NL2032212B1 - Crane and method for the assembly and installation of offshore wind turbines - Google Patents

Crane and method for the assembly and installation of offshore wind turbines Download PDF

Info

Publication number
NL2032212B1
NL2032212B1 NL2032212A NL2032212A NL2032212B1 NL 2032212 B1 NL2032212 B1 NL 2032212B1 NL 2032212 A NL2032212 A NL 2032212A NL 2032212 A NL2032212 A NL 2032212A NL 2032212 B1 NL2032212 B1 NL 2032212B1
Authority
NL
Netherlands
Prior art keywords
boom
crane
wind turbine
floating foundation
jib
Prior art date
Application number
NL2032212A
Other languages
Dutch (nl)
Inventor
Bernardus Wijning Diederick
Original Assignee
Itrec Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itrec Bv filed Critical Itrec Bv
Priority to NL2032212A priority Critical patent/NL2032212B1/en
Priority to PCT/EP2023/066321 priority patent/WO2023242427A2/en
Application granted granted Critical
Publication of NL2032212B1 publication Critical patent/NL2032212B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/185Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes for use erecting wind turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • B66C23/52Floating cranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • F03D13/126Offshore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • F03D13/139Assembling or erecting wind motors by using lifting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • F05B2230/61Assembly methods using auxiliary equipment for lifting or holding
    • F05B2230/6102Assembly methods using auxiliary equipment for lifting or holding carried on a floating platform

Abstract

The invention relates to a crane that can be used for both assembling and installing large wind turbines. Furthermore, the crane allows for assembly of large size wind turbines at the installation location. Therefore, the wind turbine does not need to be transported in an assembled and/or upright position, which facilitates transport. A crane according to the invention can be switched between a assembly configuration and an installation configuration. In the assembly configuration, the boom is in a retracted position and the jib is in the hoisting position for hoisting a nacelle on top of a wind turbine mast. In the clearance position the boom is in a hoisting position and the jib is moved backward to enable a mast to be supported by the boom of the crane.

