the seawater depth of the corresponding position of the mother ship supported by the 5 manned submersible and the seawater depth of the corresponding po- sition on the global gravity inversion topographic map when the
Conductivity-Temperature-Depth profiler bottoms out; a seawater depth difference determination module for determi- ning the seawater depth difference at the position of a predeter- mined diving point of the manned submersible according to the po- sition of the predetermined diving point of the manned submersi- ble, the position of the deep-sea lander, the corresponding posi- tion of the mother ship supported by the manned submersible when the Conductivity-Temperature-Depth profiler bottoms out, the first depth difference, and the second depth difference; and a global gravity inversion topographic map module for correcting the seawater depth at the corresponding position on the global gravity inversion topographic map by using the seawater depth difference at the position of the predetermined diving point of the manned submersible.
According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects.
The present invention provides a method and system for deter- mining a seawater depth of a manned submersible: using the ultra- short baseline positioning system to track the deep-sea lander to estimate the seawater depth and using the Conductivity-
Temperature-Depth profiler routine survey to estimate the seawater depth; then using the above estimated seawater depth to determine the corresponding depth difference; then determining the seawater depth difference at the position of a predetermined diving point of the manned submersible according to the position of the prede- termined diving point of the manned submersible, the position of the deep-sea lander, the corresponding position of the mother ship supported by the manned submersible when the Conductivity-
Temperature-Depth profiler bottoms out, the first depth differen- ce, and the second depth difference; and correcting the seawater depth at the corresponding position on the global gravity inversi- on topographic map by using the seawater depth difference at the position of the predetermined diving point of the manned submersi- ble. The present invention can estimate the seawater depth in a predetermined diving area of a manned submersible and check the global gravity inversion topographic map in the absence of a ship- borne multi-beam sonar, a single-beam sonar, and a multi-beam to- pographic map.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a schematic flow chart of a method for determining a seawater depth for a manned submersible provided by the present invention;
Fig. 2 is a schematic view showing a system structure for de- termining a seawater depth for a manned submersible provided by the present invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS
It is an object of the present invention to provide a method and system for determining the seawater depth for a manned sub- mersible, which can estimate the seawater depth in a predetermined diving area of a manned submersible and check the global gravity inversion topographic map in the absence of a shipborne multi-beam sonar, a single-beam sonar, and a multi-beam topographic map.
Fig. 1 is a schematic flow chart of a method for determining a seawater depth for a manned submersible provided by the present invention. As shown in Fig. 1, a method for determining a seawater depth for a manned submersible according to the present invention comprises: 8101, pairing an acoustic releaser on a deep-sea lander with an ultra-short baseline positioning system, and then positioning the acoustic releaser by using the ultra-short baseline positio- ning system to determine the position and the seawater depth of the deep-sea lander; wherein the deep-sea lander is a kind of conventional survey- ing equipment, and the common deep-sea lander is mainly composed of a floating ball/buoyancy block, rope, sensor, sampler, acoustic releaser, pouring weight, etc. As used herein, the acoustic re- leaser has the function cf responding to a shipborne ultra-short baseline positioning system, i.e., the ultra-short baseline posi- tioning system can periodically (e.g., once every 10 seconds, cor- responding to a round trip distance of about 15000 meters and a single trip distance of 7500 meters) measure the position of the acoustic releaser. The ultra-short baseline positioning system is an acoustic positioning system commonly installed on scientific research ships. It can locate an underwater object installed with an acoustic beacon and an acoustic releaser, and obtain the posi- tion of the underwater object by measuring the positions of the acoustic beacon and acoustic releaser.
The above-mentioned steps specifically comprise: the acoustic releaser on the deep-sea lander, after pairing with the ultra-short baseline positioning system, being placed in- to the water from the mother ship supported by the manned sub- mersible and then beginning to descend.
The ultra-short baseline positioning system locates the acoustic releaser, and acquires the position and depth of the deep-sea lander, wherein the depth at the moment tn js da, the depth at the moment burt js das 1, and then the descending speed is
N
3 dy + tra T tarte, gy me ing N ti the descendi ced ON of . By measuring imes, e descending spee 0 the deep-sea lander is estimated.
The ultra-short baseline positioning system keeps tracking the changes in the deep-sea lander depth and confirms that the deep-sea lander reaches the seabed when the ultra-short baseline continuously measures that there is no significant change in the deep-sea lander depth.
After the deep-sea lander reaches the seabed, the ultra-short baseline positioning system continuously measures the position (longitude Long, and latitude Laty, and the depth Zn of the deep- sea lander for M times, and averages them to obtain the longitude
M M
> Lon, Y Lat, 1 1
Long ander USE TT Les Latiander- usp. Tg , latitude ‚ and depth #
Yn 1
Zander SEL gf / of the deep-sea lander. If there are obvious ab- normal points (jumping points) in the measurement result of the ultra-short baseline positioning system, it is necessary to first eliminate the jumping points and then perform the above-mentioned averaging.
