NL2031952B1 - System and method for automatic stock monitoring - Google Patents

System and method for automatic stock monitoring Download PDF

Info

Publication number
NL2031952B1
NL2031952B1 NL2031952A NL2031952A NL2031952B1 NL 2031952 B1 NL2031952 B1 NL 2031952B1 NL 2031952 A NL2031952 A NL 2031952A NL 2031952 A NL2031952 A NL 2031952A NL 2031952 B1 NL2031952 B1 NL 2031952B1
Authority
NL
Netherlands
Prior art keywords
sensor
change
control unit
resistance
mat
Prior art date
Application number
NL2031952A
Other languages
Dutch (nl)
Inventor
Jurrien Van Rees Pelle
Filipe Fernandes E Costa Magalhães Teixeira Ricardo
Hogenbirk Harm-Willem
René Bruck Reunis Marc
Paul Koehly Rodolphe
Original Assignee
Moos Int B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moos Int B V filed Critical Moos Int B V
Priority to NL2031952A priority Critical patent/NL2031952B1/en
Application granted granted Critical
Publication of NL2031952B1 publication Critical patent/NL2031952B1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Finance (AREA)
  • General Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Theoretical Computer Science (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

The invention relates to a system for automatic stock monitoring. The invention also relates to a sensor mat for use in such system. The invention moreover relates to a method for manufacturing such a system according to the invention. The invention further relates to a method for automatic stock monitoring in a shelving, in particular by using a system according to the invention, for example for use in a store.