Description

P35781NLOO/MHR
CRANE AND METHOD FOR THE ASSEMBLY AND INSTALLATION OF OFFSHORE WIND
TURBINES
The present invention relates to a crane for the assembly and installation of offshore wind turbines having a nacelle with a horizontal axis rotational hub that is arranged on top of a wind turbine mast. The crane and method are in particular directed towards mounting a nacelle on an upstanding wind turbine mast, and subsequently installing the mast with the nacelle on a wind turbine foundation. The crane can also be used for demounting a nacelle, and for un-installing an offshore wind turbine mast with nacelle.
Offshore wind turbines are in mounted on a soil-bound foundation, e.g. on a monopile foundation, a jacket type foundation, etc. or floating foundation, e.g. a spar type foundation.
Assembly and installation of the wind turbine, can be done using a crane on a vessel in floating condition or on a so-called jack-up type vessel.
Offshore wind turbines can be assembled on sea or on shore. When assembled on sea, often a jack up vessel is used that first installs the mast of the wind turbine, and subsequently mounts the nacelle on top of the mast and the blades to the hub of the nacelle.
Alternatively, wind turbines are assembled on shore. The fully assembled wind turbine is subsequently transported, on a vessel or on a floating foundation, to the wind farm, i.e. the site where the wind turbine is to be used.
In the wind industry, there is a trend towards larger wind turbines and a desire to install offshore wind turbines at locations with larger water depths than currently encountered.
Currently, the largest wind turbines are 12mw wind turbines. In the near future 15mw and even 20mw offshore wind turbines are expected.
A mast for a 15mw wind turbine may have a length of 120 meters. Such a mast may have a weight of over 1000mt, for example have a weight of 1200mt. A mast for a 20mw wind turbine may have a length of 140 meters. Such a mast may have a weight of over 1600mt, for example have a weight of 1800mt. The nacelle of a 15MW wind turbine may have a weight of about 900mt, while a 20MW nacelle may have a weight of more than1000mt for example have a weight of 1100mt.
The large size of these wind turbines makes them unfit to be transported in an assembled state. The wind turbines are too high to be efficiently transported on a vessel in an upright position. Due to the height of the mast, it is furthermore complicated to mount the components on a wind turbine foundation, in particular on a floating wind turbine foundation from a floating vessel.
Inthe prior art, boom type cranes are used to lift wind turbines, i.e. wind turbines up to 10 -12 mw. These cranes typically have a boom that extends above the top end of the mast of the wind turbine to be lifted. Thus the wind turbine can be supported hanging below the top of the boom. These cranes can not be used for lifting the new types of wind turbines because the top ned of the mast extends above the top end of the boom. Furthermore, adapting such a crane for lifting the new types of wind turbines would require the crane to be provided with an extremely long boom. This would not only make the crane heavy an bulky, such a long boom would also complicate handling the wind turbine wind within the footprint of the vessel.
Publication VVO2019240585 discloses a wind turbine installation crane. The crane is configured for lifting and installing an assembled wind turbine. The boom of the crane is configured for lifting the mast of a wind turbine with the top end of the mast extending above the top end of the crane. The crane cannot be used for mounting a nacelle on the mast of such a wind turbine. Thus, the wind turbine needs to be transported in an assembled state, i.e. at least with the nacelle mounted on the mast, and with the mast already in an upright position. Thus transporting wind turbines is difficult because the wind turbine elevates the center of gravity of the vessel. Therefore, transport, if possible, is limited to days with calm seas, i.e. with no or limited waves and no substantial wind. Similar cranes are disclosed in
CN102502422 and CN102425145.
Itis an object of the invention to provide an improved crane for the installation of wind turbines, more in particular to provide a crane that enables transport and installation of large size wind turbines, i.e. wind turbines of 15mw or more, preferably with a single vessel.
It is a further object of the invention to provide a crane and a method for installing tall offshore wind turbines at sea in a fast, safe, reliable and cost-effective manner.
The invention therefore provides a crane according to claim 1, which crane can be used for both assembling and installing wind turbines, in particular large size wind turbines, i.e. wind turbines of 15mw or more. Furthermore, the crane allows for assembly of large size wind turbines at the installation location. Therefore, the wind turbine does not need to be transported in an assembled and/or upright position, which facilitates transport.
A crane according to the invention combines a relatively short boom that is configured for engaging a mast below the top end thereof, with a jib that can be moved relative to the boom between a hoisting position and a clearance position. The boom of the crane can be pivoted between a hosing position and a clearance position, in which it is retracted relative to the hoisting position, as well. Thus, according to the invention, the crane can be switched between an assembly configuration and an installation configuration.
The hoisting position of the boom is the position of the boom for supporting a wind turbine mast with nacelle. When the boom is in the clearance position, the boom is retracted, i.e. pivoted upwards, relative to the hosing position. This retracted position of the boom allows for using the jib, when in the in hoisting position, for installing a nacelle on a wind turbine mast next to the crane. Mounting the nacelle on a mast that is set up adjacent the crane is beneficial because typically the available deck space on a vessel is limited. Furthermore, the mast with nacelle is thus within the reach of the relatively short boom.
Because the crane according to the invention, in the assembly configuration, allows for installing a nacelle on top of a wind turbine mast, the mast can be transported without the nacelle mounted thereon. Keeping the nacelle on the deck during transport keeps the center of gravity of the vessel low, which is good for the stability of the vessel. Preferably the assembly configuration also enables upending the mast of the wind turbine. Thus, the mast can be transported in a horizontal configuration, which keeps the center of gravity low as well.
The invention thus provides a crane with a relatively short boom, i.e. a compact crane with a low center of gravity, that can be used for both assembling and installing a wind turbine mast with nacelle. This crane configuration is in particular beneficial for the installation of large size wind turbines, i.e. wind turbines in the range of 15mw — 20 mw, and especially for assembly and mounting these on a floating foundation.
In an embodiment, the invention provides a crane for the assembly and installation of offshore wind turbines, wherein the crane can be switched between an assembly configuration, for mounting a nacelle on an upright mast, and an installation configuration, for mounting the mast provided with the nacelle on a foundation, the crane comprising: - a crane base; -acrane housing; - a slew bearing, wherein the slew bearing is provided between the crane base and the crane housing, to enable the crane housing to slew about a vertical slew axis; - a first and a second hoisting assembly for hoisting a mast of a wind turbine, and a third hoisting assembly for hoisting a nacelle, each hoisting assembly comprising a winch, an associated hoisting wire and a load connector; - a boom, wherein the boom extends between a base end and a head end, wherein the boom is at the base end pivotable mounted to the crane housing, and has at the head end a left support arm supporting a left crown block for the first hoisting assembly and a right support arm supporting a right crown block for the second hoisting assembly, wherein the left crown block and the right crown block are spaced apart such that between the left and the right crown block there is a mast receiving space and the mast can be supported between the left and the right arm by the first and the second hoisting assembly in the mast receiving space; - aluffing assembly comprising a boom luffing winch and an associated boom luffing wire, wherein the boom luffing winch is mounted on the crane housing and the boom luffing wire extends between the boom luffing winch and the boom, to enable pivoting of the boom between: - a hoisting position, for supporting the mast of the wind turbine; and - a clearance position, in which the boom is retracted relative to the lifting position; - a jib, wherein the jib can be moved relative to the boom between a hoisting position, for mounting the nacelle, and a clearance position, in which the jib is retracted relative to the hoisting position, to enable the mast of the wind turbine to be supported by the first and second hoisting assembly with the nacelle above the head end of the boom; and wherein, in the assembly configuration, the boom is in the clearance position and the jib is in the hoisting position, and in the installation configuration, the boom is in the hoisting position and the jib is in the clearance position.
A crane according to the invention can be switched between a assembly configuration and an installation configuration. In the assembly configuration, the boom is in a retracted position and the jib is in the hoisting position. Thus, the jib extends over the mast receiving space between the left crown block and the right crown block, to enable the third hoisting assembly to lift an object past the left and right crown block and past the mast receiving space and to mount that abject on top of a mast next to the crane. In the clearance position the jib is moved 5 away from above the mast receiving space to enable the first and the second hoisting assembly to support a mast received in the mast receiving space, the mast extending above the top end of the boom, and therefore also extending above a bottom end of the jib.
Thus, providing the jib with a clearance position, in which clearance position the jib is not above the mast receiving space, allows for using a boom that is, compared to the length of the wind turbine mast, relatively short, to lift a mast. And although the boom is relatively short, compared to the mast, the crane can be used for mounting a nacelle on top of an extremely long mast, and for lifting the extremely long mast with a nacelle to mount the mast onto a wind turbine foundation.
With a crane according to the invention, the boom can be moved between a hoisting position, for supporting the mast of the wind turbine, and a clearance position, in which the boom is retracted relative to the lifting position. Providing the jib with a clearance position allows for a single crane, having a relatively short boom compared to the length of a wind turbine mast, to both mount the nacelle on the mast and installing the mast with nacelle.
The crane, more in particular the boom of the crane, is dimensioned to receive the mast of a wind turbine between the first and second support arms, i.e. between the first and second crown blocks, with a top end of the mast, and the nacelle mounted thereon, above the top end of the boom, i.e. above the first and support arms and crown blocks. Thus supporting the mast with nacelle, allows for positioning the crown blocks relatively close together, and thus for increased stability, because the nacelle, which is wider than the mast, does not need to be received between the crown blocks.
In an embodiment, the distance between the left crown block and the right clown block is less than twice the diameter of the mast, more in particular of the diameter of the upper end of the mast, for example is one and a half times the diameter of the diameter of the mast, more in particular of the upper end of the mast.
It should be noted that the first and the second hoisting assembly can be linked to function as a single hoisting assembly.
A boom of a crane according to the inventio comprises a main body, the left and the right support arm extending relative to the main body of the boom. The support arms thus provide the boom with a fork shaped top end, the main body of the boom forming the stem of the fork.
In an embodiment, the arms extend parallel to a longitudinal axis of the main body of the boom, providing the top end of the boom with a U-shaped top end. In such an embodiment, the main body preferably comprises two legs, connected by cross beams, and the support arms form continuations of those legs. In an alternative embodiment, the support arms extend outwards relative to the main body, providing the top end of the boom with a V-shaped top end.
In an embodiment, the support arms of the boom are integral parts of the boom, i.e. form a continuation of the construction of the boom. For example the boom may comprise two parallel legs, extending between the base and the head end of the boom, and the upper ends of these legs form the support arms. The legs may be connected by cross beams at regular intervals, providing the boom with an H-shape or ladder like configuration. In such an embodiment, the support arms are an integral part of the boom, and cannot pivot relative to the boom. The boom, or at least the parallel legs of the boom including the support arms, can be a continuous construction, e.g. a continuous truss, which allows for a simple and rigid construction. As an alternative, the boom may comprise a torsion box, the torsion box forming the main body of the boom, with the left and right support arm mounted to the torsion box.
Also in such a configuration, the left and right arm may be an integral component of the boom, i.e. a continuation of the components of the torsion box.
In an embodiment, the left and right support arm may be pivotable moveable mounted on the boom, for example may be pivoted relative to a main body of the boom between an active position for supporting a wind turbine, and an inactive position, for example for when the crane is in the assembly configuration.
In an embodiment, the left and right support arms extend away from the main body of the boom at a front side thereof, i.e. the side of the main body that faces a load supported by the first and the second hoisting assembly, to space the crown blocks away form the main body of the boom. Thus, when the boom is in the retracted position, i.e. is in a substantially upright position, the hoisting wires and load connectors of the hoisting assemblies are supported away from the boom.
In an embodiment, the left and the right support arm are at a top end provided with transverse structures, the transverse structures extending away from the boom at a frontside and at a backside thereof, wherein the transverse structures support the crown blocks at the front side of the boom and are connected with the boom luffing wires at the back side of the boom, the transverse structures providing the boom with a hammerhead shape when seen in side view.