S102, determining a first depth difference according to the position and seawater depth of the deep-sea lander and the seawa- ter depth of a corresponding position on the global gravity inver- sion topographic map; wherein according to the above-mentioned average longitude
LOfLander + USBL and latitude L@tLander-USBL of the deep-sea lander, the seawater depth Zuap-USBL marked on the global gravity inversion topo- graphic map is read and compared with the average depth Zi ander - USBL of the deep-sea lander to obtain the first depth difference
A7 ander == Zap - SBL” ZLander - USEL _
S103, determining the seawater depth of a corresponding posi- tion of the mother ship supported by the manned submersible when the Conductivity-Temperature-Depth profiler bottoms out by using a
Conductivity-Temperature-Depth profiler; wherein before the manned submersible enters a new sea area to carry out diving operations, according to the operating proce- dures, it is necessary to first carry out a CTD routine surveying operation to acquire the density-depth profile of the seawater of a predetermined diving sea area. By using the measured density da- ta, the weight of the manned submersible is calculated. The CTD is suspended into the water by armored cables, and the shipboard deck display and control unit can monitor the pressure (which can be converted into depth), temperature, and conductivity (which can be converted into salinity) measured by the CTD in real-time, so that the CTD can obtain its depth in real-time.
As a specific embodiment, the above steps specifically com- prise: placing the CTD into the water through a winch and laying the cable at a speed of 30-40 meters per minute.
The deck display and control unit monitors the CTD depth in real-time. When the CTD is 200 meters away from the seabed, the winch slows down the cable laying speed. The change of the CTD depth is paid close attention.
When the CTD depth is no longer changing or changes little during winch cable laying, the CID is likely to reach the seabed.
At this time, the cable laying speed is further reduced and the dozens of meters of the cable continue to be laid to see if the CTD depth changes. If there is no change in this process, it is confirmed that the CTD has bottomed out. If the CTD depth in- creases, the cable laying continues.
Upon confirming that the CTD bottoms out, the CTD depth Zom, and. the longitude Longo and latitude Latom of the mother ship sup- ported by the manned submersible, are recorded and then the winch picks the cable at a speed of 30-40 meters per minute to recover the CTD. 3104, determining a second depth difference according to the seawater depth of the corresponding position of the mother ship supported by the manned submersible and the seawater depth of the corresponding position on a global gravity inversion topographic map when the Conductivity-Temperature-Depth profiler bottoms out; and according to the longitudeloncm and latitude Laem of the mother ship supported by the manned submersible recorded at the bottoming-out moment of the CTD, reading the seawater depth Zap - CTD marked on the global gravity inversion topographic map and compa- ring the same with the CTD bottoming-out depth Zomo to obtain the depth difference AZorp = Zmap co Zop, 8105, determining the seawater depth difference at the posi- tion of a predetermined diving point of the manned submersible ac- cording to the position of the predetermined diving point of the manned submersible, the position of the deep-sea lander, the cor- responding position of the mother ship supported by the manned submersible when the Conductivity-Temperature-Depth profiler bot- toms out, the first depth difference, and the second depth diffe- rence.
S105 specifically includes: determining a first distance difference according to the po- sition of the predetermined diving point of the manned submersible and the position of a deep-sea lander; determining a second distance difference according to the po- sition of the predetermined diving point of the manned submersible and the corresponding position of the mother ship supported by the manned submersible when the Conductivity-Temperature-Depth profi- ler bottoms out; determining a weight corresponding to the deep-sea lander and a weight corresponding to the Conductivity-Temperature-Depth pro- filer according to the first distance difference and the second distance difference; and determining the seawater depth difference at the position of the predetermined diving point of the manned submersible by using the first depth difference, the second depth difference, and the weight corresponding to the deep-sea lander and the weight corresponding to the Conductivity-Temperature-Depth profiler.
Determining the seawater depth difference at the position of the predetermined diving point of the manned submersible by using the first depth difference, the second depth difference, and the weight corresponding to the deep-sea lander and the weight corres- ponding to the Conductivity-Temperature-Depth profiler specifical- ly comprises: using AZiov = Aander X AZ ander + Aero X AZoTD + determine the seawa- ter depth difference of the position of the predetermined diving point of the manned submersible; wherein AZov= Alander * AZ ander + Aco X AZT) js the seawater depth difference of the position of the predetermined diving point of the manned submersible, ÀL ander is the weight corresponding to the deep-sea lander, Act is the weight corresponding to the Conducti- vity-Temperature-Depth profiler, AZ ander is the first depth diffe- rence, and Alet is the second depth difference.