Description

System and method for automatic stock monitoring
The invention relates to a system for automatic stock monitoring. The invention also relates to a sensor mat for use in such system. The invention moreover relates to a method for manufacturing such a system according to the invention. The invention further relates to a method for automatic stock monitoring in a shelving, in particular by using a system according to the invention, for example for use in a store.
In retail and other stock based environments, it is a common phenomenon to count the stock in store to check whether the actual stock matches the stock as calculated based on sales and initial stock in the administration. This usually is a yearly or quarterly event. Disadvantage of this system is that it is very time consuming and inaccurate. Moreover, out of stock issues may easily occur which is typically highly undesired and even harmful from a business point of view. There are systems which automize this manual stock count, but these are very expensive to implement. Furthermore, the components and materials used to make these systems are not widely available and as such have a large (carbon) footprint on the planet.
It is a first object of the invention to provide a cost-effective solution for automatic stock monitoring.
It is a second object of the invention to provide a more environmental friendly alternative to automatic stock monitoring systems.
The invention thereto provides a system for automatic (product) stock monitoring, comprising: * at least one flexible sensor mat which comprises an array of plurality of force-sensitive resistor sensors collectively spanning a sensor surface, wherein each sensor defines a sensor surface area of said sensor surface, and wherein each sensor comprises at least one pair of sensor electrodes separated by a shared flexible resistive substrate provided with electrically conductive particles defining an electrical resistance of the sensor, wherein the flexible substrate is at least partially composed of cellulose, preferably paper, wherein a deformation of the flexible substrate leads to a position- selective resistivity change in between at least one pair of sensor electrodes, wherein products can be, directly or indirectly, loaded onto said sensor surface and unloaded from said sensor surface, * at least one power source to apply a voltage to at least one sensor electrode of each pair of sensor electrodes, e a control unit directly or indirectly connected to the sensor electrode pairs of a plurality of sensors, preferably each sensor, wherein said control unit is programmed to, based upon a detected resistivity change due to loading of products onto the sensor surface and/or unloading of products from the sensor surface, determine at least one load change related characteristic, such as the number of sensors causing said resistivity change, and/or the location of at least one sensor causing said resistivity change, and/or the intensity of the resistivity change of at least one sensor causing said resistivity change, and e (i) a database connected or connectable to said control unit, wherein said database comprises data related to the correlation between the load change and the resistivity change of each sensor and/or (ii) wherein the control unit is programmed with an algorithm defining the correlation between the load change and the resistivity change of each sensor, allowing the control unit to determine said at least one load change related characteristic, wherein, preferably, the database makes part of said control unit.
The system according to the present invention provides a cost-effective solution for the use of force-sensitive resistive sensors, in particular for automatic remote stock monitoring. The system according to the present invention may be used for various applications, such as applying the sensor mat in a minibar in a hotel room, or placing a sensor mat in a fridge in a bar to keep track of the local stock. Another application is to track movements of persons in stores, or the movement of a person lying on a flat surface.
The sensor mat in the system according to the present invention comprises a cellulose or paper as a material for a substrate. The cellulose or paper-based substrate might at first lower the performance of the sensor compared to conventional force-sensitive resistive sensors due to higher visco-elastic behaviours and higher sensitivity to humidity. However, the advantage is that it is low-cost and more environmentally friendly. Besides that, the substrate makes it possible to scale the production of the system according to the invention. The control unit, database and/or program used by the contro! unit enhance the performance of the system such that it is very user-friendly and has a wide range of applications. The control unit may include (high-level) digital signal processing of the sensors signals comprising physical modelling equations for resistance to force conversion at the firmware level, while relevant data may be being sent to a or said database. Optionally, mass learning, and/or deep learning, and/or artificial intelligence could finally be used to optimise the objects counting process and circumvent potential higher sensors response variability.
The flexibility of the sensor mat may be interpreted as that it is possible to at least slightly bend the sensor mat. Hence, the sensor mat is not as stiff as hardwood or cardboard for example. However, bending the sensor mat will affect constrained cell's responses and should only possibly performed during the installation of the sensor mat. When in use, the sensor mat should not be bent at all anymore.
Moreover, the sensor mat may also exhibit flexibility in that the sensor mat may be cut to a desired size, and/or that one or more sensor mats may be assigned one or more different sensing zones, each zone being preferably defined by a plurality of sensors. Different zones may be configured to support different stock keeping units (skus), wherein the actual load of each zone can be monitored by the (same) control unit.
The sensor mat is flexible due to the use of a flexible substrate, such as preferably paper. Said paper preferably is made of at least one layer of a cellulose-based skeleton. The skeleton may be filled with fillers, such as electro-functional pigments, fibres, or polymers. The skeleton is preferably filled with said fillers such that its internal volumes resistivity leads to a surface resistance from 10kOhms/Sq to 500kOhms/Sq. The paper may further be coated on one or both sides with carbon-loaded starch coating so as to add improve its surface properties and electrical surface resistance uniformity. The paper can also be coated at the papermaking stage, depending on the desired application. The single sided coating is, if applied, a full layer typically with at least 100 times higher electrical surface resistance than the resistance of the skeleton and acting like an electrode regarding the resistive skeleton. Such a bi-functional paper can then be easily cut, fold and converted through fast manufacturing lines to produce a variety of sensors such as force-sensitive resistor sensors or arrays of said sensors based on either
Thru Mode or Shunt Mode design as described below.
The system can be used for (product) stock monitoring in retail for example, but also in warehouses. The system according to the present invention enables the opportunity for remote object (product) count, due to the control unit being programmed to, based upon a detected resistivity change due to loading of products onto the sensor surface and/or unloading of products from the sensor surface, determine at least one load change related characteristic, such as the number of sensors causing said resistivity change. The control unit may further be programmed to determine the location of at least one sensor causing said resistivity change. The control unit may further be programmed to determine the intensity of the resistivity change of at least one sensor causing said resistivity change. The location and/or number of sensor surface areas causing said resistivity change may be converted into number of products, items or objects present on said surface areas. The system according to the present invention is configured for detecting several kinds of products or items without needing to change the programming of the control unit. The products or items may be (un)evenly stacked, unstacked, light or heavy weight. For lightweight products it is possible that the sensor mat is preloaded in order to sense a minor pressure difference when a product is taken off or put on the sensor mat. The system according to the present invention may also be used for the detection of a location of an object, or to sense pressure differences at a surface area. Examples are to detect where a product is located on a shelf.
Other examples are related to various applications such as to detect a person on a mattress, in particular the place of the head of baby on a mattress or measuring (estimating) the weight of an object.
The use of paper or cellulose-based material as a substrate for the sensor is advantageous, because paper is a cost-effective material and as such the system is a cost-effective solution for stock monitoring. Paper is widely available can also be produced locally using local and renewable resources. The paper used in the sensor may be recyclable and/or may be composed at least partially of recycled material (recycled paper), which decreases the ecological footprint. Hence, the use of a cellulose based material, such as paper, is advantageous for several reasons.
The system further comprises a database connected or connectable to said control 5 unit, wherein said database comprises data related to the correlation between the load change and the resistivity change of each sensor. The database is highly advantageous for the wide application of the system according to the present invention, since it enables the control unit to translate the detected resistivity change combined with the information of the database into a product count. The database may be used to store data related to calibration of the sensors of the at least one flexible sensor mat. The database preferably comprises information which is gathered during a calibration process prior to the production and use of the system. The calibration is a very extensive and important process for the high user- friendliness and wide application of the system according to the present invention.
The database is typically filled with data coming from thousands of hours of testing of various stacking configurations, including but not limited to neatly stacked products, unevenly stacked products, unstacked products, mixed products, light products, heavy products. Using the database enables the method to be used as a plug & play system. Preferably, the control unit is programmed with an algorithm defining the correlation between the load change and the resistivity change of each sensor, allowing the control unit to determine said at least one load change related characteristic. Preferably, the database makes part of said control unit. Examples of load change related characteristics are location of loads, amount of load, remaining resistivity, or the like. The use of an algorithm further enhances the possibilities of plug & play of the system according to the invention.
The use of sensor mats is advantageous because it increases the scalability of the system. Multiple sensor mats can be placed next to each other within the same system/shelving. Furthermore, the dimensions of the sensor mat itself may be customized to fit the desired shape. A matrix (rectangular or square) is preferred, but it is also conceivable that the sensor mat has the shape of a circle, semi-circle, polygon.
In an embodiment of the system according to the present invention, the control unit is programmed to transform the detected resistivity change into at least one weight and/or pressure related parameter. Preferably said parameter is at least one weight and/or pressure related parameter per sensor, in particular per sensor causing the resistivity change. The control unit may transform the detected resistivity change into a weight, which may be used to calculate the number of products present. An alternative is that the control unity may transform the detected resistivity change into an area where pressure is applied and using the dimensions of a product, calculating the number of products or the location of an object.
To increase the fidelity of the sensors, it is advantageous that the control unit is programmed to correct variance. In an embodiment of the system of the present invention the control unit is programmed to compare the detected resistivity change with at least one detected resistivity change related value stored in said database to determine at least one weight and/or pressure related parameter, preferably at least one weight and/or pressure related parameter per sensor, in particular per sensor causing the resistivity change.