In such an embodiment, the boom is essentially T-shaped when seen in side view. Thus, when the boom is in the retracted position, i.e. is in a substantially upright position, the hoisting wires and load connectors of the hoisting assemblies are supported away from the boom. Furthermore, the connection points for the luffing wires are also spaced form the main body of the boom, which is in particular beneficial for luffing the boom out of, or into, a lowered storage position, for example for when the vessel travels between destinations.
In a preferred embodiment, the transverse structures at the top end of the boom are triangular-shaped, with ane point of the triangle attached to the boom. Preferably, the structure comprises a frame that forms the outline of the triangle, to provide a strong and lightweight construction.
In an embodiment, the jib is pivotably mounted to the boom at or near the top end thereof. In such an embodiment, the jib is connected to the boom via one or more hinges, enabling the jib to be pivoted about a jib pivot axis between the hoisting position and the clearance position.
In an embodiment, the jib is a telescopic jib, or a foldable jib, allowing of at least a top end of the jib to be moved relative to a base end of the jib, to move the top end of the jib away from a mast supported by the crane. Thus, in such an embodiment, the top end of the jib can be moved relative to the base end of the jib between an active position, for hoisting a nacelle, and an inactive position, for when the jib is in the clearance position. Thus, when the jib is moved into the clearance position, the top end of the jib is moved into the inactive position.
This provides the jib with a compact configuration when in the clearance position.
Preferably, the jib is mounted to a back side of the boom, i.e. to a side of the boom facing away from a load that is supported by the first and the second hoisting assembly.
Furthermore, the jib preferably is mounted to the boom between the left and the right support arm, and at or near the base ends of the left and right support arm. A lower part of the jib preferably extends between the left support arm and the right support arm of the boom, when the jib is in the hoisting position.
In an embodiment, the boom is pivotably mounted to the crane housing such that the boom can pivot about a boom pivot axis, and the jib is pivotably mounted to the boom such that the jib can pivot about a jib pivot axis, and wherein the boom pivot axis is parallel to the jib pivot axis.
In a further embodiment, the crane furthermore comprises a jib luffing winch and an associated jib luffing wire, wherein the luffing wire extends between the jib luffing winch and the jib, to enable pivoting of the jib relative to the boom between the hoisting position and the clearance position.
In an embodiment, the boom is provided with a jib stop, which jib stop is configured to stop the jib when it is moved into the assembly position. The jib stop may for example comprise one or more hydraulic cylinders that provide a resilient stop for receiving the jib and for positioning the jib relative to the boom in the clearance position. In an embodiment, the jib is pulled by a jib luffing winch against the jib stop when in the clearance position.
In an embodiment, the boom is provided with a jib actuator, e.g. one or more cylinders or electric spindles configured to push the jib or one or more winches to pull the jib, for moving the jib out of the clearance position and towards the hoisting position. This is beneficial because the jib, when in the clearance position, may be positioned close to the vertical, vertically or even beyond the vertical position, such that gravity does not pull the jib towards hoisting position. Thus, a jib actuator may be required to allow for the jib to be moved between the clearance position and the hoisting position.
In an embodiment, the boom is provided with a jib lock for securing the jib relative to the boom in the clearance position. In addition or as an alternative, the boom is provided with a jib lock for securing the jib relative to the boom in the hoisting position
In a further embodiment, the boom pivot axis and the jib pivot axis define a plane, and wherein the jib, or at least a top end of the jib, is on a first side of this plane when in the assembly position, and is on an opposite, second side of this plane when in the installation position.
In an embodiment, the jib is provided with a crown block for the hoisting wire of the third hoisting assembly, and the crown block is located on a front side of the boom, i.e. the side of the boom facing towards a load supported by the first and second hoisting assembly, when the jib is in hoisting position and is located on a back side of the boom, i.e. the side of the boom facing away from a load supported by the first and second hoisting assembly, when the jib is in the clearance position.
In an alternative embodiment, the jib is telescopically mounted on the boom. In such an embodiment, the jib is moved in a longitudinal direction, i.e. parallel to a longitudinal axis of the jib, between the hoisting position and the clearance position. In such an embodiment, the jib may extend alongside and adjacent the boom, when in the clearance position.
In an embodiment, the length of the jib and the angle between the jib and the boom is such that when the crane is in the assembly configuration, the hosing assembly can lift a nacelle past the left and right support arm of the boom. In this context it is submitted that the left and the right support arm preferably are spaced far enough for a mast to be supported between them, but to close for a nacelle to pass between them. By positioning the left and the right support arm this close together, the boom can be kept compact.
In an embodiment, the jib can be pivoted forward, i.e. can be lowered relative to the hoisting position, into a knuckle boom position to provide the crane with a knuckle boom configuration, for lifting objects close to the deck surface, for example for moving objects between the vessel and a supply vessel. In such an embodiment, the angle between the boom and the jib, when the jib is in the knuckle boom position, is less than 90 degrees, preferably is smaller than 45 degrees, for example is 35 degrees. Furthermore, in such an embodiment, the jib, more in particular the crown block of the jib, is configured for supporting the hoisting wire when the jib is in the hoisting position and when the jib is in the knuckle boom position. In the latter position, the hoisting wire exits the crown block in a direction away form the jib, and in the former position the hoisting wire exits the crown block in a direction towards or alongside the jib.
In an embodiment, when the crane is in the assembly configuration, the boom is in a substantially vertical position, i.e. is substantially parallel to a slew axis of the slew bearing of the crane. This allows for the jib to hoist a load substantially parallel to the boom, and along the boom and along the first and second crown block.
In an embodiment, the crane housing is provided with a boom stop, which boom stop is configured to stop the boom when the boom is moved into the clearance position. The boom stop may for example comprise one or more hydraulic cylinders that provide a resilient stop for receiving the boom and for positioning the boom relative to the crane housing in the clearance position. In an embodiment, the boom is pulled by the boom luffing winch against the boom stop when in the clearance position.
In an embodiment, the crane housing is provided with a boom actuator, e.g. one or more cylinders or spindles to push the boom or one or more winches to pull the boom, for moving the boom out of the clearance position and towards the hoisting position. This is beneficial because the boom, when in the clearance position, may be positioned vertically, or closely to the vertical, such that gravity does not pull the boom towards hoisting position. Thus, a boom actuator may be required to allow for the boom to be moved between the clearance position and the hoisting position.
In an embodiment, the boom is provided with a boom lock, for securing the boom relative to the crane housing in the clearance position.
In an embodiment, the crane is configured to hoist a wind turbine masts having a length of over 100 meters, preferably over 110 meters, for example of 120 meters, more preferably of 140 meters. In an embodiment, the boom has a length of at most two third, i.e. 67%, the length of a 15 Mwat wind turbine mast
In an embodiment the boom has a length in the range of 75 to 80 meters, preferably has a length of about 78 meters, and/or has a width of over 18 meters, for example has a width of about 20 meters, and wherein the support arms preferably have a length of over 15 meters, for example have a length of about 20 meters. A crane according to the invention allows for a boom having such a length to be used for lifting the mast of a 15Mwat or even a 20Mwat wind turbine.
In an embodiment, the jib has a length of at least three quarters, i.e. 75% the length of the boom, preferably has a length of at least four fifth, i.e. 80%, the length of the boom.
In an embodiment, the jib has a length of over 70 meters, for example has a length of about 72 meters. A crane according to the invention allows for a jib having such a length to be used for mounting a nacelle on a mast of a 15Mwat or even a 20Mwat wind turbine.
In an embodiment, the crane comprises, preferably the first hoisting assembly and the second hoisting assembly each comprise, a heave compensation mechanism to compensate for sea induced vertical movement of a load supported by the first and second hoisting device relative to a foundation, preferably relative to a floating foundation. Thus, the crane can safely land a wind turbine on a foundation, in particular from a crane according to the invention on a floating vessel can thus safely install a wind turbine on a foundation, e.g. a floating foundation.
A crane according to the invention is configured for the assembly and installation of offshore wind turbines. Therefore, the crane is to be mounted on wind turbine installation vessels.
Furthermore, a crane according to the invention allows for assembling a wind turbine by mounting a nacelle on a mast, on the vessel.
Furthermore, the crane can be used, preferably in the assembly configuration, for upending a wind turbine mast, i.e. lifting the top end of the wind turbine mast to bring the mast from a horizontal transport position into a vertical and upright assembly and installation position.
Also, the crane can be used for assembling a wind turbined mast comprising multiple, for example three, mast sections. Thus, the crane, would first assemble the wind turbine mast, and subsequently mount the nacelle on the assembled mast, after which the combined mast and nacelle are mounted on a foundation, for example a floating foundation.
The invention furthermore provides a vessel, preferably a semi submersible vessel, provided with a crane according to the invention, for the assembly and installation of offshore wind turbines.
In an embodiment, a vessel according to the invention has a storage deck for transport of wind turbine components, preferably has a storage deck for supporting a wind turbine mast having a length of at least 100 meters in a horizontal position, wherein the deck height of the top end of the boom of the crane, when the crane is in the assembly position, is less than the deck height of the wind turbine mast supported in the upright position on the deck of the vessel, such that the boom can lift the mast with the top end thereof extending above the top end of the boom.
In a further embodiment of a vessel according to the invention, the deck height of the top end of the jib, when the crane is in the assembly configuration position, is above the mast and a nacelle mounted on that mast.
In an embodiment of a vessel according to the invention, the vessel has a longitudinal axis, and the crane is mounted on that vertical axis, such that vertical movement of the crane caused by roll of the vessel is minimized.
In an embodiment, the vessel comprises a foundation gripper, for engaging a floating foundation and for damping movements in the horizontal plane of the floating foundation relative to the vessel, preferably for substantially eliminating movements in the horizontal plane relative of the floating foundation relative to the vessel.
In an embodiment, the foundation gripper is mounted to the vessel adjacent the crane, such that when the foundation gripper engages a floating foundation, and the crane supports a wind turbine, i.e. a wind turbine mast with nacelle, in an installation position, i.e. next to the vessel with the front of the boom facing away form the vessel, the supported wind turbine is positioned above the floating foundation engaged by the foundation gripper.
In a further embodiment, the vessel has a longitudinal axis, and the foundation gripper is, and preferably the crane are, mounted on that vertical axis, such that vertical movement of the foundation gripper caused by roll of the vessel is minimized.
In an embodiment, the vessel is furthermore provided with at least one suppressor arm, wherein the suppressor arm is configured to project from the vessel in a floating foundation engagement position, the suppressor arm being provided with a floating foundation engagement device for engaging with a floating foundation, preferably for engaging with a floating foundation connector mounted on the floating foundation, and for exerting a downward force, i.e. a force directed in the z-direction, onto said floating foundation
In a further embodiment, the vessel is provided with two suppressor arms, positioned on opposite sides of the crane, and on opposite sides of a foundation gripper mounted adjacent the crane, for engaging a floating foundation on opposite sides thereof.
The invention furthermore provides a method for assembling and installing an offshore wind turbine, wherein the method comprises using a crane according to the invention mounted on a vessel, or using a vessel according to the invention.
In an embodiment, the method furthermore comprises: - positioning the crane in the assembly configuration, - preferably using the crane in the assembly configuration to up end a wind turbine mast, - using the crane in the assembly configuration to mount a nacelle on the upended wind turbine mast; - positioning the crane in the installation configuration; and - hoisting the mast with the nacelle from the vessel and onto a foundation, preferably onto a floating foundation.
Preferably, once the mast and nacelle are installed on the wind turbine foundation, a dedicated crane is used for mounting the blades to the wind turbine. Preferably, especially in case the wind turbine foundation is a floating foundation, the crane dedicated for installation of the blades is set up on the wind turbine foundation as well, i.e. is not set up to operate form avessel