The specific procedures are as below: reading the seawater depth Zmap - HOV marked on the global gravi- ty inversion topographic map according to the longitude Lonpov and latitude Lathy of the predetermined diving point of the manned sub- mersible; according to longitude LofLander-USBL and latitude L3tLander - UsEL when the deep-sea lander bottoms out, the longitude Longo and lati- tude Latem of the mother ship supported by the manned submersible when the CTD bottoms out, and the longitude Lont and latitude
LatHov of the predetermined diving point of the manned submersible, respectively calculating the distance RHOV-Lander between the prede- termined diving point of the manned submersible and the deep-sea lander and the distance RHOV-CTD between the predetermined diving point of the manned submersible and the position where the CTD bottoms out; respectively calculating the weight At ander and Ago correspon- ding to the deep-sea lander and the CTD, wherein i
RHov - Lander Rov - 610
ALander = 1 1 = . RHov - Lander + RHov -¢Tp
Rov - Lander RHov-CTD , 1
A RHov -07D RHov - Lander
DTT A
1 , 1 Rao - Lander + RHov - co
RHov-Lander RHov-CTD ‚ and Mander + Aco = 1, reading the seawater depth difference AZ) ander estimated by the ultra-short baseline positioning system tracking the deep-sea lan- der and the seawater depth difference AZom estimated by the CTD routine survey, and performing a weighted average to obtain the seawater depth difference AZyov = ander X Aiander + Ae XAZeT at the position of the predetermined diving point of the manned submersi- ble; and correcting the seawater depth Zrap-HV marked on the global gravity inversion topographic map to obtain the seawater depth
Zrov = Zap Hv ÀZHV of the predetermined diving point of the manned submersible.
S106, correcting the seawater depth at the corresponding po- sition on the global gravity inversion topographic map by using the seawater depth difference at the position of the predetermined diving point of the manned submersible.
The method provided by the present invention is described as follows: there is no multi-beam topographic map, but only a global gravity inversion topographic map in the diving predetermined area of the manned submersible during a certain diving mission. No deep-sea multi-beam sonar is installed on the mother ship sup- ported by the manned submersible, and the only deep-sea single- beam sonar is damaged and unusable. The predetermined diving area of the manned submersible is one side of a trench in the Pacific
Ocean. Two routine surveying operations are planned near the pre- determined diving point, including one time of deep-sea lander de- ployment and one time of CTD surveying operation. At the noon of a certain day, after the mother ship supported by a manned submersi- ble carried a manned submersible to an operational sea area, the deep-sea lander deployment operation was carried out first; after the completion of the deep-sea lander operation, the CTD surveying operation was carried out in the evening; the manned submersible diving operation was carried out the next morning. (1) The ultra- short baseline positioning system tracked the deep-sea lander all the time. After the deep-sea lander reached the bottom, the average depth of the deep-sea lander was 5030 meters by measure- ments for many times. The depth of the deep-sea lander position read from the global gravity inversion topographic map was 5706 meters, that is, the actual depth of the deep-sea lander position was 676 meters smaller than the depth value read from the global gravity inversion topographic map. (2) From the evening to early morning the next day when the CTD routine surveying was performed, when the CTD depth was shown as 5917 meters, the depth did not in- crease during the 100 meters of continuous cable laying. It was preliminarily judged that the CTD bottomed out, and then the CTD was recovered by picking the cable. After being recovered to the deck, it was found that there were tens of meters of cable knotted at the end. Therefore, it could be seen that the bottoming out fault of the CTD occurred, and the actual seawater depth was 5917 meters. While the bottoming-out position depth of the CTD read from the global gravity inversion topographic map was 6617 meters, namely, the actual depth of the CTD bottoming-out position was 700 meters less than the depth value read by the global gravity inver- sion topographic map.
The depth of the diving point read from the global gravity inversion topographic map was 5100 meters. Based on (1) the ultra- short baseline positioning system tracking the deep-sea lander all the time and (2) the CTD routine surveying, and combined with the position of the manned submersible predetermined diving point, the distance between the manned submersible predetermined diving point and the deep-sea lander was 6109 meters, and the distance between the manned submersible predetermined diving point and the CTD bot- toming-out position was 6786 meters. Therefore, the weights cor- responding to the deep-sea lander and the CTD were 0.526 and 0.474 respectively. On this basis, the weighted average was performed to obtain that there was a large deviation in the global gravity in- version topographic map of the position of the predetermined di- ving point of the manned submersible, and the actual seawater depth was about 687 meters less than the nominal depth of the glo- bal gravity inversion topographic map. On this basis, the follo- wing preliminary judgment was made: the actual water depth of the diving point of the manned submersible was 687 meters less than the nominal water depth of the seabed topographic map, i.e., the seawater depth was only 4413 meters. To add a margin, the actual seawater depth was estimated to be 4200-4413 meters, adding a mar- gin of 200 meters. This important finding was then immediately no-
tified to the diver who was diving with the manned submersible, and it was recommended that the diver turn on the relevant acoustic doppler log and the collision avoidance sonar to find the bottom when diving to a depth of 4000 meters (further increasing the safe distance), and prepare to drop the load and perform sit- ting on the bottom at any time. Finally, the actual sitting on the bottom depth of the manned submersible was 4407 meters, which was 693 meters less than the nominal depth of the seabed topographic map which was basically consistent with the pre-judged result of 687 meters.