The control unit may further be programmed to determine the number, and preferably location, of products loaded onto said sensor surface and/or unloaded from said sensor surface. This may be based upon a detected resistivity change due to loading of products onto the sensor surface and/or unloading of products from the sensor surface, wherein the control unit and/or the database preferably comprises product weight related data.
The database may further store a translation matrix concerning information on a resistivity change characteristic combined with a desired output for example a product count. The control unit may be configured to use a translation matrix for translating received signals into unit counts. The translation matrix can be a predefined input, which may be based on calibration sessions. lt is also conceivable that the translation matrix will be updated during use of the system, either manually by the user or automatically by a self-learning software.
For increasing the accuracy and possibilities of the system it is advantageous when the control unit is programmed with a self-improving algorithm. For example by using deep learning techniques and/or wherein detected resistivity changes are stored, preferably in said database. By using paper as a substrate, the fidelity of the sensor is relatively low. Due to extensive data input, feature engineering and machine learning, such as deep learning, the system is capable of providing a more accurate prediction.
The system according to the present invention may comprise at least one communication unit for communicating information relating to the detected resistivity change to a user. In addition to the detected resistivity change the communication unit may be configured for communicating information relating to the corresponding detected product load change to a user. The communication unit may comprise a wireless connection to a remote-control unit for example. In an embodiment, the system according to the present invention may further comprise a digital display for displaying information. information to display may be related to product pricing for example. This may be linked to the detected resistivity (change) in the sensor mat, e.g. the number of products present. Preferably the system comprises a digital display for displaying digital information relating to the product load of at least one sensor mat, in particular the number of products actually present onto said sensor mat and/or the product stock change in time and/or a warning information in case the product load of at least one sensor mat drops below a predefined value. The product stock change in time may comprise the stock change over a predefined period for example one month. The communication unit and/or display may further be used to show information relating to remaining stock to sell out and/or long-standing stock.
In an embodiment of the system according to the present invention, the at least one flexible sensor mat comprises an array of plurality of force-sensitive resistor sensors collectively spanning a sensor surface. Preferably the flexible sensor mat comprises an array arranged in a matrix of a plurality of force-sensitive resistor sensors collectively spanning said sensor surface. Typically, the sensor surface spans a square or rectangular surface. However, the sensor surface may have any two-dimensional shape. It is advantageous to use an array, or a matrix comprising arrays, because it provides a logical configuration of the sensors with respect to each other. As such, the location of the object, which causes a change in resistivity in the force resistivity sensors can be determined rather easily.
Typically, each sensor exhibits an identifiable nominal resistivity in unloaded state and/or wherein each sensor exhibits an identifiable resistivity change behaviour during loading and/or unloading of said sensor. Knowing the resistivity in unloaded state of each sensor increases the preciseness of the system.
In a preferred embodiment each sensor is assigned an identification code. It is also possible that the identification code is coupled to the sensor surface area or the sensor mat. For example, such that each sensor mat is provided with an identification code, such as a QR code. The assignment of an identification code makes it easier to recognize where an object is present on the sensor mat within the system. The identification code also enables algorithms to process and/or combine the information of the several sensors into a parameter.
In an embodiment of the system according to the present invention, each sensor is connected to a predefined unique port of the control unit. This enables the control unit to identify each sensor, which is favourable for determining a load change.
The control unit may comprise for each sensor at least one force profile indicating the correlation between an electrical parameter, such as the electrical current, measured by the control unit, and the force exerted to said sensor.
System according to any of the previous claims, wherein each sensor is a calibrated sensor. Calibration may be done by the use of calibration weights, or by use of a weight-rig. The calibration can be done manually or automatically. The calibration process is also advantageous for different types of stackings of products. This information can serve as an input for the system.
The flexible substrate of the sensor mat within the system is preferably made from paper. In an embodiment the flexible substrate comprises carbon particles and/or metal particles. Cellulose fibres within the substrate may enclose conductive nanoparticles, such as carbon and/or metal particles. The carbon particles enable to finetune the conductivity of the substrate and as such the sensitivity of the sensor (mat).
In an embodiment of the system according to the present invention, at least one, preferably each, sensor (within the sensor mat) comprises a shunt mode configuration. In a shunt mode configuration the pair of mutually spaced electrodes is positioned at the same side of the shared flexible resistive substrate, wherein said pair of electrodes preferably has an interdigitated finger arrangement.
In an alternative embodiment, at least one, preferably each, sensor (within the sensor mat) comprises a thru mode configuration. In a thru mode configuration the pair of mutually spaced electrodes of said at least one sensor are positioned at opposite sides of the shared flexible resistive substrate Optionally the system according to the present invention may comprise a mix wherein some sensor mats comprise a shunt mode configuration and others a thru mode configuration.
If a shunt mode is applied, one layer of the sensor mat is printed using an interdigitated fingers pattern for printing the electrodes. A second layer comprises a resistive substrate, wherein both layers are sealed by a protective foil. The shunt mode sensor is receptive to a wide range of forces and is thus advantageous for use with a wide variety of products/items to be placed on the sensor mat. The shunt mode embodiment typically has a lower resolution but higher precision.
A thru mode sensor, if applied, is more receptive to lighter forces and more linear.
The sensor comprises in this embodiment printed conductive lines on two sides of the sensor. The conductive lines in this embodiment are positioned in a mutual perpendicular orientation. The thru mode embodiment typically has a higher resolution but lower precision.
Preferably, the electrodes of the sensor are printed on flexible substrate. Printing is advantageous for its scalable and cost-effective characteristics. Several types of ink may be used for printing the electrodes and other components on the substrate.
For example, the electrodes are printed with ink chosen from the group consisting of: metal inks and/or carbon inks. Said carbon inks may comprise graphite, conducting polymers and/or silicium. Said metal inks may comprise silver, copper, and/or metal oxides. If applied, the conductive particles are preferably substantially homogenously dispersed within flexible substrate.
Preferably, the flexible substrate is configured to act as linear resistor, wherein the resistivity of the flexible substrate varies in relation to a force applied to the substrate.
In an embodiment, the sensor mat has a resistance which is situated between 5kOhm and 5000kOhm, preferably between 1kOhm and 100kOhm.
A resistance within this range is advantageous to get a desired sensor sensitivity.
The chosen resistance range may depend on the carbon-black content and the load applied in the desired application.
In an embodiment of the system according to the present invention, the system comprises at least one store shelf supporting the at least one sensor mat, wherein the assembly of the store shelf and the sensor mat applied thereon is configured to be loaded with products for sale (or storage) and optionally loaded with products for sale (or storage). The store shelf may be used in a store but can also be used for a warehouse or the like. In a simple embodiment the shelf is preferably substantially horizontally. Alternatively, the shelf is slightly angled, such that products will automatically move to the front of the shelf. In this embodiment the algorithm will take into account the angled surface in translating the detected pressure into an object count.
In a preferred embodiment, the store shelf is provided with a horizontal store shelf surface. In another embodiment the shelf surface is slightly angled. In this case the control unit must account for the slightly angled and hence effect on pressure differences.
In an embodiment of the system according to the present invention at least a part of the data related to the correlation between the load change and the resistivity change of each sensor, as stored in the database, are calibration data, preferably sensor specific calibration data. Preferably, said calibration data result from a plurality of predefined load change measurement tests. Preferably calibration is automated, performed to each sensor or each sensor mat. lt is also possible for the control unit to use the calibration data of one sensor (mat) as a standard for other sensors and/or sensor mats.
The more data available for a calibration process, the better the output. Thus, preferably the database comprises for each sensor more than 100, preferably more than 500, more preferably more than 1000, values determining the correlation between the load change and the resistivity change of said sensor.
In an embodiment of the system according to the present invention the power source is configured to power the control unit and/or the database.
To optimize the use of energy, the control unit is programmed to control the power source. This may save energy with the advantage of less cost and less load on the environment. In this case it is advantageous if one power source is configured to power the control unit and the database, in order to have an efficient control of the power source.
The present invention also relates to a sensor mat for use in a system according to the present invention and as described above is a cost-effective and environment friendly solution for the use of force resistive sensors.
The present invention further relates to a flexible substrate for use in a sensor mat for a system according to the present invention.
The present invention further relates to a method for manufacturing a system according to the invention, comprising the steps of:
I. providing a flexible resistive substrate provided with electrically conductive particles, preferably wherein the flexible substrate is at least partially composed of cellulose, in particular paper, wherein the flexible substrate may optionally comprise at least one carrier layer, such as a polymer layer, in particular a thermoplastic layer, such as a polyethylene terephthalate (PET) layer;
If. printing a plurality of pairs of electrodes and/or connection lines to form sensors, directly or indirectly, onto the flexible substrate, preferably using a roll to rol! printing technique, more preferably flexography printing, thereby forming a sensor mat;
II. connecting the electrodes to a control unit, which control unit is programmed to determine, based upon a detected resistivity change and based upon prestored data related to the correlation between the load change and the resistivity change of each sensor, at least one load change related characteristic, such as the number of sensors causing said resistivity change, and/or the location of at least one sensor causing said resistivity change, and/or the intensity of the resistivity change of at least one sensor causing said resistivity change.
The advantages of the manufacturing of a system according to the present invention are similar as the advantages of the system according to the invention itself. Roll to roll printing of electrodes is in particular advantageous because it is a scalable and cos-effective process.