It is submitted that, when using a crane for supporting a mast of a wind turbine, hoisting wires preferably are provided on opposite sides of the mast. Furthermore, the hoisting wires preferably support the weight at or near a lower end of the mast, and are held adjacent the mast, e.g. by wire guides or a yolk, above the center of gravity of the mast, or of the combined mast and nacelle. This configuration of hoisting a mast is known in the prior art, and allows for a very stable support of the mast, and of the combined mast and nacelle.
It is submitted that a crane according to the invention is configured for supporting and installing a wind turbine mast with a nacelle mounted on that mast. Preferably, the mast with nacelle is installed on a foundation, e.g. a floating foundation, prior to blades being attached to the nacelle. Thus, when herein is referred to the crane according to the invention supporting a wind turbine, this refers to a wind turbine mast provided with a nacelle, and not to a fully assembled wind turbine, i.e. a nacelle mounted on a mast with blades already attached to the hub of the nacelle.
According to a further aspect, the invention provides a method for mounting an offshore wind turbine, or part thereof, on a floating foundation from a floating vessel provided with a wind turbine installation crane comprising a hoisting assembly, wherein the crane preferably is a crane according to the invention.
According to the further aspect of the invention, the vessel is provided with a foundation clamp configured for engaging a floating foundation and for subsequently dampen movement of that foundation relative to the vessel in the xy plane, i.e. in the horizontal plane, preferably while allowing for movement in the z-direction, i.e. in the vertical direction, wherein the method comprises the steps: - positioning the vessel adjacent the floating foundation;
- providing the foundation clamp with xy compensation, i.e. actively moving the foundation clamp to eliminate movement of the foundation clamp relative to the floating foundation relative in the xy plane;
- engaging the floating foundation with the foundation clamp, preferably engaging a foundation connector mounted on the floating foundation with the foundation clamp, while providing xy compensation;
- ending the xy compensation of the foundation clamp and starting with xy damping, i.e.
dampen the movement of the floating foundation relative to the vessel in the xy plane; and - increasing the xy damping to further reduce and preferably eliminate the movement of the floating foundation relative to the vessel in the xy plane, and preferably fully connect the foundation clamp with the floating foundation;
wherein the vessel is furthermore provided with a suppressor arm, wherein the suppressor arm is configured to project from the vessel in a floating foundation engagement position, the suppressor arm being provided with a floating foundation engagement device for engaging a floating foundation, preferably for engaging a suppressor coupling provided on the floating foundation, e.g. a suppressor coupling provided on a floating foundation connector mounted on the floating foundation, and for exerting a downward force, i.e. a force directed in the z- direction, onto said floating foundation, wherein the method furthermore comprises the steps: - if necessary, positioning the suppressor arm in the floating foundation engagement position;
- providing the engagement device of the suppressor arm with z compensation, i.e. actively moving the engagement device, or the end of the arm supporting the engagement device, to eliminate movement of the engagement device relative to the floating foundation in the z direction;
- engaging the floating foundation with the engagement device, preferably engaging a suppressor coupling provided on the floating foundation, while providing z compensation; - ending the z compensation and starting with damping the movement of the floating foundation relative to the vessel in the z direction;
- increasing the z damping to further reduce and preferably eliminate the movement of the floating foundation relative to the vessel in the z direction and preferably thus fully connect the suppressor arm with the floating foundation; - moving the wind turbine from a position above the deck to a position above the floating foundation, preferably while using a ballast system of the vessel to keep the vessel even keel, and supporting the wind turbine above the floating foundation using a wind turbine installation crane; - removing ballast water from the floating foundation, preferably from a column of the floating foundation onto which the wind turbine is to be mounted, preferably by pumping the ballast water from the floating foundation into ballast tanks of the vessel, preferably ballast tanks located near or at the crane supporting the wind turbine, to create an upward force of the floating foundation against the suppressor arm, wherein the upward force preferably is similar or larger than the gravitational force of the wind turbine supported by the crane; - landing the wind turbine on the floating foundation, optionally while providing the wind turbine with z-compensation using the hoisting assembly of the crane, i.e. using the hoisting assembly to reduce, preferably eliminate, sea state induced movement of the wind turbine relative to the floating foundation; and - connecting the wind turbine to the floating foundation by bolting the wind turbine mast to the floating foundation, e.g. by bolting a floating foundation connector mounted on the floating foundation to a wind turbine mast connector mounted to the wind turbine mast.
This method according to a further aspect of the invention utilises, in addition to a foundation clamp, at least one suppressor beam, preferably two suppressor beams positioned on opposite sides of the floating foundation, to control movement of the floating foundation relative to the vessel. The suppressor beams are configured to support an upward force of the floating foundation, and to thus enable pushing downward on the floating foundation using the weight of the vessel to control the movement of the floating foundation in the z direction.
The at least one z beam and the method utilising the at least one z beam thus enable an effective and efficient way for controlling the movement of a floating foundation relative to a vessel, and thus facilitate installing a wind turbine on the floating foundation using a crane or similar wind turbine support construction mounted on that vessel.
In a further embodiment of the method, the floating foundation is provided with a floating foundation connector and the wind turbine mast is provided with a wind turbine mast connector which floating foundation connector and wind turbine mast connector are configured to cooperate to provide a quick connection, i.e. a connection without bolting, between the floating foundation and the wind turbine mast, and wherein the method further comprises: by landing the wind turbine on the floating foundation establishing a quick connection such that the wind turbine mast and the floating foundation move in unison.
In a further embodiment of the method, the foundation connector is provided with an abutment surface for engagement by the floating foundation engagement device of the suppressor arm.
In an embodiment of the method, the floating foundation connector and the wind turbine mast connector are provided with click fingers and one or more click finger engagement edges for establishing the quick connection between the floating foundation connector and the wind turbine mast connector.
In an embodiment of the method, the floating foundation connector and the wind turbine mast connector are provided with guides for aligning the floating foundation connector relative to the wind turbine mast connector about the z axis, while landing the wind turbine mast on the floating foundation.
In an embodiment of the method,the mass of the water removed from the floating foundation is at least similar, preferably larger than the mass of the wind turbine supported by the wind turbine installation crane above the floating foundation, e.g. the mass of the water is about 21mt, such that the floating foundation pushes upwards against the abutment device with a force similar to or larger than the gravitational force of the wind turbine supported by the crane.
In an embodiment of the method, further comprising the step of transferring the total weight of the wind turbine, i.e. the wind turbine mast and the nacelle mounted on the wind turbine mast, onto the floating foundation, only after establishing the quick connection.
The foundation clamp is provided with actuators for actively moving the foundation clamp relative to the vessel in the xy plane.
The foundation clamp is configured to engage the foundation, and to fully connect with the foundation such that there is no, or only limited, movement between the foundation clamp and the floating foundation. Furthermore, the foundation clamp is configured to allow for vertical movement of the floating foundation relative to the foundation clamp, while the foundation clamp is in engagement with the floating foundation, i.e. while movement of the foundation clamp relative to the floating foundation is limited or is eliminated.
It is submitted that increasing the z damping, to further reduce and preferably eliminate the movement of the floating foundation relative to the vessel in the z direction, may be achieved by or may be done in combination with removing ballast water from the floating foundation and/or removing ballast water from the vessel to increase the upward force of the floating foundation against the suppressor arm and/or the downward force of the suppressor arm on the floating foundation respectively.
It is submitted that when removing ballast water from the floating foundation, preferably from a column of the floating foundation onto which the wind turbine is to be mounted, preferably by pumping the ballast water from the floating foundation into ballast tanks of the vessel, preferably ballast tanks located near or at the crane supporting the wind turbine, the amount of water transferred preferably is such that the floating foundation pushes upwards to the suppressor beam with a force equal to, or slightly larger than the gravitational force of the wind turbine supported by the crane, i.e. the force required to support the wind turbine.
It is submitted that the method according to the further aspect of the invention is described for mounting a wind turbine mast with a nacelle mounted thereon on a floating foundation. The method may also be sued for mounting only a wind turbine mast, or for mounting a fully assembled wind turbine, i.e. a wind turbine mast provided with a nacelle provided with blades, onto a wind turbine foundation, in particular a floating wind turbine foundation.
In an embodiment, the foundation clamp comprises one or more jaws that can be moved between an open position for receiving part of the floating foundation, and a closed position for enclosing the received part of the floating foundation, which jaws are provided with floating foundation engagement devices for engaging, i.e. contacting the floating foundation. In such an embodiment of the foundation clamp, engaging the foundation comprises receiving part of the floating foundation in the foundation clamp, moving the jaws from the open position into the closed position, and subsequently engaging the floating foundation with the engagement devices. In such an embodiment, the engagement devices may be configured for providing the xy compensation, while the jaws of the foundation clamp move with the vessel.
In an embodiment, the foundation clamp comprises one or more sensors to monitor the movement of the foundation relative to the vessel, and actuators for moving the foundation clamp at least in the xy plane relative to the vessel.
Itis submitted that in an embodiment, information regarding the position of the floating foundation relative to the vessel can be communicated by a foundation clamp control system to the crane supporting the wind turbine. Thus the crane can use this information for actively positioning the supported wind turbine relative to the floating foundation, preferably to the floating foundation while it is held by the foundation clamp. It is furthermore submitted that the foundation clamp comprises dampers for dampening the movement of the floating foundation in the xy direction. A control system of the foundation clamp may generate positional data of the position of the floating foundation relative to the vessel based on information obtained from the dampening of movement of the floating foundation relative to the vessel.
Whilst primarily presented for illustrative purposes with reference to one or more of the figures, any of the technical features addressed below may be combined with any of the independent claims of this application either alone or in any other technically possible combination with one or more other technical features.
Inthe drawings:
Fig. 1 shows a side view of an exemplary embodiment of a crane according to the invention, wherein the crane is in a installation configuration and is supporting a nacelle above a wind turbine mast in an upright position;
Fig. 2 shows a side view of the crane of Fig. 1 in a installation configuration, having hoisting wires attached to the mast of the wind turbine, and with the nacelle mounted on the wind turbine mast;
Fig. 3 shows a side view of the crane of Fig. 1 in an installation configuration supporting the wind turbine mast, with the nacelle mounted thereon, in an installation position above a floating wind turbine foundation;
Fig. 4 shows a frontal view of the crane of Fig. 1 in an installation configuration, supporting the wind turbine mast and the nacelle mounted thereon, in an installation position above the floating foundation.
Fig. 5 shows a frontal view and a side view of the boom and jib of the crane of Fig. 1 In isolation, the jib being positioned parallel to the boom;
Fig. 6 shows a top view of a vessel according to the invention, with only the crane base of a crane according to the invention depicted; and
Fig. 7 shows a side view of another exemplary embodiment of a crane according to the invention, wherein a jib of the crane is lowered into a knuckle boom position relative to a boom of the crane.
Figure 1 shows a side view of an exemplary embodiment of a crane 1 for the assembly and installation of offshore wind turbines according to the invention, mounted on a vessel 10, in the embodiment shown a semisubmersible vess10el.
According to the invention, the crane 1 can be switched between an assembly configuration, in which it is depicted in figure 1, for mounting a nacelle 2 on an upright mast wind turbine mast 3, and an installation configuration, in which it is depicted in figure 2, for mounting the wind turbine mast 3 with the nacelle 2 mounted thereon, on a foundation 4.
The crane 1 comprises a crane base 5, a crane housing 6 and a slew bearing 7. The slew bearing 7 is provided between the crane base 5 and the crane housing 6, to enable the crane housing 6 to slew about a vertical slew axis 8.
The crane 1 furthermore comprises a first hoisting assembly and a second hoisting assembly for hoisting a mast of a wind turbine, and a third hoisting assembly for hoisting a nacelle.