Fig. 2 is a schematic view showing a system structure for de- termining a seawater depth for a manned submersible provided by the present invention. As shown in Fig. 2, a system for determi- ning a seawater depth for a manned submersible according to the present invention comprises: a deep-sea lander position and seawater depth determination module 201 for pairing an acoustic releaser on a deep-sea lander with an ultra-short baseline positioning system, and then positio- ning the acoustic releaser by using the ultra-short baseline posi- tioning system to determine the position and the seawater depth of the deep-sea lander; a first depth difference determination module 202 for deter- mining a first depth difference according to the position and sea- water depth of the deep-sea lander and the seawater depth of a corresponding position on the global gravity inversion topographic map; a seawater depth determination module 203 for the correspon- ding position of the mother ship supported by the manned submersi- ble when the Conductivity-Temperature-Depth profiler bottoms out, for determining the seawater depth of a corresponding position of the mother ship supported by the manned submersible when the Con- ductivity-Temperature-Depth profiler bottoms out by using a Con- ductivity-Temperature-Depth profiler; a second depth difference determination module 204 for deter- mining a second depth difference according to the seawater depth of the corresponding position of the mother ship supported by the manned submersible and the seawater depth of the corresponding po-
sition on a global gravity inversion topographic map when the Con- ductivity-Temperature-Depth profiler bottoms out; a seawater depth difference determination module 205 for de- termining the seawater depth difference at the position of a pre- determined diving point of the manned submersible according to the position of the predetermined diving point of the manned submersi- ble, the position of the deep-sea lander, the corresponding posi- tion of the mother ship supported by the manned submersible when the Conductivity-Temperature-Depth profiler bottoms out, the first depth difference, and the second depth difference; and a global gravity inversion topographic map module 206 for correcting the seawater depth at the corresponding position on the global gravity inversion topographic map by using the seawater depth difference at the position of the predetermined diving point of the manned submersible.
The seawater depth difference determination module 205 speci- fically comprises: a first distance difference determination unit for determi- ning a first distance difference according to the position of the predetermined diving point of the manned submersible and the posi- tion of a deep-sea lander; a second distance difference determination unit for determi- ning a second distance difference according to the position of the predetermined diving point of the manned submersible and the cor- responding position of the mother ship supported by the manned submersible when the Conductivity-Temperature-Depth profiler bot- toms out; a weight determination unit for determining a weight corres- ponding to the deep-sea lander and a weight corresponding to the
Conductivity-Temperature-Depth profiler according to the first distance difference and the second distance difference; and a seawater depth difference determination unit for deter- mining the seawater depth difference at the position of the prede- termined diving point of the manned submersible by using the first depth difference, the second depth difference, and the weight cor- responding to the deep-sea lander and the weight corresponding to the Conductivity-Temperature-Depth profiler.
The seawater depth difference determination unit specifically comprises: a seawater depth difference determination sub-unit for deter- mining the seawater depth difference of the position of the prede- termined diving point of the manned submersible by using
AZuoy = ALander X AZ ander + Agro X Ag, wherein AZHOV = ÄLander X AZlander + Aotp X 826 js the seawater depth difference of the position of the predetermined diving point of the manned submersible, À ander is the weight corresponding to the deep-sea lander, Ago is the weight corresponding to the Conducti- vity-Temperature-Depth profiler, AZ) ander is the first depth diffe- rence, and AZe is the second depth difference.