Sizing and coating on the printing machine can enable to produce a bifunctional layer with an electrode layer on one side of the resistive substrate. Downstream processing tools can be used to cut fold and assemble a variety of force sensors or sensors arrays as an alternative to printing such electrodes in step il.
In an embodiment of the method for manufacturing a system according to the present invention, the substrate comprises a skeleton and/or matrix, such as a cellulose-based skeleton (or matrix), in particular a paper-based skeleton (or matrix) and/or a polymer based skeleton (or matrix), which is filled with electro- functional pigments, and/or fibres, and/or polymers and/or an inert filler, and/or any other filler. Advantages thereof are described above.
As indicated above, the flexible substrate provided in step I) may be a PET- substrate for example. In this alternative embodiment prior to step Ill) the flexible resistive substrate of step | and the substrate of step ll can be pressed together to form at least part of a sensor mat. Alternatively, and often preferably, the flexible substrate comprises at least one carrier layer, such as a polymer layer, in particular a thermoplastic layer, such as a polyethylene terephthalate (PET) layer, which carrier layer(s) is laminated with at least one cellulose-based layer, in particular a paper-based layer.
The use of roll to roll printing in the method is advantageous, because rol! to rol! printing is a scalable and cost-effective process. It is possible that the method further comprises the step of adding a top layer to the substrate. The top layer has a protective function and protects the sensor mat, while allowing the sensors within the sensor mat to sense pressure differences.
The invention further relates to a method for automatic monitoring of the stock in a shelving, for example in a store. In particular the invention relates to a method for remote automatic monitoring object(s) on a surface. Applications can be remote stock monitoring in a retail environment, or in a warehouse. The stock monitoring can be used for automatic stock replenishment orders. Another application is to use the method in a mini bar in a hotel room or conference room. By using the method and/or system in a mini bar or a hotel room it is possible to add the step of automatic billing of the taken items from the shelf in the mini bar.
The method for automatic monitoring of the stock in a shelving, in particular by using a system according to the invention, for example for use in a store. Said method comprises the steps of:
A. providing a shelf for storing or presenting products;
B. providing at least one sensor mat according to claim 28 on top of said shelf;
C. connecting the sensor mat to a power unit, said power unit is configured for providing at least a potential difference to the sensor mat;
D. connecting a control unit to the sensor electrode pairs or a plurality of sensors in the sensor mat, preferably each sensor, wherein said control unit is programmed to determine, based upon a detected resistivity change and based upon either (i) upon prestored data related to the correlation between the load change and the resistivity change of each sensor, and/or (ii) upon an algorithm defining the correlation between the load change and the resistivity change of each sensor, at least one load change related characteristic, such as the number of sensors causing said resistivity change, and/or the location of at least one sensor causing said resistivity change, and/or the intensity of the resistivity change of at least one sensor causing said resistivity change; and
E. loading one or more product onto said at least one sensor mat and/or unloading one or more product from said sensor mat causing a deformation of the flexible substrate in the sensor mat which leads to a position-selective resistivity change of one or more sensors; and
F. converting by said control unit said at least one resistivity change into machine readable and/or human readable product stock change related information.
Preferably, during step F), the number and/or amount of products present on the shelf and/or added to the shelf and/or removed from the shelf is determined by the control unit. This leads to further automation of the stock monitoring process.
The method may further comprise step G) comprising the step of filling a database with calibration data for each sensor and/or the sensor mat, wherein the database preferably comprises for each sensor more than 100, preferably more than 500, more preferably more than 1000, values determining the correlation between the product load change and the resistivity change of said sensor, wherein step G) is performed prior to step F). The database is typically filled with data coming from thousands of hours of testing of various stacking configurations, including but not limited to neatly stacked products, unevenly stacked products, unstacked products, mixed products, light products, heavy products. Using the database enables the method to be used as a plug-and-play system. Preferably, the calibration comprises calibrating the sensor mat with unevenly stacked items. It is also advantageous when the calibration comprises calibrating the sensor mat with various mixed items placed simultaneously on the sensor mat. Advantages of these database are described above. The database enables a plug-and-play method for the user of the method with a wide variety of application possibilities.
In another embodiment the method comprises step H) comprising the step of, preferably automatedly, calibrating each sensor and/or the sensor mat by performing for each sensor a plurality of predefined product load change measurement tests, wherein during step H) the sensor mat is preferably unevenly loaded with products, wherein during step H) preferably at least one product weight related characteristic, such as a nominal product weight and/or average product weight of each product type, is used as input value, and wherein step H) is performed prior to step G). Preferably, during step H) the calibration is at least partially based upon calibrating the sensor mat by simultaneously placing various mixed products on the sensor mat.
The advantages of calibration are described above.
The invention will be elucidated according to the following non-limitative exemplary figures, wherein: - figure 1 shows a schematic view of an embodiment of a system according to the present invention; - figure 2 shows a schematic top view an cross section of sensor mat and control unit for a system according to the present invention; - figure 3 shows a schematic top view of an embodiment of a sensor mat; - figure 4 shows a perspective view of an application of the system according to the present invention; and - figure 5 shows a schematic view of an embodiment of the manufacturing method according to the present invention.
Figure 1 shows a schematic view of an embodiment of a system 1 according to the present invention. The system 1 for automatic stock monitoring shown comprises at least one flexible sensor mat 2 which comprises an array 3 of plurality of force- sensitive resistor sensors collectively spanning a sensor surface 4, wherein each sensor defines a sensor surface area 5 of said sensor surface 4, and wherein each sensor comprises a pair of sensor electrodes separated by a shared flexible resistive substrate provided with conductive particles, wherein the flexible substrate is at least partially composed of cellulose, preferably paper, wherein a deformation of the flexible substrate leads to a position-selective resistivity change in between at least one pair of sensor electrodes. The figure shows at least one power source 6 to provide a voltage to at least one sensor electrode of each pair of sensor electrodes. The power source 6 also provides power to the control unit 7 in the shown embodiment. The control unit 7 is connected to the sensor electrode pairs of a plurality of sensors, preferably each sensor, wherein said control unit is programmed to determine, based upon a detected resistivity change, the location and/or number of sensor surfaces areas 5 causing said resistivity change. The figure further shows a database 8 wherein data is stored related to calibration of the sensors of the at least one flexible sensor mat 2. The power source 6, control unit 7 maybe placed upon the sensor mat 2, but in this embodiment they are shown besides the sensor mat 2. The database 8 is typically a database which is stored and maintained online.
Figure 2 shows a schematic top view and cross section of a sensor mat 22 and a control unit 27 for a system according to the present invention. Figure 2a shows a schematic top view and figure 2b shows a schematic cross section along the line A-
A shown in figure 2a. The sensor mat 22 comprising a top layer 23, a bottom layer 24, a spacer 25, and a layer of adhesive 26 to attach the sensor mat 22 to another surface. In the cross section the electrodes 21 are shown, which are printed on the paper 28. The control unit 28 is received within a housing 29. The sensors in the sensor mat 22 span a sensor surface 14. For items placed within the boundaries of surface 14, the resistivity within the sensor mat 22 will change upon a change in items placed on the mat 22 and as such the control unit 28 will receive a signal.
The control unit can depending on the settings translate this signal into a product count for example.
Figure 3 shows a schematic top view of an embodiment of the electrodes in a sensor mat 32. The embodiment shown is a sensor mat with a shunt mode configuration with interdigitated fingers as electrodes 31. Each sensor comprises a pair of sensor electrodes separated by a shared flexible resistive substrate provided with conductive particles, wherein the flexible substrate is at least partially composed of cellulose, preferably paper, wherein a deformation of the flexible substrate leads to a position-selective resistivity change in between at least one pair of sensor electrodes. The sensor mat 32 comprises multiple arrays 33 of plurality of force-sensitive resistor sensors collectively spanning a sensor surface 34. The sensor mat 32 shown comprises a matrix design of ten by sixteen sensors, with a total of 160 sensors. Each sensor spanning a sensor surface area 35. The electrodes 31 of the sensors are connected with conductive lines. The conductive lines may be used for connecting with a control unit of the system for example.
Figure 4 shows a perspective view of an application of the system according to the present invention. The figure shows a sensor mat 42 on a shelf 40, which is part of a shelving 41. Each shelf 40 can be provided with a sensor mat 42 for a system according to the present invention. In the embodiment shown the sensor mat 42 is placed horizontally on the shelf 40. The figure shows a control unit 47 connected to the sensor mat 42. The control unit is placed at the back of the shelf, such that it is close to the sensor mat 42, but visually not in the way of any products on the sensor mat 42 for a user standing in front of the shelving 41.
Figure 5 shows a schematic view of an embodiment of the manufacturing method according to the present invention. In step A, conductive links 52 are printed onto a
PET substrate 51 by flexography printing rolls 53. Successively, step B, a spacer 54 is applied onto the substrate. A flexible paper-based substrate, in this example a resistive technical paper 55, is pressed together with the print 51 in step C. The layered sensor mat subassembly is provided with a top layer and as such forming a sensor mat in step D as shown. The layered sensor mat assembly is cut to the desired shape in step E, by a cutter 56. The electrodes in the sensor mat are connected to a control unit 58, which is programmed to determine, based upon a detected resistivity change, the location and/or number of sensor surface areas causing said resistivity change. Before the sensor mat is used in an application the sensor mat is subjected to a quality check, shown as step F, and an identity code 57 is added, schematically shown as step G.
It will be clear that the invention is not limited to the exemplary embodiments which are illustrated and described here, but that countless variants are possible within the framework of the attached claims, which will be obvious to the person skilled in the art. In this case, it is conceivable for different inventive concepts and/or technical measures of the above-described variant embodiments to be completely or partly combined without departing from the inventive idea described in the attached claims.
The verb 'comprise' and its conjugations as used in this patent document are understood to mean not only ‘comprise’, but to also include the expressions ‘contain’, 'substantially contain’, formed by’ and conjugations thereof.