Each of these hoisting assemblies comprises a winch, an associated hoisting wire 11, 12, 13 and a load connector 14, 15, 16.
The crane 1 furthermore comprises a boom 9 and a boom luffing assembly 17 for luffing the boom 9 between a hoisting position, depicted in figure 1, for supporting the mast of a wind turbine, and a clearance position, depicted in figure 2, in which the boom 9 is retracted relative to the lifting position of the boom 9.
The boom 9 extends between a base end 18 and a head end 19. The boom 9 is at the base end 18 pivotable mounted to the crane housing 6, and has at the head end 19 a left support arm 20 supporting a left crown block 21 for the first hoisting assembly and a right support arm 22 supporting a right crown block 23 for the second hoisting assembly. The left crown block 21 and the right crown block 23 are spaced apart such that between the left and the right crown block there is a mast receiving space 24. The mast receiving space 24 is dimensioned such that the mast of a wind turbine can be supported between the left and the right support arm 20, 22 by the first and the second hoisting assembly in the mast receiving space 24
The boom luffing assembly 17 comprises a boom luffing winch and an associated boom luffing wire 25. The luffing winch is mounted on the crane housing 6 and the boom luffing wire
25 extends between the luffing winch and the boom 9, to enable pivoting of the boom between the hoisting position, for supporting the mast of the wind turbine, and the clearance position, in which the boom is retracted relative to the lifting position.
The boom 9 is, at the head end 19 of the boom 9, about level with a base end 26 of the left support arm 20 and a base end 27 of the right support arm 22, provided with a jib 29.
According to the invention, the jib 29 can be moved relative to the boom 9 between a hoisting position, depicted in figure 1, and a clearance position, depicted in figure 2.
When in the hoisting position, the jib 29 enables mounting a nacelle on a wind turbine mast using the third hoisting assembly.
In the clearance position, the jib 9 is retracted relative to the hoisting position, to enable the crane to support the mast of the wind turbine with a nacelle mounted thereon, using the first and second hoisting assembly.
Thus, when the crane 1 according to the invention is in the assembly configuration, the boom 9 is in the clearance position and the jib 29 is in the hoisting position, and when the crane 1 is in the installation configuration, the boom 9 is in the hoisting position and the jib 29 is in the clearance pasition.
According to the invention, the crane 9 can thus be used for both assembling, i.e. mounting a nacelle on top of a wind turbine mast, and installing, i.e. mounting the mast with nacelle on a foundation, large size wind turbines, i.e. wind turbines of 15mw or more. Furthermore, the crane allows for assembly of large size wind turbines at the installation location. Therefore, the wind turbine does not need to be transported in an assembled and/or upright position, which facilitates transport.
Figure 3 shows the crane 9 supporting the mast with nacelle in an installation position above a floating foundation 28.
In the preferred embodiment shown, the first hoisting assembly and the second hoisting assembly each comprise a heave compensation mechanism to compensate for sea induced vertical movement of the mast 3 with nacelle 2 supported by the crane 1 relative to the floating foundation 28. Thus, the crane 1 can safely land the wind turbine, i.e. mast with nacelle, on the foundation 28.
Once the combined mast 3 and nacelle 2 are installed on the wind turbine foundation 28, a dedicated crane is used for mounting the blades to the wind turbine.
Figure 4 shows a frontal view of the crane 1, supporting the wind turbine mast 3 and the nacelle 2 mounted thereon, in the installation position above the floating foundation 28.
The hoisting wires 11,12 of the first and second hoisting assembly are provided on opposite sides of the wind turbine mast 3. The hoisting wires extend from the left and right crown block 21, 23, via a wire guide 51 mounted above the center of gravity of the mast, towards fastening points 52 at the bottom end of the wind turbine mast. Thus, the hoisting wires 11,12 support the weight of the wind turbine mast and nacelle at the lower end of the mast, and are held adjacent the mast by the wire guide 51 above the center of gravity of the combined mast and nacelle. This configuration for hoisting a wind turbine is known in the prior art, and allows for a very stable support of the wind turbine, and of the combined mast and nacelle.
In the exemplary embodiment shown in figure 4, the boom 9 comprises two parallel legs 30 that extend between the base end of the boom 18 and the head end of the boom 19. The legs 30 are connected by cross beams 31 at regular intervals, providing the boom with an H- shape.
Figure 5 shows a frontal view and a side view of the boom 9 and jib 29 of the crane 1 in isolation, the jib 29 being positioned parallel to the boom 9. In the embodiment shown, the jib 29 has a length of at least of at about four fifth, i.e. 80%, the length of the boom.
In the embodiment shown, the support arms 26, 27 are an integral part of the boom 9, i.e. form a continuation of the construction of the boom. The parallel legs 30 of the boom including the support arms 26,27 are a continuous construction, which provides a simple and rigid construction.
Furthermore, in the embodiment shown, the left support arm 26 and the right support arm 27 are at a top end provided with transverse, in the particular embodiment shown triangular shaped, structures 32, that provide the boom with a hammerhead shape when seen in side view. The arms 26,27 thus are not an extension of the legs 30 of the boom 9, but extend away from the boom at a frontside 33 and at a backside 34 thereof. The transverse structures
32 of the arms 26,27 support the crown blocks 21,23 at the front side of the boom and at the back side of the boom support the boom luffing wire of the luffing assembly 17.
The boom 9 is pivotably mounted to the crane housing 6 such that the boom can pivot about a boom pivot axis 35, and the jib is pivotably mounted to the boom such that the jib can pivot about a jib pivot axis 36. The boom pivot axis 35 is parallel to the jib pivot axis 36.
In the particular embodiment shown, the jib 29 is pivotably mounted to the boom 9 at the head end 19 thereof. Furthermore, the boom pivot axis 35 and the jib pivot axis 36 define a plane, and the jib is on a first side of this plane when in the assembly position, and is on an opposite, second side of this plane when in the installation position.
The crane 1 comprises a jib luffing winch and an associated jib luffing wire 37. The jib luffing wire 37 extends between the jib luffing winch and the jib, and in the embodiment shown passes over a gantry 38 mounted on the crane housing 8, to enable pivoting of the jib 29 relative to the boom 9 between the hoisting position and the clearance position.
Furthermore, in the embodiment shown, the jib 29 is provided with multiple luffing wire spacers 38, mounted on the jib at the pivot axis and extending in a radial direction, for spacing the luffing wire relative to the pivot axis and thus provide the lifting system with leverage for lifting the jib. It is submitted that the use of luffing wire spacers in this way is generally known in the prior art and is in particular utilised with knuckle boom type cranes. It is furthermore noted that the luffing wire where it is to be engaged by the luffing wire spacers may be embodied as a chain or metal rods.
Proving the jib luffing wire spacers allows for the jib to be pivoted forward, i.e. to be lowered, to provide the crane with a knuckleboom configuration, shown in figure 7, for lifting objects close to the deck surface, for example for moving objects between the vessel and a supply vessel.
In the embodiment shown, the boom 9 is at the head end thereof provided with a jib stop 39, which jib stop is configured to stop the jib 29 when it is moved into the clearance position.
Thus when the jib is pulled by the jib luffing assembly from the assembly position shown ing figure 1 into the clearance position shown in figure 2, the jib is received in the jib stop. This procedure may be performed with the boom in a lowered position, to prevent gravity from pulling the jib towards the jib stop. Also, when the jib is to be moved out of the clearance position. In addition or as an alternative, the jib stop is configured to engage the jib while it is moved out of the hoisting position and provides pressure to the jib while it is pulled by the jib luffing assembly into the clearance position to prevent gravity from moving the jib.
Furthermore, in the embodiment shown, the boom is provided with a jib actuator, in the embodiment shown in the form of cylinders integrated in the jib stop, for pushing the jib out of the clearance position and towards the hoisting position.
Furthermore, in the embodiment shown. the boom is provided, at the head end thereof, with a jib lock, for securing the jib relative to the boom in the clearance position. Thus, the jib can not move relative to the boom while the crane is used for installing a wind turbine.
In the embodiment shown, when the crane 1 is in the assembly configuration, the boom 9 is in a substantially vertical position, i.e. is substantially parallel to a slew axis of the slew bearing of the crane. The crane 1 is provided with a boom stop 40, which boom stop is configured to stop the boom when the boom is moved into the clearance position.
Furthermore, the crane 1 is provided with a boom lock, for securing the boom relative to the crane housing in the clearance position.
Furthermore, in the embodiment shown, the crane housing is provided with a boom actuator, e.g. one or more cylinders to push the boom or one or more winches to pull the boom, for moving the boom out of the clearance position and towards the hoisting position.
In the embodiment shown, the crane 1 is mounted on a semisubmersible vessel 10. A top view of the vessel 10 is shown in figure 6. The vessel has a storage deck 41 for transport of wind turbine components, in the embodiment shown for supporting a wind turbine masts 3 having a length of at least 100 meters in a horizontal position and nacelles 2 to be mounted on the wind turbine masts.
According to the invention, when the crane is in the assembly position the deck height of the head end of the boom of the crane is less than the deck height of the wind turbine mast supported in the upright position on the deck of the vessel, see for example figure 1, such that the boom can lift the mast with the top end thereof extending above the top end of the boom.
In the embodiment shown, the storage deck is provided with upend tracks 42 for guiding an upend trolley 43 for supporting the bottom end 44 of a wind turbine mast, to enable the crane 1 for upending masts. For upending, the crane 1 is set up in the assembly configuration, and the hoisting assemblies are coupled to a top end 45 of the mast supported in an upend location 46 above the upend track. While lifting the top end of the mast, the bottom end of the mast is guided by the upend trolley along the upend track, until the mast is in the upright position. The mast is subsequently secured in this position, preferably using the upend trolley, to enable the crane to hoist a nacelle on top of the mast.
It is noted that the crane can also be sued for moving masts from a storage location on the deck to an upend location above the upend track. In the embodiment shown, the crane may be set up in the knuckle boom configuration for moving the masts to the upend location.
In the embodiment shown, the vessel comprises a foundation gripper 47, for engaging a floating foundation and for damping movements in the horizontal plane of the floating foundation relative to the vessel, preferably for substantially eliminating movements in the horizontal plane relative of the floating foundation relative to the vessel.
Furthermore, in the preferred embodiment shown, the vessel 1 is provided with at two suppressor arms 48. The suppressor arms 48 are configured to project from the vessel in a floating foundation engagement position, in which they are depicted in figure 6. The suppressor arms are provided with a floating foundation engagement device for engaging with the floating foundation. In the preferred embodiment shown, the floating foundation is provided with a floating foundation connector 49, see for example figure 4, mounted on the floating foundation 28. The floating foundation connector 49 is mounted on the floating foundation and provides the floating foundation with two supports 50 for engagement by the respective suppressor arms. In an alternative embodiment, the supports for engagement with the suppressor arms can also be provided directly on the floating foundation.
When the suppressor arms 48 are in engagement with the floating foundation 28, they can exert and for exerting a downward force, i.e. a force directed in the z-direction, onto the floating foundation to reduce, preferably eliminate, vertical movement of the floating foundation relative to the vessel.
The crane 1 mounted on the semisubmersible vessel 10 allows for a method for assembling and installing an offshore wind turbine according to the invention In an embodiment, the method comprises: - positioning the crane 1 in the assembly configuration, depicted in figure 1; - using the crane 1 in the assembly configuration to up end a wind turbine mast 3 located on the deck of the vessel 10 in the upend location 46, depicted in figure 6;
- using the crane 1 in the assembly configuration to mount a nacelle on the upended wind turbine mast, depicted in figure 1; - positioning the crane in the installation configuration, depicted in figure 2; and - hoisting the mast 3 with the nacelle 2 from the vessel 10 and onto the floating foundation 4, depicted in figure 3.
Reference signs 01 crane 02 nacelle 03 wind turbine mast 04 floating foundation 05 crane base 06 crane housing 07 slew bearing 08 vertical slew axis 09 boom 10 vessel 11 hoisting wire first hoisting assembly 12 hoisting wire second hoisting assembly 13 hoisting wire third hoisting assembly 14 load connector first hoisting assembly 15 load connector second hoisting assembly 16 load connector third hoisting assembly 17 boom luffing assembly 18 base end boom 19 head end boom 20 left support arm 21 left crown block 22 right support arm 23 right crown block 24 mast receiving space 25 boom luffing wire 26 base end left support arm 27 base end right support arm 28 floating foundation 29jib 30 legs of the boom 31 cross beams of the boom 32 transvers structures 33 front side boom 34 backside boom 35 boom pivot axis 36 jib pivot axis
37 jib luffing wire 38 luffing wire spacers 39 jib stop 40 boom stop 41 storage deck vessel 42 upend tracks 43 upend trolley 44 bottom end wind turbine mast 45 top end wind turbine mast 46 upend location mast on deck of vessel 47 foundation gripper 48 suppressor arms 49 floating foundation connector 50 supports for suppressor arms 51 mast mounted wire guide hoisting wires 52 fastening points bottom end wind turbine mast