Claims (6)

CONCLUSIESCONCLUSIONS 1. Werkwijze voor het bepalen van een zeewaterdiepte voor een be- mande duikboot, met het kenmerk, dat deze omvat: het koppelen van een akoestische releaser op een diepzeelander met een ultrakort basislijnpositioneringssysteem, en vervolgens het positioneren van een akoestische releaser door gebruik te maken van het ultrakorte basislijnpositioneringssysteem om een positie en de zeewaterdiepte van de diepzeelander te bepalen; het bepalen van een eerste diepteverschil in overeenstemming met de positie en zeewaterdiepte van de diepzeelander en de zeewater- diepte van een corresponderende positie op de globale zwaarte- krachtinversie topografische kaart; het bepalen van de zeewaterdiepte van een corresponderende positie van een moederschip ondersteund door de bemande duikboot wanneer een Conductivity-Temperature-Depth profiler naar de bodem beweegt door gebruik te maken van een Conductivity-Temperature-Depth pro- filer; het bepalen van een tweede diepteverschil in overeenstemming met de zeewaterdiepte van de corresponderende positie van het moeders- chip ondersteund door de bemande duikboot en de zeewaterdiepte van de corresponderende positie op de globale zwaartekrachtinversie topografische kaart wanneer de Conductivity-Temperature-Depth pro- filer naar de bodem beweegt; het bepalen van het diepteverschil van het zeewater op de positie van een vooraf bepaald duikpunt van de bemande duikboot in over- eenstemming met de positie van het vooraf bepaalde duikpunt van de bemande duikboot, de positie van de diepzeelander, de corresponde- rende positie van het moederschip ondersteund door de bemande duikboot wanneer de Conductivity-Temperature-Depth profiler naar de bodem beweegt, het eerste diepteverschil en het tweede diepte- verschil; en het corrigeren van de zeewaterdiepte op de corresponderende po- sitie op de globale zwaartekrachtinversie topografische kaart door gebruik te maken van het diepteverschil van het zeewater op de po- sitie van het vooraf bepaalde duikpunt van de bemande duikboot.1. A method of determining a seawater depth for a manned submarine, comprising: coupling an acoustic releaser on a deep sea lander with an ultra-short baseline positioning system, and then positioning an acoustic releaser using of the ultra-short baseline positioning system to determine a position and seawater depth of the deep-sea lander; determining a first depth difference in accordance with the position and seawater depth of the deep sea lander and the seawater depth of a corresponding position on the global gravity inversion topographic map; determining the seawater depth of a corresponding position of a mothership supported by the manned submarine when a Conductivity-Temperature-Depth profiler moves to the bottom using a Conductivity-Temperature-Depth profiler; determining a second depth difference in accordance with the seawater depth of the corresponding position of the mother chip supported by the manned submarine and the seawater depth of the corresponding position on the global gravity inversion topographic map when the Conductivity-Temperature-Depth profiler is moved to the bottom moves; determining the depth difference of the seawater at the position of a predetermined diving point of the manned submarine in accordance with the position of the predetermined diving point of the manned submarine, the position of the deep-sea lander, the corresponding position of the mothership supported by the manned submarine when the Conductivity-Temperature-Depth profiler moves to the bottom, the first depth difference and the second depth difference; and correcting the seawater depth at the corresponding position on the global gravity inversion topographic map by using the depth difference of the seawater at the position of the predetermined dive point of the manned submarine. 2. Werkwijze voor het bepalen van een zeewaterdiepte voor een be- mande duikboot volgens conclusie 1, met het kenmerk, dat het bepa- len van het diepteverschil van het zeewater ter plaatse van een vooraf bepaald duikpunt van de bemande duikboot in overeenstemming met de positie van het vooraf bepaalde duikpunt van de bemande duikboot, de positie van de diepzeelander, de corresponderende po- sitie van het moederschip ondersteund door de bemande duikboot wanneer de Conductivity-Temperature-Depth profiler naar de bodem beweegt, het eerste diepteverschil en het tweede diepteverschil, specifiek omvat: het bepalen van een eerste afstandsverschil in overeenstemming met de positie van het vooraf bepaalde duikpunt van de bemande duik- boot en de positie van een diepzeelander; het bepalen van een tweede afstandsverschil in overeenstemming met de positie van het vooraf bepaalde duikpunt van de bemande duik- boot en de corresponderende positie van het moederschip onder- steund door de bemande duikboot wanneer de Conductivity- Temperature-Depth profiler naar de bodem beweegt; het bepalen van een gewicht dat overeenkomt met de diepzeelander en een gewicht dat overeenkomt met de Conductivity-Temperature- Depth profiler in overeenstemming met het eerste afstandsverschil en het tweede afstandsverschil; en het bepalen van het diepteverschil van het zeewater ter plaatse van het vooraf bepaalde duikpunt van de bemande duikboot door ge- bruik te maken van het eerste diepteverschil, het tweede diepte- verschil en het gewicht dat overeenkomt met de diepzeelander en het gewicht dat overeenkomt met de Conductivity-Temperature-Depth profiler.A method for determining a seawater depth for a manned submarine according to claim 1, characterized in that determining the depth difference of the seawater at a predetermined diving point of the manned submarine in accordance with the position of the predetermined dive point of the manned submarine, the position of the deep-sea lander, the corresponding position of the mother ship supported by the manned submarine when the