Claims (36)

ConclusiesConclusions 1. Systeem voor automatische productvoorraadtelling, omvattende: e ten minste één flexibele sensormat die een serie van veelvoudige krachtgevoelige weerstandssensoren omvat die tezamen een sensoropperviak overspannen, waarbij iedere sensor een sensoroppervlaktegebied van voornoemde sensoropperviak definieert, en waarbij iedere sensor ten minste één paar sensorelektroden omvat die gescheiden zijn door een gedeelde flexibele weerstandssubstraat voorzien van elektrisch geleidende deeltjes die een elektrische weerstand van de sensor definieert, waarbij het flexibele substraat ten minste gedeeltelijk is samengesteld uit cellulose, bij voorkeur papier, waarbij een vervorming van het flexibele substraat een positie-selectieve weerstandsverandering teweegbrengt tussen ten minste één paar sensorelektroden, waarbij producten, direct of indirect, kunnen worden geladen op voornoemd sensoropperviak en gelost van voornoemd sensoropperviak, e ten minste één stroombron om een spanning aan te brengen aan ten minste één sensorelektrode van elk paar sensorelektroden, e een besturingseenheid die direct of indirect is verbonden aan de sensorelektrodeparen van een veelvoud van sensoren, bij voorkeur iedere sensor, waarbij voornoemde besturingseenheid is geprogrammeerd om, gebaseerd op een gedetecteerde weerstandsverandering door het laden van producten op het sensoropperviak en/of door het lossen van producten van het sensoroppervlak, ten minste één ladingsverandering gerelateerde karakteristiek te bepalen, zoals het aantal sensoren dat een voornoemde weerstandverandering veroorzaakt, en/of de locatie van ten minste één sensor dat voornoemde weerstandsverandering veroorzaakt, en/of de intensiteit van de weerstandsverandering van ten minste één sensor dat voornoemde weerstandsverandering veroorzaakt, en e (i) een database verbonden of verbindbaar met voornoemde besturingseenheid, waarbij voornoemde database data omvat die gerelateerd is aan de correlatie tussen de ladingsverandering en de weerstandsverandering van iedere sensor, en/of (ii) waarbij de besturingseenheid geprogrammeerd is met een algoritme dat de correlatie tussen de ladingsverandering en de weerstandsverandering van iedere sensor definieert, waardoor de besturingseenheid de voornoemde ten minste ene ladingsverandering gerelateerde karakteristiek kan bepalen. An automatic product inventory counting system comprising: e at least one flexible sensor mat comprising an array of multiple force-sensitive resistance sensors together spanning a sensor surface, each sensor defining a sensor surface area of said sensor surface, and each sensor comprising at least one pair of sensor electrodes are separated by a shared flexible resistance substrate provided with electrically conductive particles that defines an electrical resistance of the sensor, wherein the flexible substrate is at least partly composed of cellulose, preferably paper, wherein a deformation of the flexible substrate produces a position-selective resistance change between at least one pair of sensor electrodes, whereby products can be loaded, directly or indirectly, onto said sensor surface and unloaded from said sensor surface, e at least one power source for applying a voltage to at least one sensor electrode of each pair of sensor electrodes, e a control unit which is directly or indirectly connected to the sensor electrode pairs of a plurality of sensors, preferably each sensor, wherein said control unit is programmed to, based on a detected change in resistance, by loading products onto the sensor surface and/or by unloading products from the sensor surface, to determine at least one charge change related characteristic, such as the number of sensors that cause a said resistance change, and/or the location of at least one sensor that causes said resistance change, and/or the intensity of the resistance change of at least one sensor that causes said resistance change, and e (i) a database connected or connectable to said control unit, said database comprising data related to the correlation between the charge change and the resistance change of each sensor, and/or (ii) wherein the control unit is programmed with an algorithm defining the correlation between the charge change and the resistance change of each sensor, allowing the control unit to determine the aforementioned at least one charge change related characteristic. 2 Systeem volgens conclusie 1, waarbij ten minste één sensormat een veelvoud van sensorzones omvat, waarbij iedere sensorzone ten minste twee van voornoemde krachtgevoelige weerstandssensoren omvat.System according to claim 1, wherein at least one sensor mat comprises a plurality of sensor zones, wherein each sensor zone comprises at least two of the aforementioned force-sensitive resistance sensors. 3. Systeem volgens conclusie 1 of 2, waarbij de besturingseenheid geprogrammeerd is om de gedetecteerde weerstandsverandering te veranderen in ten minste één gewichtsgerelateerde parameter en/of drukgerelateerde parameter, bij voorkeur ten minste één. gewichtsgerelateerde en/of drukgerelateerde parameter per sensor, in het bijzonder de veroorzakende weerstandsverandering per sensor.System according to claim 1 or 2, wherein the control unit is programmed to change the detected resistance change in at least one weight-related parameter and/or pressure-related parameter, preferably at least one. weight-related and/or pressure-related parameter per sensor, in particular the causing resistance change per sensor. 4. Systeem volgens een der voorgaande conclusies, waarbij de besturingseenheid geprogrammeerd is om de gedetecteerde weerstandsverandering te vergelijken met de ten minste ene gedetecteerde weerstandsverandering gerelateerde waarde opgeslagen in voornoemde database om ten minste één gewichtsgerelateerde en/of drukgerelateerde parameter te bepalen, bij voorkeur ten minste één gewichtsgerelateerde en/of drukgerelateerde parameter per sensor, in het bijzonder de veroorzakende weerstandsverandering per sensor.4. System according to any one of the preceding claims, wherein the control unit is programmed to compare the detected resistance change with the at least one detected resistance change-related value stored in said database to determine at least one weight-related and/or pressure-related parameter, preferably at least one weight-related and/or pressure-related parameter per sensor, in particular the causing resistance change per sensor. 5. Systeem volgens een der voorgaande conclusies, waarbij de besturingseenheid geprogrammeerd is om, gebaseerd op een gedetecteerde weerstandsverandering door de lading van producten op het sensoroppervlak en/of door het lossen van producten van het sensoropperviak, het aantal, en bij voorkeur de locatie, van producten geladen op het voornoemde sensoropperviak en/of gelost van voornoemd sensoroppervlak te bepalen, waarbij de besturingseenheid en/of de database bij voorkeur productgewichtsgerelateerde data omvat.5. System according to any one of the preceding claims, wherein the control unit is programmed to, based on a detected resistance change due to the loading of products on the sensor surface and/or by unloading products from the sensor surface, the number, and preferably the location, of of products loaded onto the aforementioned sensor surface and/or unloaded from the aforementioned sensor surface, wherein the control unit and/or the database preferably comprises product weight-related data. 6. Systeem volgens een der voorgaande conclusies, waarbij de besturingseenheid is geprogrammeerd met een zelfverbeterend algoritme, bijvoorbeeld door gebruik van deep learning technieken en/of waarbij gedetecteerde weerstandsveranderingen zijn opgeslagen, bij voorkeur in voornoemde database.6. System according to any one of the preceding claims, wherein the control unit is programmed with a self-improving algorithm, for example by using deep learning techniques and/or where detected resistance changes are stored, preferably in the aforementioned database. 7. Systeem volgens een der voorgaande conclusies, waarbij het systeem ten minste één communicatie-eenheid omvat voor het communiceren van informatie gerelateerd aan de gedetecteerde weerstandsverandering en/of de overeenkomstige gedetecteerde productladingsverandering, aan een gebruiker.System according to any one of the preceding claims, wherein the system comprises at least one communication unit for communicating information related to the detected resistance change and/or the corresponding detected product charge change to a user. 8. Systeem volgens een der voorgaande conclusies, waarbij het systeem een digitaal schermomvat voor het weergeven van digitale informatie gerelateerd aan de productlading van ten minste één sensormat, in het bijzonder het aantal producten dat daadwerkelijk aanwezig zijn op voornoemde sensormat en/of de productvoorraadverandering in tijd en/of waarschuwende informatie in het geval de productlading van ten minste één sensormat onder een voorafbepaalde waarde daalt.8. System according to any one of the preceding claims, wherein the system comprises a digital screen for displaying digital information related to the product load of at least one sensor mat, in particular the number of products actually present on said sensor mat and/or the product stock change in time and/or warning information in case the product charge of at least one sensor mat falls below a predetermined value. 