Claims (30)

CONCLUSIESCONCLUSIONS 1. Kraan voor het assembleren en installeren van offshore windturbines, waarbij de kraan schakelbaar is tussen een assemblageconfiguratie, voor het bevestigen van een nacelle op een rechtopstaande mast, en een installatieconfiguratie, voor het op een fundering bevestigen van de, van de nacelle voorziene, mast, waarbij de kraan omvat: - een kraanbasis; - een kraanbehuizing; - een zwenklager, waarbij de zwenklager tussen de kraanbasis en de kraanbehuizing is voorzien, om zwenken van de kraanbehuizing om een verticale as mogelijk te maken; - een eerste en tweede hijssamenstel voor het hijsen van een mast van een windturbine, en een derde hijssamenstel voor het hijsen van een nacelle, waarbij elk hijssamenstel een lier, een bijbehorende hijsdraad en een lastconnector omvat; - een giek, waarbij de giek zich tussen een basisuiteinde en een hoofduiteinde uitstrekt, waarbij de giek aan het basisuiteinde draaibaar is bevestigd aan de kraanbehuizing, en aan het hoofduiteinde een linker steunarm heeft die een linker kroonblok voor het eerste hijssamenstel ondersteunt en een rechter steunarm die een rechter kroonblok voor het tweede hijssamenstel ondersteunt, waarbij het linker kroonblok en het rechter kroonblok een onderlinge afstand hebben, zodanig dat er tussen het linker en rechter kroonblok een mastopneemruimte is en de mast tussen de linker en rechter arm kan worden ondersteund in de mastopneemruimte door het eerste en tweede hijssamenstel; -een oploefsamenstel omvattende een giek-oploeflier en een bijbehorende giek-oploefdraad, waarbij de giek-oploeflier is bevestigd op de kraanbehuizing en de giek-oploefdraad zich tussen de giek-oploeflier en de giek uitstrekt, om draaien van de giek mogelijk te maken tussen: - een hijspositie, voor het ondersteunen van de mast van de windturbine; en - een vrijgavepositie, waarin de giek is teruggetrokken ten opzichte van de hijspositie; - een jib, waarbij de jib kan worden bewogen ten opzichte van de giek tussen een hijspositie, voor het bevestigen van de nacelle, en een vrijgavepositie, waarin de jib is teruggetrokken ten opzichte van de hijspositie, om ondersteuning van de mast van de windturbine door het eerste en tweede hijssamenstel met de nacelle boven het hoofduiteinde van de giek mogelijk te maken; en waarbij, in de assemblageconfiguratie, de giek zich in de vrijgavepositie bevindt en de jib zich in de hijspositie bevindt, en in de installatieconfiguratie, de giek zich in de hijspositie bevindt en de jib zich in de vrijgavepositie bevindt.1. Crane for assembling and installing offshore wind turbines, wherein the crane is switchable between an assembly configuration, for attaching a nacelle to an upright mast, and an installation configuration, for attaching the nacelle provided with the nacelle to a foundation mast, wherein the crane comprises: - a crane base; - a tap housing; - a slewing bearing, wherein the slewing bearing is provided between the crane base and the crane housing, to enable pivoting of the crane housing about a vertical axis; - a first and second hoisting assembly for hoisting a mast of a wind turbine, and a third hoisting assembly for hoisting a nacelle, each hoisting assembly comprising a winch, an associated hoisting wire and a load connector; - a boom, the boom extending between a base end and a main end, the boom being rotatably attached to the crane housing at the base end, and having at the main end a left support arm supporting a left crown block for the first hoisting assembly and a right support arm supporting a right crown block for the second hoisting assembly, the left crown block and the right crown block being spaced apart such that there is a mast receiving space between the left and right crown blocks and the mast can be supported between the left and right arms in the mast receiving space by the first and second hoisting assembly; -a luffing assembly comprising a boom luffing winch and an associated boom luffing wire, wherein the boom luffing winch is mounted on the crane housing and the boom luffing wire extends between the boom luffing winch and the boom, to enable pivoting of the boom between : - a lifting position, for supporting the mast of the wind turbine; and - a release position, in which the boom is retracted relative to the hoisting position; - a jib, wherein the jib can be moved relative to the boom between a hoisting position, for attaching the nacelle, and a release position, wherein the jib is retracted relative to the hoisting position, to provide support for the wind turbine mast by to allow the first and second lifting assembly with the nacelle above the main end of the boom; and wherein, in the assembly configuration, the boom is in the release position and the jib is in the hoist position, and in the installation configuration, the boom is in the hoist position and the jib is in the release position. 2. Kraan volgens conclusie 1, waarbij de steunarmen van de giek integrale onderdelen van de giek zijn, i.e. een continuering van de constructie van de giek vormen.2. Crane according to claim 1, wherein the support arms of the boom are integral parts of the boom, i.e. form a continuation of the construction of the boom. 3. Kraan volgens conclusie 1 of conclusie 2, waarbij de linker en rechter steunarm aan een bovenuiteinde zijn voorzien van transversale structuren, waarbij de transversale structuren zich van de giek af uitstrekken aan een voorzijde en aan een achterzijde daarvan, waarbij de transversale structuren de kroonblokken aan de voorzijde van de giek ondersteunen en verbonden zijn met de giek-oploefdraden aan de achterzijde van de giek, waarbij de transversale structuren, in zijaanzicht, de giek van een hamerkopvorm voorzien.3. Crane according to claim 1 or claim 2, wherein the left and right support arms are provided with transverse structures at an upper end, wherein the transverse structures extend away from the boom at a front and at a rear thereof, wherein the transverse structures are the crown blocks at the front of the boom and connected to the boom loom wires at the rear of the boom, the transverse structures, in side view, providing the boom with a hammerhead shape. 4. Kraan volgens één of meer van de voorgaande conclusies, waarbij de jib draaibaar is bevestigd aan de giek aan of nabij het hoofduiteinde daarvan.4. Crane according to one or more of the preceding claims, wherein the jib is rotatably attached to the boom at or near the main end thereof. 5. Kraan volgens één of meer van de voorgaande conclusies, waarbij de giek draaibaar is bevestigd aan de kraanbehuizing, zodanig dat de giek draaibaar is om een giekdraaias, en de jib draaibaar is bevestigd aan de giek, zodanig dat de jib draaibaar is om een jibdraaias, en waarbij de giekdraaias evenwijdig is aan de jibdraaias.5. Crane according to one or more of the preceding claims, wherein the boom is rotatably attached to the crane housing, such that the boom is rotatable about a boom pivot axis, and the jib is rotatably attached to the boom, such that the jib is rotatable about a boom axis. jib pivot axis, and wherein the boom pivot axis is parallel to the jib pivot axis. 6. Kraan volgens conclusie 5, waarbij de kraan verder een jib-oploeflier en een bijbehorende jib-oploefdraad omvat, en waarbij de oploefdraad zich uitstrekt tussen de jib- oploeflier en de jib, om draaien van de jib ten opzichte van de giek tussen de hijspositie en de vrijgavepositie mogelijk te maken.6. Crane according to claim 5, wherein the crane further comprises a jib luffing winch and an associated jib luffing wire, and wherein the jib luffing wire extends between the jib luffing winch and the jib, to enable rotation of the jib relative to the boom between the lifting position and release position possible. 7. Kraan volgens conclusie 5 of conclusie 6, waarbij de giek is voorzien van een jibstop, welke jibstop is ingericht om de jib te stoppen wanneer deze in de vrijgavepositie wordt bewogen.7. Crane according to claim 5 or claim 6, wherein the boom is provided with a jib stop, which jib stop is designed to stop the jib when it is moved into the release position. 8. Kraan volgens één of meer van de conclusies 5-7, waarbij de giek is voorzien van een jib-actuator, bijv. één of meer cilinders om de jib te duwen of één of meer lieren om de jib te trekken, om de jib uit de vrijgavepositie en naar de hijspositie te bewegen.8. Crane according to one or more of claims 5-7, wherein the boom is provided with a jib actuator, e.g. one or more cylinders to push the jib or one or more winches to pull the jib, to move the jib from the release position and to the hoist position. 9. Kraan volgens één of meer van de conclusies 5-8, waarbij de giek is voorzien van een jibvergrendeling, om de jib ten opzichte van de giek te vergrendelen in de vrijgavepositie.9. Crane according to one or more of claims 5-8, wherein the boom is provided with a jib lock to lock the jib relative to the boom in the release position. 10. Kraan volgens één of meer van de conclusies 5-9, waarbij de giekdraaias en de jibdraaias een vlak definiéren, en waarbij de jib, of ten minste een bovenuiteinde van de jib, zich in de assemblage positie aan een eerste zijde van dit vlak bevindt, en zich in de installatiepositie aan de tegenovergestelde, tweede zijde van dit vlak bevindt.10. Crane according to one or more of claims 5-9, wherein the boom pivot axis and the jib pivot axis define a plane, and wherein the jib, or at least an upper end of the jib, is in the assembly position on a first side of this plane and is in the installation position on the opposite, second side of this plane. 11. Kraan volgens één of meer van de voorgaande conclusies, waarbij de jib voorwaarts draaibaar is, om de kraan van een knikgiekconfiguratie, voor het heffen van objecten dichtbij het dekoppervlak, bijvoorbeeld om objecten tussen het vaartuig en een bevoorradingsvaartuig te bewegen.11. Crane according to one or more of the preceding claims, wherein the jib is rotatable forwards, about the crane of a knuckle boom configuration, for lifting objects close to the deck surface, for example to move objects between the vessel and a supply vessel. 12. Kraan volgens één of meer van de voorgaande conclusies, waarbij de giek, wanneer de kraan zich in de assemblageconfiguratie bevindt, zich in een in hoofdzaak verticale positie bevindt, i.e. in hoofdzaak evenwijdig is aan een zwenkas van de zwenklager van de kraan.12. Crane according to one or more of the preceding claims, wherein the boom, when the crane is in the assembly configuration, is in a substantially vertical position, i.e. substantially parallel to a pivot axis of the pivot bearing of the crane. 13. Kraan volgens één of meer van de voorgaande conclusies, waarbij de kraanbehuizing is voorzien van een giekstop, welke giekstop is ingericht om de giek te stoppen wanneer de giek in de vrijgavepositie wordt bewogen.13. Crane according to one or more of the preceding claims, wherein the crane housing is provided with a boom stop, which boom stop is designed to stop the boom when the boom is moved into the release position. 14. Kraan volgens één of meer van de voorgaande conclusies, waarbij de kraanbehuizing is voorzien van een giekactuator, bijv. één of meer cilinders om de giek te duwen of één of meer lieren om de giek te trekken, om de giek uit de vrijgavepositie en naar de hijspositie te bewegen.14. Crane according to one or more of the preceding claims, wherein the crane housing is provided with a boom actuator, e.g. one or more cylinders to push the boom or one or more winches to pull the boom, to move the boom from the release position and to move to the lifting position. 15. Kraan volgens één of meer van de voorgaande conclusies, waarbij de kraan is voorzien van een giekvergrendeling, om de giek ten opzichte van de kraanbehuizing te vergrendelen in de vrijgavepositie.15. Crane according to one or more of the preceding claims, wherein the crane is provided with a boom lock to lock the boom relative to the crane housing in the release position. 16. Kraan volgens één of meer van de voorgaande conclusies, waarbij de giek een lengte heeft in het bereik van 75 tot 80 meter, bij voorkeur een lengte heeft van ongeveer 78 meter, en/of een breedte heeft van meer dan 18 meter, bijvoorbeeld een breedte heeft van ongeveer 20 meter, en waarbij de ondersteuningsarmen bij voorkeur een lengte hebben van meer dan 15 meter, bijvoorbeeld een lengte hebben van ongeveer 20 meter.16. Crane according to one or more of the preceding claims, wherein the boom has a length in the range of 75 to 80 meters, preferably a length of approximately 78 meters, and/or a width of more than 18 meters, for example has a width of approximately 20 meters, and wherein the supporting arms preferably have a length of more than 15 meters, for example a length of approximately 20 meters. 17. Kraan volgens één of meer van de voorgaande conclusies, waarbij de jib een lengte heeft van ten minste driekwart, i.e. 75%, van de lengte van de giek, bij voorkeur een lengte heeft van ten minste vier vijfde, i.e. 80%, van de lengte van de giek.17. Crane according to one or more of the preceding claims, wherein the jib has a length of at least three-quarters, i.e. 75%, of the length of the boom, preferably has a length of at least four-fifths, i.e. 80%, of the length of the boom. 18. Kraan volgens één of meer van de voorgaande conclusies, waarbij de kraan omvat, bij voorkeur waarbij het eerste hijssamenstel en het tweede hijssamenstel elk omvatten, een deiningscompensatiemechanisme om te compenseren voor door de zee geinduceerde verticale beweging van een door het eerste en tweede hijssamenstel ondersteunde last ten opzichte van een fundering, bij voorkeur ten opzichte van een drijvende fundering.18. Crane according to one or more of the preceding claims, wherein the crane comprises, preferably wherein the first hoisting assembly and the second hoisting assembly each comprise, a heave compensation mechanism for compensating for vertical movement of a sea-induced vertical movement caused by the first and second hoisting assembly supported load relative to a foundation, preferably relative to a floating foundation. 19. Vaartuig, bij voorkeur een half afzinkbaar vaartuig, voorzien van een kraan volgens één of meer van de conclusies 1-18, waarbij het vaartuig een opslagdek heeft voor transport van windturbinecomponenten, bij voorkeur een opslagdek heeft voor het in een horizontale positie ondersteunen van een windturbinemast die een lengte van ten minste 100 meter heeft, waarbij de dekhoogte van het bovenuiteinde van de giek van de kraan, wanneer de kraan zich in de assemblageconfiguratie bevindt, minder is dan de dekhoogte van de in een rechtopstaande positie op het dek van het vaartuig ondersteunde windturbinemast, zodanig dat de giek de mast kan heffen terwijl het bovenuiteinde daarvan zich boven het bovenuiteinde van de giek uitstrekt.19. Vessel, preferably a semi-submersible vessel, provided with a crane according to one or more of claims 1-18, wherein the vessel has a storage deck for transporting wind turbine components, preferably has a storage deck for supporting wind turbine components in a horizontal position a wind turbine mast having a length of at least 100 metres, where the deck height of the upper end of the crane's boom, when the crane is in the assembly configuration, is less than the deck height of the crane in an upright position on the deck of the vessel supported wind turbine mast, such that the boom can lift the mast while its upper end extends above the upper end of the boom. 20. Vaartuig volgens conclusie 19, waarbij het vaartuig een funderingsgrijper omvat, voor het aangrijpen van een drijvende fundering en voor het dempen van bewegingen in het horizontale vlak van de drijvende fundering ten opzichte van het vaartuig, bij voorkeur voor het in hoofdzaak elimineren van bewegingen van de drijvende fundering ten opzichte van het vaartuig in het horizontale vlak.20. Vessel according to claim 19, wherein the vessel comprises a foundation grab for gripping a floating foundation and for damping movements in the horizontal plane of the floating foundation relative to the vessel, preferably for substantially eliminating movements of the floating foundation relative to the vessel in the horizontal plane. 