Conductivity-Temperature-Depth profiler moves to the bottom, the first depth difference and the second depth difference, specifically includes: determining a first distance difference in accordance with the position of the predetermined dive point of the manned submarine and the position of a deep sea lander; determining a second distance difference in accordance with the position of the predetermined dive point of the manned submarine and the corresponding position of the mother ship supported by the manned submarine as the Conductivity-Temperature-Depth profiler moves to the bottom; determining a weight corresponding to the deep sea lander and a weight corresponding to the Conductivity-Temperature-Depth profiler in accordance with the first distance difference and the second distance difference; and determining the depth difference of the seawater at the predetermined diving point of the manned submarine by using the first depth difference, the second depth difference and the weight corresponding to the deep-sea lander and the weight corresponding to the Conductivity-Temperature-Depth profiler. 3. Werkwijze voor het bepalen van een zeewaterdiepte voor een be- mande duikboot volgens conclusie 2, met het kenmerk, dat het bepa- len van het diepteverschil van het zeewater ter plaatse van het vooraf bepaalde duikpunt van de bemande duikboot door gebruik te maken van het eerste diepteverschil, het tweede diepteverschil en het gewicht dat overeenkomt met de diepzeelander en het gewicht dat overeenkomt met de Conductivity-Temperature-Depth profiler specifiek omvat: het gebruiken van AZoy = Aander X AZ ander + oto X Ze oor het bepalen van een diepteverschil van het zeewater van de positie van het vooraf bepaalde duikpunt van de bemande duikboot; waarbij AZuov = ALander X AZ ander + Ac X AZeT staat voor het dieptever- schil van het zeewater van de positie van het vooraf bepaalde duikpunt van de bemande duikboot, ÀL ander staat voor het gewicht dat overeenkomt met de diepzeelander, A staat voor het gewicht dat oversenkomt met de Conductivity-Temperature-Depth profiler, lander staat voor het eerste diepteverschil , en AZom staat voor het tweede diepteverschil.A method for determining a seawater depth for a manned submarine according to claim 2, characterized in that determining the depth difference of the seawater at the predetermined diving point of the manned submarine by using the first depth difference, the second depth difference and the weight corresponding to the deep sea lander and the weight corresponding to the Conductivity-Temperature-Depth profiler specifically includes: using AZoy = Aander of the seawater of the position of the predetermined dive point of the manned submarine; where AZuov = ALander that corresponds to the Conductivity-Temperature-Depth profiler, lander stands for the first depth difference, and AZom stands for the second depth difference. 4. Systeem voor het bepalen van een zeewaterdiepte voor een beman- de duikboot, met het kenmerk, dat het omvat: een diepzeelanderpositie- en zeewaterdieptebepalingsmodule voor het koppelen van een akoestische releaser op een diepzeelander met een ultrakort basislijnpositioneringssysteem, en vervolgens het positioneren van de akoestische releaser met behulp van het ultra- korte basislijnpositioneringssysteem om een positie en de zeewa- terdiepte van de diepzeelande te bepalenr; een eerste diepteverschilbepalingsmodule voor het bepalen van een eerste diepteverschil volgens de positie en zeewaterdiepte van de diepzeelander en de zeewaterdiepte van een corresponderende posi- tie op een globale zwaartekrachtinversie topografische kaart; een zeewaterdieptebepalingsmodule voor de corresponderende positie van een moederschip ondersteund door de bemande duikboot wanneer een Conductivity-Temperature-Depth profiler naar de bodem beweegt, voor het bepalen van de zeewaterdiepte van een corresponderende positie van het moederschip ondersteund door de bemande submersi- ble wanneer de Conductivity -Temperature-Depth profiler naar de bodem beweegt door een geleidbaarheid-ctivity -Temperature-Depth profiler te gebruiken; eer tweede diepteverschilbepalingsmodule voor het bepalen van een tweede diepteverschil volgens de zeewaterdiepte van de correspon- derende positie van het moederschip ondersteund door de bemande duikboot en de zeewaterdiepte van de corresponderende positie op de globale zwaartekrachtinversie topografische kaart wanneer de Conductivity -Temperature-Depth profiler naar de bodem beweegt; een zeewaterdiepteverschilbepalingsmodule voor het bepalen van het zeewaterdiepteverschil ter plaatse van een vooraf bepaald duikpunt van de bemande duikboot volgens de positie van het vooraf bepaalde duikpunt van de bemande duikboot, de positie van de diepzeelander, de overeenkomstige positie van het moederschip dat wordt onder- steund door de bemande duikboot wanneer de Conductivity - Temperature-Depth profiler naar de bodem beweegt, het eerste diep- teverschil en het tweede diepteverschil; en een mondiale zwaartekrachtinversie topografische kaartmodule voor het corrigeren van de zeewaterdiepte op de corresponderende positie op de mondiale zwaartekrachtinversie topografische kaart door gebruik te maken van het zeewaterdiepteverschil op de positie van het vooraf bepaalde duikpunt van de bemande duikboot.4. A manned submarine seawater depth determination system comprising: a deep sea lander positioning and sea water depth finding module for coupling an acoustic releaser on a deep sea lander to an ultra-short baseline positioning system, and subsequently positioning the acoustic releaser using the ultra-short baseline positioning system to determine a position and the seawater depth of the deep-sea land; a first depth difference determination module for determining a first depth difference according to the position and seawater depth of the deep sea lander and the seawater depth of a