9. Systeem volgens een der voorgaande conclusies, waarbij de ten minste ene flexibele sensormat een matrixserie van krachtgevoelige weerstandssensoren omvat die tezamen voornoemd sensoropperviak overspannen.9. System according to any one of the preceding claims, wherein the at least one flexible sensor mat comprises a matrix series of force-sensitive resistance sensors that together span said sensor surface. 10. Systeem volgens een der voorgaande conclusies, waarbij iedere sensor een identificeerbare nominaal weerstand vertoont in ongeladen toestand en/of waarbij iedere sensor een identificeerbare weerstandsveranderingsgedrag vertoont tijdens laden en/of lossen van voornoemde sensor.10. System according to any one of the preceding claims, wherein each sensor exhibits an identifiable nominal resistance in an uncharged state and/or wherein each sensor exhibits an identifiable resistance change behavior during loading and/or unloading of said sensor. 11. Systeem volgens een der voorgaande conclusies, waarbij aan iedere sensor en/of aan iedere sensormat een identificatiecode is toegewezen.11. System according to any one of the preceding claims, wherein an identification code is assigned to each sensor and/or to each sensor mat. 12. Systeem volgens een der voorgaande conclusies, waarbij iedere sensor is verbonden aan een voorafbepaalde unieke poort van de besturingseenheid.12. System according to any one of the preceding claims, wherein each sensor is connected to a predetermined unique port of the control unit. 13. Systeem volgens een der voorgaande conclusies, waarbij iedere sensor een gekalibreerde sensor is.13. System according to any one of the preceding claims, wherein each sensor is a calibrated sensor. 14. Systeem volgens een der voorgaande conclusies, waarbij het flexibele substraat koolstofdeeltjes en/of metaaldeeltjes omvat.14. System according to any one of the preceding claims, wherein the flexible substrate comprises carbon particles and/or metal particles. 15. Systeem volgens een der voorgaande conclusies, waarbij ten minste één, bij voorkeur iedere, sensor een shuntmodusconfiguratie omvat, waarbij het paar van onderling gescheiden elektroden zijn gepositioneerd aan dezelfde zijde van de gedeelde flexibele weerstandssubstraat, waarbij voornoemde elektrodepaar bij voorkeur een vingerschikking met tussenruimten heeft.A system according to any one of the preceding claims, wherein at least one, preferably each, sensor comprises a shunt mode configuration, wherein the pair of mutually separated electrodes are positioned on the same side of the shared flexible resistive substrate, said electrode pair preferably having a spaced finger arrangement has. 16. Systeem volgens een der voorgaande conclusies, waarbij ten minste één, bij voorkeur iedere, sensor een thrumodusconfiguratie omvat, waarbij de elektroden van voornoemde ten minste ene sensor zijn gepositioneerd aan tegenovergelegen zijden van de gedeelde flexibele weerstandssubstraat. 16. System according to any one of the preceding claims, wherein at least one, preferably each, sensor comprises a thru-mode configuration, wherein the electrodes of said at least one sensor are positioned on opposite sides of the shared flexible resistance substrate. 17, Systeem volgens een der voorgaande conclusies, waarbij de elektroden van iedere sensor ofwel geprint zijn op het flexibele substraat.17. System according to any one of the preceding claims, wherein the electrodes of each sensor are either printed on the flexible substrate. 18. System volgens conclusie 17, waarbij de elektroden zijn geprint met inkt gekozen van de groep bestaande uit: metaalinkten, en/of koolstofinkten, waarbij koolstofinkten bij voorkeur grafiet, geleidende polymeren en/of silicium omvat.18. System according to claim 17, wherein the electrodes are printed with ink selected from the group consisting of: metal inks, and/or carbon inks, wherein carbon inks preferably comprise graphite, conductive polymers and/or silicon. 19. Systeem volgens conclusie 18, waarbij de metaalinkten zilver, koper, andere metaaloxiden of grafiet- en grafeengebaseerde structuren omvat.The system of claim 18, wherein the metal inks comprise silver, copper, other metal oxides or graphite and graphene-based structures. 20. Systeem volgens een der voorgaande conclusies, waarbij de geleidende deeltjes in hoofdzaak homogeen zijn verspreid in het flexibele substraat.20. System according to any one of the preceding claims, wherein the conductive particles are substantially homogeneously distributed in the flexible substrate. 21. Systeem volgens een der voorgaande conclusies, waarbij het flexibele substraat is ingericht om als lineaire weerstand te fungeren, waarbij de weerstand van het flexibele substraat varieert in verhouding tot een kracht aangebracht op het substraat.21. System according to any one of the preceding claims, wherein the flexible substrate is designed to function as a linear resistance, wherein the resistance of the flexible substrate varies in proportion to a force applied to the substrate. 22. Systeem volgens een der voorgaande conclusies, waarbij de weerstand van iedere sensor is gelegen in de range van 1 kOhm — 100 kOhm.22. System according to any one of the preceding claims, wherein the resistance of each sensor is in the range of 1 kOhm - 100 kOhm. 23. Systeem volgens een der voorgaande conclusies, waarbij het systeem ten minste één winkelschap omvat die ten minste één sensormat ondersteund, waarbij het samenstel van het winkelschap en de daarop aangebrachte sensormat zijn geladen en/of zijn geconfigureerd om geladen te worden met producten voor verkoop.23. System according to any one of the preceding claims, wherein the system comprises at least one store shelf supporting at least one sensor mat, wherein the store shelf assembly and the sensor mat arranged thereon are loaded and/or configured to be loaded with products for sale . 24. System volgens een der voorgaande conclusies, waarbij ten minste een deel van de data gerelateerd aan de correlatie tussen de ladingsverandering en de weerstandsverandering van iedere sensor, zoals opgeslagen in de database, kalibratiedata zijn, bij voorkeur sensor specifieke kalibratiedata.24. System according to any one of the preceding claims, wherein at least part of the data related to the correlation between the change in charge and the change in resistance of each sensor, as stored in the database, is calibration data, preferably sensor-specific calibration data. 25. Systeem volgens conclusie 24, waarbij voornoemde kalibratiedata volgt uit een veelvoud van voorafbepaalde ladingsveranderingsmeettesten, bij voorkeur geautomatiseerd, uitgevoerd voor iedere sensor.25. System according to claim 24, wherein said calibration data results from a plurality of predetermined charge change measurement tests, preferably automated, performed for each sensor. 26. Systeem volgens een der voorgaande conclusies, waarbij de database voor iedere sensor meer dan 100, bij voorkeur meer dan 500, meer bij voorkeur meer dan 1000, waarden omvat die de correlatie tussen de ladingsverandering en de weerstandsverandering van voornoemde sensor bepalen.26. System according to any one of the preceding claims, wherein the database for each sensor comprises more than 100, preferably more than 500, more preferably more than 1000, values that determine the correlation between the change in charge and the change in resistance of said sensor. 27. Systeem volgens een der voorgaande conclusies, waarbij de stroombron is ingericht om de besturingseenheid en/of de database van stroom te voorzien.27. System according to any one of the preceding claims, wherein the power source is designed to supply the control unit and/or the database with power. 28. Systeem volgens een der voorgaande conclusies, waarbij de besturingseenheid is geprogrammeerd om de stroombron te besturen.28. System according to any one of the preceding claims, wherein the control unit is programmed to control the power source. 29. Sensormat voor gebruik in een systeem volgens een der voorgaande conclusies.29. Sensor mat for use in a system according to any of the preceding claims. 30. Flexibel substraat voor gebruik in een systeem volgens een van de conclusies 1-28.30. Flexible substrate for use in a system according to any of claims 1-28. 