21. Vaartuig volgens conclusie 19 of conclusie 20, waarbij het vaartuig is voorzien van ten minste één suppressor-arm, waarbij de suppressor-arm is ingericht om vanaf het vaartuig uit te steken in een drijvende-funderingkoppelingspositie, waarbij de suppressor-arm is voorzien van een drijvende-funderingkoppelinrichting voor het koppelen met een drijvende fundering, bij voorkeur voor het koppelen met een drijvende-funderingconnector die aan de drijvende fundering is bevestigd, en voor het uitoefenen van een neerwaartse kracht, i.e. een kracht gericht in de z-richting, op deze drijvende fundering om verticale beweging van de drijvende fundering ten opzichte van het vaartuig te reduceren, bij voorkeur te elimineren.21. Vessel according to claim 19 or claim 20, wherein the vessel is provided with at least one suppressor arm, the suppressor arm being arranged to extend from the vessel in a floating foundation coupling position, the suppressor arm being provided of a floating foundation coupling device for coupling to a floating foundation, preferably for coupling with a floating foundation connector attached to the floating foundation, and for applying a downward force, i.e. a force directed in the z-direction, on this floating foundation to reduce, preferably eliminate, vertical movement of the floating foundation relative to the vessel. 22. Werkwijze voor het assembleren en installeren van een offshore windturbine, waarbij de werkwijze gebruik van een kraan volgens één of meer van de conclusies 1-18 op een vaartuig, of gebruik van een vaartuig volgens één of meer van de conclusies 19-21, omvat.22. Method for assembling and installing an offshore wind turbine, wherein the method involves use of a crane according to one or more of claims 1-18 on a vessel, or use of a vessel according to one or more of claims 19-21, includes. 23. Werkwijze volgens conclusie 22, waarbij de werkwijze voorts omvat: - het positioneren van de kraan in de assemblageconfiguratie;23. Method according to claim 22, wherein the method further comprises: - positioning the crane in the assembly configuration; - bij voorkeur, het gebruiken van de kraan in de assemblagepositie om een windturbinemast rechtop te zetten; - het positioneren van de kraan in de installatieconfiguratie; en - het hijsen van de mast met de nacelle van het vaartuig en op een fundering, bij voorkeur op een drijvende fundering.- preferably, using the crane in the assembly position to erect a wind turbine mast; - positioning the crane in the installation configuration; and - hoisting the mast with the nacelle of the vessel and onto a foundation, preferably on a floating foundation. 24. Werkwijze voor het bevestigen van een offshore windturbine, of een deel daarvan, op een drijvende fundering vanaf een drijvend vaartuig voorzien van een windturbine- installatiekraan die een hijssamenstel omvat, waarbij de kraan bij voorkeur een kraan is volgens één of meer van de conclusies 1-18, en het vaartuig bij voorkeur een vaartuig is volgens één of meer van de conclusies 19-21, waarbij het vaartuig is voorzien van een funderingsklem voor het aangrijpen van een drijvende fundering en om vervolgens beweging van die fundering ten opzichte van het vaartuig in het xy-vlak te dempen, bij voorkeur met toelaten van beweging in de z-richting, i.e. in de verticale richting, waarbij de werkwijze de stappen omvat van: - het positioneren van het vaartuig naast de drijvende fundering; - het van xy-compensatie voorzien van de funderingsklem, i.e. het actief bewegen van de funderingsklem om beweging van de funderingsklem in het xy-vlak ten opzichte van de drijvende fundering te elimineren; - het aangrijpen van de drijvende fundering met de funderingsklem, bij voorkeur het aangrijpen van een aan de drijvende fundering bevestigde funderingsconnector met de funderingsklem, tijdens het voorzien in xy-compensatie, - het beëindigen van de xy-compensatie van de funderingsklem en het starten van xy- demping, i.e. het reduceren van de beweging van de drijvende fundering ten opzichte van het vaartuig in het xy-vlak; en - het verhogen van de xy-demping om de beweging van de drijvende fundering ten opzichte van het vaartuig in het xy-vlak verder te reduceren en bij voorkeur te elimineren, en bij voorkeur de funderingsklem volledig te verbinden met de drijvende fundering; waarbij het vaartuig voorts is voorzien van een suppressor-arm, waarbij de suppressor-arm is ingericht om vanuit het vaartuig uit te steken in een drijvende-funderingkoppelpositie, waarbij de suppressor-arm is voorzien van een drijvende-funderingkoppelinrichting voor het koppelen met een drijvende fundering, bij voorkeur voor het koppelen met een drijvende- funderingconnector die aan de drijvende fundering is voorzien, en voor het uitoefenen van een neerwaartse kracht, i.e. een kracht gericht in de z-richting, op deze drijvende fundering, waarbij de werkwijze voorts de stappen omvat van:24. Method for attaching an offshore wind turbine, or part thereof, to a floating foundation from a floating vessel provided with a wind turbine installation crane comprising a hoisting assembly, wherein the crane is preferably a crane according to one or more of the claims 1-18, and the vessel is preferably a vessel according to one or more of claims 19-21, wherein the vessel is provided with a foundation clamp for engaging a floating foundation and subsequently allowing movement of that foundation relative to the vessel in the xy plane, preferably allowing movement in the z direction, i.e. in the vertical direction, wherein the method comprises the steps of: - positioning the vessel next to the floating foundation; - providing the foundation clamp with xy compensation, i.e. actively moving the foundation clamp to eliminate movement of the foundation clamp in the xy plane relative to the floating foundation; - engaging the floating foundation with the foundation clamp, preferably engaging a foundation connector attached to the floating foundation with the foundation clamp, while providing xy compensation, - terminating the xy compensation of the foundation clamp and starting xy damping, i.e. reducing the movement of the floating foundation relative to the vessel in the xy plane; and - increasing the xy damping to further reduce and preferably eliminate the movement of the floating foundation relative to the vessel in the xy plane, and preferably fully connect the foundation clamp to the floating foundation; wherein the vessel is further provided with a suppressor arm, the suppressor arm being adapted to extend from the vessel into a floating foundation coupling position, the suppressor arm being provided with a floating foundation coupling device for coupling to a floating foundation, preferably for coupling with a floating foundation connector provided on the floating foundation, and for exerting a downward force, i.e. a force directed in the z-direction, on this floating foundation, wherein the method further comprises the steps includes of: - indien nodig, het positioneren van de suppressor-arm in de drijvende- funderingkoppelpositie; - het van z-compensatie voorzien van de koppelinrichting van de suppressor-arm, i.e. het actief bewegen van de koppelinrichting, of het uiteinde van de arm dat de koppelinrichting ondersteunt, om beweging van de koppelinrichting ten opzichte van de drijvende fundering in de z-richting te elimineren;- if necessary, positioning the suppressor arm in the floating foundation coupling position; - providing the coupling device of the suppressor arm with z-compensation, i.e. actively moving the coupling device, or the end of the arm that supports the coupling device, to prevent movement of the coupling device relative to the floating foundation in the z- direction to eliminate; - het koppelen van de drijvende fundering met de koppelinrichting, bij voorkeur het aangrijpen van een suppressorkoppeling voorzien aan de drijvende fundering, tijdens het voorzien in z- compensatie;- coupling the floating foundation with the coupling device, preferably engaging a suppressor coupling provided on the floating foundation, while providing z-compensation; - het beëindigen van de z-compensatie en het starten met dempen van de beweging van de drijvende fundering ten opzichte van het vaartuig in de z-richting;- ending the z-compensation and starting to damp the movement of the floating foundation relative to the vessel in the z-direction; - het verhogen van de z-demping om de beweging van de drijvende fundering in de z-richting verder te reduceren en bij voorkeur te elimineren en bij voorkeur daarmee de suppressor-arm volledig te verbinden met de drijvende fundering;- increasing the z-damping to further reduce and preferably eliminate the movement of the floating foundation in the z-direction and preferably thereby fully connect the suppressor arm to the floating foundation; - het bewegen van de windturbine van een positie boven het dek naar een positie boven de drijvende fundering, bij voorkeur tijdens gebruik van een ballastsysteem van het vaartuig om het vaartuig op gelijke kiel te houden, en het ondersteunen van de windturbine boven de drijvende fundering waarbij een windturbine-installatiekraan wordt gebruikt,- moving the wind turbine from a position above the deck to a position above the floating foundation, preferably while using a ballast system of the vessel to keep the vessel on the same keel, and supporting the wind turbine above the floating foundation whereby a wind turbine installation crane is used, - het van de drijvende fundering verwijderen van ballastwater, bij voorkeur van een kolom van de drijvende fundering waarop de windturbine te bevestigen is, bij voorkeur door het ballastwater van de drijvende fundering in ballasttanks van het vaartuig te pompen, bij voor keur ballasttanks die zich nabij of bij de kraan bevinden die de windturbine ondersteunt, om een opwaartse kracht van de drijvende fundering tegen de suppressor-arm te creëren,- removing ballast water from the floating foundation, preferably from a column of the floating foundation to which the wind turbine can be attached, preferably by pumping the ballast water from the floating foundation into ballast tanks of the vessel, preferably ballast tanks located nearby or located near the crane supporting the wind turbine, to create an upward force of the floating foundation against the suppressor arm, waarbij de opwaartse kracht bij voorkeur gelijk is aan, of groter is dan, de gravitatiekracht van de door de kraan ondersteunde windturbine;wherein the upward force is preferably equal to or greater than the gravitational force of the wind turbine supported by the crane; - het op de drijvende fundering laten landen van de windturbine, optioneel tijdens van z- compensatie voorzien van de windturbine met gebruik van het hijssamenstel van de kraan,- landing the wind turbine on the floating foundation, optionally during z-compensation of the wind turbine using the hoisting assembly of the crane, ie. het gebruiken van het hijssamenstel om door de zee geïnduceerde beweging van de windturbine ten opzichte van de drijvende fundering te reduceren, bij voorkeur te elimineren; en - het verbinden van de windturbine met de drijvende fundering door de windturbinemast met bouten aan de drijvende fundering te bevestigen, bijv. door een aan de drijvende fundering bevestigde drijvende-funderingconnector met bouten te bevestigen aan een windturbinemastconnector die aan de windturbinemast is bevestigd.i.e. using the lifting assembly to reduce, preferably eliminate, sea-induced movement of the wind turbine relative to the floating foundation; and - connecting the wind turbine to the floating foundation by bolting the wind turbine mast to the floating foundation, e.g. by bolting a floating foundation connector attached to the floating foundation to a wind turbine mast connector attached to the wind turbine mast. 25. Werkwijze volgens conclusie 24, waarbij de drijvende fundering is voorzien van een drijvende-funderingconnector en de windturbinemast is voorzien van een windturbinemastconnector, welke drijvende-funderingconnector en windturbinemastconnector zijn ingericht om samen te werken om een snelle verbinding te vormen, i.e. een verbinding te maken zonder bouten, tussen de drijvende fundering en de windturbinemast, en waarbij de werkwijze verder omvat: door het landen van de windturbine op de drijvende fundering, het tot stand brengen van een snelle verbinding zodanig dat de windturbinemast en de drijvende fundering als een eenheid bewegen.25. Method according to claim 24, wherein the floating foundation is provided with a floating foundation connector and the wind turbine mast is provided with a wind turbine mast connector, which floating foundation connector and wind turbine mast connector are designed to work together to form a fast connection, i.e. a connection. without bolts, between the floating foundation and the wind turbine mast, and wherein the method further comprises: by landing the wind turbine on the floating foundation, establishing a quick connection such that the wind turbine mast and the floating foundation move as a unit . 26. Werkwijze volgens conclusie 25, waarbij de funderingconnector is voorzien van een aanlegoppervlak voor het aangrijpen van de suppressor-arm door de drijvende- funderingkoppelinrichting.A method according to claim 25, wherein the foundation connector is provided with a contact surface for engaging the suppressor arm by the floating foundation coupling device. 27. Werkwijze volgens conclusie 25 of conclusie 26, waarbij de drijvende- funderingconnector en de windturbinemastconnector zijn voorzien van klikvingers en één of meer klikvingerkoppelranden voor het tot stand brengen van de snelle verbinding tussen de drijvende-funderingconnector en de windturbinemastconnector.27. Method according to claim 25 or claim 26, wherein the floating foundation connector and the wind turbine mast connector are provided with click fingers and one or more click finger coupling edges for establishing the quick connection between the floating foundation connector and the wind turbine mast connector. 28. Werkwijze volgens één of meer van de conclusies 25-27, waarbij de drijvende- funderingconnector en de windturbinemastconnector zijn voorzien van geleiders voor het uitlijnen van de drijvende-funderingconnector ten opzichte van de windturbinemastconnector om de z-as, tijdens laten landen van de windturbinemast op de drijvende fundering. 29 Werkwijze volgens één of meer van de conclusies 24-28, waarbij de massa van het van de drijvende fundering verwijderde water gelijk is aan, bij voorkeur groter is dan, de massa van de door de windturbine-installatiekraan boven de drijvende fundering ondersteunde windturbine, bijv. waarbij de massa van het water ongeveer 21 mt bedraagt,28. Method according to one or more of claims 25-27, wherein the floating foundation connector and the wind turbine mast connector are provided with guides for aligning the floating foundation connector with respect to the wind turbine mast connector about the z-axis, during landing of the wind turbine mast on the floating foundation. Method according to one or more of claims 24-28, wherein the mass of the water removed from the floating foundation is equal to, preferably greater than, the mass of the wind turbine supported by the wind turbine installation crane above the floating foundation, e.g. where the mass of the water is approximately 21 mt, zodanig dat de drijvende fundering opwaarts tegen het aanlegoppervlak duwt met een kracht gelijk aan, of groter dan, de gravitatiekracht van de door de kraan ondersteunde windturbine.such that the floating foundation pushes upward against the mooring surface with a force equal to or greater than the gravitational force of the wind turbine supported by the crane. 30. Werkwijze volgens één of meer van de conclusies 24-29, verder omvattende de stap van het overdragen van het totale gewicht van de windturbine, i.e. de windturbinemast en de aan de windturbinemast bevestigde nacelle, op de drijvende fundering, uitsluitend na het tot stand brengen van de snelle verbinding.30. Method according to one or more of claims 24-29, further comprising the step of transferring the total weight of the wind turbine, i.e. the wind turbine mast and the nacelle attached to the wind turbine mast, to the floating foundation, only after establishing bringing the fast connection.
NL2032212A 2022-06-17 2022-06-17 Crane and method for the assembly and installation of offshore wind turbines NL2032212B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2032212A NL2032212B1 (en) 2022-06-17 2022-06-17 Crane and method for the assembly and installation of offshore wind turbines
PCT/EP2023/066321 WO2023242427A2 (en) 2022-06-17 2023-06-16 Crane and method for the assembly and installation of offshore wind turbines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2032212A NL2032212B1 (en) 2022-06-17 2022-06-17 Crane and method for the assembly and installation of offshore wind turbines