corresponding position on a global gravity inversion topographic map; a seawater depth determination module for the corresponding position of a mother ship supported by the manned submersible when a Conductivity-Temperature-Depth profiler moves to the bottom, for determining the seawater depth of a corresponding position of the mother ship supported by the manned submersible when the Conductivity -Temperature-Depth profiler moves to the bottom by using a conductivity-ctivity -Temperature-Depth profiler; a second depth difference determination module for determining a second depth difference according to the seawater depth of the corresponding position of the mother ship supported by the manned submarine and the seawater depth of the corresponding position on the global gravity inversion topographic map when the Conductivity-Temperature-Depth profiler is moved to the bottom moves; a seawater depth difference determination module for determining the seawater depth difference at a predetermined dive point of the manned submarine according to the position of the predetermined dive point of the manned submarine, the position of the deep-sea lander, the corresponding position of the mother ship supported by the manned submarine when the Conductivity - Temperature-Depth profiler moves to the bottom, the first depth difference and the second depth difference; and a global gravity inversion topographic map module for correcting the seawater depth at the corresponding position on the global gravity inversion topographic map by using the seawater depth difference at the position of the predetermined dive point of the manned submarine. 5. Systeem voor het bepalen van een zeewaterdiepte voor een beman- de onderwaterboot volgens conclusie 4, met het kenmerk, dat de mo- dule voor het bepalen van het zeewaterdiepteverschil specifiek om- vat: een eerste afstandsverschilbepalingseenheid voor het bepalen van een eerste afstandsverschil in overeenstemming met de positie van het vooraf bepaalde duikpunt van de bemande duikboot en de positie van de diepzeelander; een tweede afstandsverschilbepalingseenheid voor het bepalen van een tweede afstandsverschil in overeenstemming met de positie van het vooraf bepaalde duikpunt van de bemande duikboot en de corres- ponderende positie van het moederschip dat wordt ondersteund door de bemande duikboot wanneer de Conductivity-Temperature-Depth pro- filer naar de bodem beweegt; een gewichtsbepalingseenheid voor het bepalen van een gewicht dat overeenkomt met de diepzeelander en een gewicht dat overeenkomt met de Conductivity-Temperature-Depth profiler in overeenstemming met het eerste afstandsverschil en het tweede afstandsverschil; en een eenheid voor het bepalen van het zeewaterdiepteverschil voor het bepalen van het diepteverschil van het zeewater ter plaatse van het vooraf bepaalde duikpunt van de bemande duikboot door gebruik te maken van het eerste diepteverschil, het tweede diepteverschil, en het gewicht dat overeenkomt met de diepzeelan- der en het gewicht dat overeenkomt met de Conductivity- Temperature-Depth profiler.A system for determining a seawater depth for a manned underwater boat according to claim 4, characterized in that the module for determining the seawater depth difference specifically comprises: a first distance difference determining unit for determining a first distance difference in accordance with the position of the predetermined dive point of the manned submarine and the position of the deep-sea lander; a second distance difference determining unit for determining a second distance difference in accordance with the position of the predetermined dive point of the manned submarine and the corresponding position of the mother ship supported by the manned submarine when the Conductivity-Temperature-Depth profiler moves to the bottom; a weight determining unit for determining a weight corresponding to the deep sea lander and a weight corresponding to the Conductivity-Temperature-Depth profiler in accordance with the first distance difference and the second distance difference; and a seawater depth difference determining unit for determining the seawater depth difference at the predetermined diving point of the manned submarine by using the first depth difference, the second depth difference, and the weight corresponding to the deep sea depth - der and the weight corresponding to the Conductivity-Temperature-Depth profiler. 6. Systeem voor het bepalen van een zeewaterdiepte voor een beman- de duikboot volgens conclusie 5, met het kenmerk, dat de eenheid voor het bepalen van het diepteverschil van het zeewater specifiek omvat: een subeenheid voor het bepalen van het diepteverschil van het zeewater voor het bepalen van het diepteverschil van het zeewater van de positie van het vooraf bepaalde duikpunt van de bemande dui kboot met behulp van AZuov = Alander x AZ| ander + Aco x AZ, waarin AZHov = Äander X AZlander + Aco X 8Z6TD staat voor het dieptever- schil van het zeewater van de positie van het vooraf bepaalde duikpunt van de bemande duikboot, Lander staat voor het gewicht dat overeenkomt met de diepzeelander, ACD staat voor het gewicht dat overeenkomt met de Conductivity-Temperature-Depth profiler, AZ ander staat voor het eerste diepteverschil , en AZoTp staat voor het tweede diepteverschil.6. A manned submarine seawater depth determination system according to claim 5, characterized in that the seawater depth difference determination unit specifically comprises: a seawater depth difference determination sub-unit for determining the depth difference of the seawater from the position of the predetermined diving point of the manned diving boat using AZuov = Alander x AZ| other + Aco x AZ, where AZHov = Äander represents the weight corresponding to the Conductivity-Temperature-Depth profiler, AZ other represents the first depth difference, and AZoTp represents the second depth difference.