31. Werkwijze voor het vervaardigen van een systeem volgens een der voorgaande conclusies, omvattende de stappen van:31. Method for manufacturing a system according to any one of the preceding claims, comprising the steps of: I. het voorzien van een flexibele weerstandssubstraat voorzien van elektrisch geleidende deeltjes, bij voorkeur waarbij het flexibele substraat ten minste gedeeltelijk bestaat uit cellulose, in het bijzonder papier, waarbij het flexibele substraat optioneel ten minste één draaglaag omvat, zoals een polymeer laag, in bijzonder een thermoplastische laag, zoals een polyethyleentereftalaat (PET) laag;I. providing a flexible resistance substrate provided with electrically conductive particles, preferably wherein the flexible substrate consists at least partly of cellulose, in particular paper, wherein the flexible substrate optionally comprises at least one carrier layer, such as a polymer layer, in particular a thermoplastic layer, such as a polyethylene terephthalate (PET) layer; if. het direct of indirect op voornoemd substraat printen van een veelvoud van elektrodeparen en/of verbindingslijnen om sensoren te vormen op voornoemd substraat, bij voorkeur gebruikmakend van een rol-op-rol printtechniek, meer bij voorkeur flexogratisch printen, waardoor ten minste een deel van een sensor mat wordt gevormd;if. printing directly or indirectly on said substrate a plurality of electrode pairs and/or connecting lines to form sensors on said substrate, preferably using a roll-to-roll printing technique, more preferably flexographic printing, whereby at least part of a sensor mat is formed; II. het verbinden van de elektroden aan een besturingseenheid, welke besturingseenheid is geprogrammeerd om, gebaseerd op een gedetecteerde weerstandsverandering en gebaseerd op vooraf opgeslagen data gerelateerd aan de correlatie tussen de ladingsverandering en de weerstandsverandering van iedere sensor, ten minste één ladingsverandering gerelateerde karakteristiek, zoals het aantal sensoren dat voornoemde weerstandsverandering veroorzaakt, en/of de locatie van ten minste één sensor dat de voornoemde weerstandsverandering veroorzaakt, en/of de intensiteit van de weerstandsverandering van ten minste één sensor dat de voornoemde weerstandsverandering veroorzaakt.II. connecting the electrodes to a control unit, which control unit is programmed to, based on a detected resistance change and based on pre-stored data related to the correlation between the charge change and the resistance change of each sensor, at least one charge change-related characteristic, such as the number sensors causing said resistance change, and/or the location of at least one sensor causing said resistance change, and/or the intensity of the resistance change of at least one sensor causing said resistance change. 32. Werkwijze voor het automatisch monitoren van de productvoorraad in een schap, in het bijzonder door gebruik van een systeem volgens een van de conclusies 1-28, bij voorbeeld voor gebruik in een winkel, omvattende de stappen van:32. Method for automatically monitoring the product stock on a shelf, in particular by using a system according to any of the claims 1-28, for example for use in a store, comprising the steps of: A. het voorzien van een schap voor het op voorraad houden of het presenteren van producten;A. providing a shelf for stocking or presenting products; B. het voorzien van ten minste één sensormat volgens conclusie 28 bovenop voornoemde schap;B. providing at least one sensor mat according to claim 28 on top of said shelf; C. het verbinden van de sensormat aan een stroomeenheid, voornoemde stroomeenheid is ingericht voor het voorzien van ten minste een potentiaalverschil naar de sensormat;C. connecting the sensor mat to a power unit, said power unit being designed to provide at least a potential difference to the sensor mat; D. het verbinden van een besturingseenheid aan de sensorelektrodeparen van een veelvoud van sensoren in de sensormat, bij voorkeur iedere sensor, waarbij voornoemde besturingseenheid is geprogrammeerd om op basis van een gedetecteerde weerstandsverandering en gebaseerd op of (i) vooraf opgeslagen data gerelateerd aan de correlatie tussen het ladingsverschil en de weerstandsverandering van iedere sensor, en/of (ii) een algoritme dat de correlatie tussen het ladingsverschil en de weerstandsverandering van iedere sensor definieert, ten minste één ladingsverandering gerelateerde karakteristiek te bepalen, zoals het aantal sensoren die voornoemde weerstandsverandering veroorzaken, en/of de locatie van ten minste één sensor die de voornoemde weerstandsverandering veroorzaakt, en/of de intensiteit van de weerstandsverandering van ten minste één sensor die voornoemde weerstandsverandering veroorzaakt; enD. connecting a control unit to the sensor electrode pairs of a plurality of sensors in the sensor mat, preferably each sensor, wherein said control unit is programmed to operate on the basis of a detected resistance change and based on either (i) pre-stored data related to the correlation between the charge difference and the resistance change of each sensor, and/or (ii) an algorithm defining the correlation between the charge difference and the resistance change of each sensor, to determine at least one charge change related characteristic, such as the number of sensors causing said resistance change, and/or the location of at least one sensor causing said resistance change, and/or the intensity of the resistance change of at least one sensor causing said resistance change; and E. het laden van één of meer product(en) op voornoemde ten minste ene sensormat en/of het lossen van één of meer product(en) van voornoemde sensormat dat een vervorming van het flexibele substraat in de sensormat veroorzaakt wat leidt tot een positie-selectieve weerstandsverandering van één of meerdere sensoren; enE. loading one or more product(s) onto the aforementioned at least one sensor mat and/or unloading one or more product(s) from the aforementioned sensor mat that causes a deformation of the flexible substrate in the sensor mat, leading to a position -selective resistance change of one or more sensors; and F. het omzetten van ten minste één weerstandsverandering door voornoemde besturingseenheid in machine-uitleesbare en/of menselijk uitleesbare productvoorraadgerelateerde informatie.F. converting at least one resistance change by said control unit into machine-readable and/or human-readable product stock-related information. 33. Werkwijze volgens conclusie 32, waarbij tijdens stap F) het aantal en/of hoeveelheid van producten aanwezig in het schap en/of toegevoegd aan het schap en/of verwijderd uit het schap wordt bepaald door de besturingseenheid.33. Method according to claim 32, wherein during step F) the number and/or quantity of products present on the shelf and/or added to the shelf and/or removed from the shelf is determined by the control unit. 34. Werkwijze volgens een van de conclusies 32 of 33, waarbij de werkwijze verder een stap G) omvat omvattende de stap van het vullen van een database met kalibratiedata voor iedere sensor en/of de sensormat, waarbij de database bij voorkeur voor iedere sensor meer dan 100, bij voorkeur meer dan 500, meer bij voorkeur meer dan 1000, waarden omvat die de correlatie tussen de productladingsverandering en de weerstandsverandering van voornoemde sensor bepaalt, waarin stap G) is uitgevoerd voor stap F).34. Method according to one of claims 32 or 33, wherein the method further comprises a step G) comprising the step of filling a database with calibration data for each sensor and/or the sensor mat, wherein the database preferably contains more information for each sensor. than 100, preferably more than 500, more preferably more than 1000, values that determine the correlation between the product charge change and the resistance change of said sensor, wherein step G) is carried out before step F). 35. Werkwijze volgens conclusie 34, waarbij de werkwijze stap H) omvat omvattende de stap van, bij voorkeur geautomatiseerd, kalibreren van iedere sensor en/of de sensormat door het voor iedere sensor uitvoeren van een veelvoud van voorafbepaalde productiadingsveranderingstesten, waarbij tijdens stap H) de sensormat bij voorkeur oneven is geladen met producten, waarbij tijdens stap H) bij voorkeur ten minste één productgewichtsgerelateerde karakteristiek, zoals een nominaal productgewicht en/of gemiddeld productgewicht van ieder producttype, wordt gebruikt als invoerwaarde, en waarbij stap H) wordt uitgevoerd voor stap G).35. Method according to claim 34, wherein the method comprises step H) comprising the step of, preferably automatically, calibrating each sensor and/or the sensor mat by performing a plurality of predetermined production charge change tests for each sensor, wherein during step H) the sensor mat is preferably oddly loaded with products, where during step H) preferably at least one product weight-related characteristic, such as a nominal product weight and/or average product weight of each product type, is used as an input value, and where step H) is performed before step G). 36. Werkwijze volgens conclusie 35, waarbij tijdens stap H) de kalibratie tenminste gedeeltelijk wordt gebaseerd op het kalibreren van de sensormat door gelijktijdig plaatsen van divers gemengde producten op de sensormat.36. Method according to claim 35, wherein during step H) the calibration is at least partly based on calibrating the sensor mat by simultaneously placing variously mixed products on the sensor mat.
NL2031952A 2022-05-20 2022-05-20 System and method for automatic stock monitoring NL2031952B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2031952A NL2031952B1 (en) 2022-05-20 2022-05-20 System and method for automatic stock monitoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2031952A NL2031952B1 (en) 2022-05-20 2022-05-20 System and method for automatic stock monitoring