Publications (1)

Publication Number Publication Date
NL2032212B1 true NL2032212B1 (en) 2024-01-05

Family

ID=83691286

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2032212A NL2032212B1 (en) 2022-06-17 2022-06-17 Crane and method for the assembly and installation of offshore wind turbines

Country Status (1)

Country Link
NL (1) NL2032212B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425145A (en) 2011-10-27 2012-04-25 三一电气有限责任公司 Offshore wind turbine installation platform and hoisting device thereof
CN102502422A (en) 2011-09-23 2012-06-20 三一电气有限责任公司 Integral hoisting equipment for offshore wind turbine
WO2019240585A1 (en) 2018-06-14 2019-12-19 Heerema Marine Contractors Nederland S.E. Split crane for installation of wind turbines and other tall structures
WO2020053015A1 (en) * 2018-09-13 2020-03-19 Mhi Vestas Offshore Wind A/S Floating wind turbine generator installation
WO2020225157A1 (en) * 2019-05-03 2020-11-12 Itrec B.V. Compact jib crane
US20210032079A1 (en) * 2018-02-06 2021-02-04 Itrec B.V. A crane and method for positioning an object
WO2022084344A1 (en) * 2020-10-22 2022-04-28 Itrec B.V. Installation of a wind turbine on a floating foundation
WO2022084336A1 (en) * 2020-10-22 2022-04-28 Itrec B.V. Offshore wind turbine assembly vessel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502422A (en) 2011-09-23 2012-06-20 三一电气有限责任公司 Integral hoisting equipment for offshore wind turbine
CN102425145A (en) 2011-10-27 2012-04-25 三一电气有限责任公司 Offshore wind turbine installation platform and hoisting device thereof
US20210032079A1 (en) * 2018-02-06 2021-02-04 Itrec B.V. A crane and method for positioning an object
WO2019240585A1 (en) 2018-06-14 2019-12-19 Heerema Marine Contractors Nederland S.E. Split crane for installation of wind turbines and other tall structures
WO2020053015A1 (en) * 2018-09-13 2020-03-19 Mhi Vestas Offshore Wind A/S Floating wind turbine generator installation
WO2020225157A1 (en) * 2019-05-03 2020-11-12 Itrec B.V. Compact jib crane
WO2022084344A1 (en) * 2020-10-22 2022-04-28 Itrec B.V. Installation of a wind turbine on a floating foundation
WO2022084336A1 (en) * 2020-10-22 2022-04-28 Itrec B.V. Offshore wind turbine assembly vessel

Similar Documents

Publication Publication Date Title
EP2952426B1 (en) Twin hull vessel with roll and pitch damping devices
EP2956400B1 (en) Device and method for placing a rotor blade of a wind turbine
NL2017468B1 (en) Crane, vessel comprising such a crane, and a method for up-ending a longitudinal structure
US10941023B2 (en) Wave-induced motion compensating crane for use on an offshore vessel, vessel and load transferring method
NL2021862B1 (en) Installation of a wind turbine blade on a hub of a wind turbine
EP3717705B1 (en) A method for installation of a pylon section of an off shore wind turbine and a vessel for performing such a method
WO2022229455A1 (en) Upend crane and installation vessel
EP3311024B1 (en) Portable and modular hoisting assembly for a wind turbine
US20230399206A1 (en) Offshore wind turbine assembly vessel
CN117120724A (en) Method for mounting a blade of an offshore wind turbine and blade mounting device
JP5820953B1 (en) Wind power generator assembly method, wind power generator disassembly method, wind power generator installation method, and wind power generator work ship
NL2032212B1 (en) Crane and method for the assembly and installation of offshore wind turbines
US20220154695A1 (en) Systems and methods for assembling and installing offshore wind turbines
EP4124749A1 (en) Wind turbine blade installation apparatus and method of installing a wind turbine blade
NL2028124B1 (en) installation vessel
WO2023242427A2 (en) Crane and method for the assembly and installation of offshore wind turbines
NL2028741B1 (en) upend crane and installation vessel
NL2029205B1 (en) Installation and/or removal of a wind turbine component for a floating foundation wind turbine.
NL2032193B1 (en) Method and blade installation device for installing a blade of an offshore wind turbine
NL2028204B1 (en) Vessel, device and method for the manipulation of wind turbine blades
BE1028520B1 (en) Device and method for placing a part of a wind turbine
NO20220427A1 (en)
CN117769524A (en) Upright crane and installation vessel