NL2032365A 2022-05-20 2022-07-04 Method and system for determining seawater depth for manned submersible NL2032365B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210554700.XA CN114966711B (en) 2022-05-20 2022-05-20 Manned submersible vehicle-oriented seawater depth determination method and system

Publications (2)

Publication Number Publication Date
NL2032365A true NL2032365A (en) 2023-11-28
NL2032365B1 NL2032365B1 (en) 2024-01-23

Family

ID=82984869

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2032365A NL2032365B1 (en) 2022-05-20 2022-07-04 Method and system for determining seawater depth for manned submersible

Country Status (2)

Country Link
CN (1) CN114966711B (en)
NL (1) NL2032365B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203785669U (en) * 2014-04-10 2014-08-20 国家海洋局南海工程勘察中心 High-precision deep sea depth detection device
CN111142169A (en) * 2020-02-25 2020-05-12 中国地质大学(北京) Submarine topography inversion method based on gravity gradient data

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2519269C1 (en) * 2012-12-12 2014-06-10 Открытое акционерное общество "Государственный научно-исследовательский навигационно-гидрографический институт" (ОАО "ГНИНГИ") Method of surveying bottom topography of water area and apparatus therefor
CN104765017B (en) * 2015-04-22 2017-03-15 国家深海基地管理中心 Manned underwater vehicle ultra short baseline locating system sea rating test method
CN107219529B (en) * 2017-06-07 2019-08-09 国家深海基地管理中心 A kind of acquisition methods and system of high-precision seafloor topography figure
CN108267126B (en) * 2018-01-22 2019-08-02 中国海洋大学 Observation system and method for the wave to bottom sediment settling flux amount in deep-sea
CN110057365B (en) * 2019-05-05 2022-06-21 哈尔滨工程大学 Large-submergence-depth AUV submergence positioning method
CN112644647B (en) * 2020-12-24 2023-01-06 上海海洋大学 Method for carrying out investigation operation on deep Brillouin by adopting offshore flow laboratory system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203785669U (en) * 2014-04-10 2014-08-20 国家海洋局南海工程勘察中心 High-precision deep sea depth detection device
CN111142169A (en) * 2020-02-25 2020-05-12 中国地质大学(北京) Submarine topography inversion method based on gravity gradient data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OLDFIELD S: "Pressure or depth?", OCEANS '94. 'OCEANS ENGINEERING FOR TODAY'S TECHNOLOGY AND TOMORROW'S PRESERVATION.' PROCEEDINGS BREST, FRANCE 13-16 SEPT. 1994, IEEE, NEW YORK, NY, US, vol. 2, 13 September 1994 (1994-09-13), pages II/372 - II/376, XP010125026, ISBN: 978-0-7803-2056-7, DOI: 10.1109/OCEANS.1994.364072 *

Also Published As

Publication number Publication date
CN114966711B (en) 2023-01-24
NL2032365B1 (en) 2024-01-23
CN114966711A (en) 2022-08-30

Similar Documents

Publication Publication Date Title
Jakuba et al. Long‐baseline acoustic navigation for under‐ice autonomous underwater vehicle operations
EP3213121B1 (en) Touch down monitoring of an ocean bottom seismic node
US9223002B2 (en) System and method for determining the position of an underwater vehicle
CA2772259C (en) Ice data collection system
JP4968827B2 (en) Underwater positioning system and underwater positioning method
KR100478811B1 (en) Autonomous underwater vehicle and operational method
Evans et al. Docking techniques and evaluation trials of the SWIMMER AUV: an autonomous deployment AUV for work-class ROVs
Von Alt et al. Hunting for mines with REMUS: A high performance, affordable, free swimming underwater robot
CN110235808B (en) Method for investigating coral section in island reef area by diving
Hagen et al. Rapid environmental assessment with autonomous underwater vehicles—Examples from HUGIN operations
NL2032365B1 (en) Method and system for determining seawater depth for manned submersible
CN109398615B (en) Deep sea laying method of sinking block for buoy
RU2609618C1 (en) Underwater robot system
CN107121668A (en) The detection system of space exploration node
Diercks et al. Site reconnaissance surveys for oil spill research using deep-sea AUVs
Humphris Vehicles for deep sea exploration
EP1215114A1 (en) Method of laying an underwater cable
AU2012200886A1 (en) System and method for determining the position of an underwater vehicle
Kim et al. Underwater navigation based on the multiple sensor fusion for the deep-sea UUV system, HEMIRE and HENUVY
Vasilijevic et al. Inspection of Submerged Structures
Holt The application of the fusion positioning system to marine archaeology
McKenna et al. Uncrewed Systems Hypoxia Mapping in the Northern Gulf of Mexico
Andrews Search Operations in the Thresher Area 1964 Section I
CN117310771A (en) Submarine equipment displacement monitoring system based on satellite and acoustic combined positioning
Patel Surveillance of Marine Resources by use of Stationary Platforms and Autonomous Underwater Vehicle (AUVS)