Publications (1)

Publication Number Publication Date
NL2031952B1 true NL2031952B1 (en) 2023-11-27

Family

ID=83438863

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2031952A NL2031952B1 (en) 2022-05-20 2022-05-20 System and method for automatic stock monitoring

Country Status (1)

Country Link
NL (1) NL2031952B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050190072A1 (en) * 2004-02-26 2005-09-01 Brown Katherine A. Item monitoring system and methods of using an item monitoring system
US20150041616A1 (en) * 2013-03-13 2015-02-12 T-Ink, Inc. Automatic sensing methods and devices for inventory control
US20160026032A1 (en) * 2014-07-23 2016-01-28 Chad B. Moore ELECTRONIC SHELF (eShelf)
WO2020228872A1 (en) * 2019-05-14 2020-11-19 Univerzita Pardubice A large-area sensor for the indication of occupancy of storage, exhibition or sales shelves

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050190072A1 (en) * 2004-02-26 2005-09-01 Brown Katherine A. Item monitoring system and methods of using an item monitoring system
US20150041616A1 (en) * 2013-03-13 2015-02-12 T-Ink, Inc. Automatic sensing methods and devices for inventory control
US20160026032A1 (en) * 2014-07-23 2016-01-28 Chad B. Moore ELECTRONIC SHELF (eShelf)
WO2020228872A1 (en) * 2019-05-14 2020-11-19 Univerzita Pardubice A large-area sensor for the indication of occupancy of storage, exhibition or sales shelves

Similar Documents

Publication Publication Date Title
US20220211193A1 (en) Automatic sensing methods and devices for inventory control
JP2019094217A5 (en)
Unander et al. Characterization of printed moisture sensors in packaging surveillance applications
JP2019142212A (en) Method for manufacturing strain gauge device, strain gauge device and the use of the strain gauge device
D'Amore et al. Silicone‐rubber‐based tactile sensors for the measurement of normal and tangential components of the contact force
WO2006116665A1 (en) Presence, pattern and weight sensor surface
US10845258B2 (en) Method of processing data received from a smart shelf and deriving a code
JP5928859B1 (en) Sensor sheet
Hossain et al. Piezoresistive smart-textile sensor for inventory management record
NL2031952B1 (en) System and method for automatic stock monitoring
CN104634385B (en) Material level and temperature sensing device
CN108629325A (en) The determination method, apparatus and system of article position
US10817835B2 (en) Tank sensor array for inventory signaling in a tank management system
US9946990B2 (en) System and method for determining product movement using a sensor
EP3969864A1 (en) A large-area sensor for the indication of occupancy of storage, exhibition or sales shelves
US20180218317A1 (en) System and method for determining product movement using a sensor
US20230177105A1 (en) Method and computer program product for determining the measurement uncertainty of a measuring system
Nagaria et al. IoT Based Inventory System for Stock Management
TW202009859A (en) Warehouse system
Lim et al. Development of Smart Sensor Array Mat for Retail Inventory Management
US11927472B1 (en) Modular storage systems
CN109990928B (en) Temperature and pressure composite sensor
US20190162579A1 (en) Modular weight scale system
CN207541445U (en) A kind of logistics tray based on sensor technology
Yoo et al. Development of two-dimensional interdigitated center of pressure sensor