NL2030680B1 - Tin dioxide oxide thin film, preparation method thereof and application thereof in hydrogen detection - Google Patents

Tin dioxide oxide thin film, preparation method thereof and application thereof in hydrogen detection Download PDF

Info

Publication number
NL2030680B1
NL2030680B1 NL2030680A NL2030680A NL2030680B1 NL 2030680 B1 NL2030680 B1 NL 2030680B1 NL 2030680 A NL2030680 A NL 2030680A NL 2030680 A NL2030680 A NL 2030680A NL 2030680 B1 NL2030680 B1 NL 2030680B1
Authority
NL
Netherlands
Prior art keywords
thin film
tin dioxide
sputtering
hydrogen
oxide thin
Prior art date
Application number
NL2030680A
Other languages
English (en)
Other versions
NL2030680A (en
Inventor
Baofeng Zhao
Haibin Guan
Shuyuan Wang
Angang Song
Di Zhu
Dan Xu
Original Assignee
Energy Res Inst Shandong Academy Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Res Inst Shandong Academy Sciences filed Critical Energy Res Inst Shandong Academy Sciences
Publication of NL2030680A publication Critical patent/NL2030680A/en
Application granted granted Critical
Publication of NL2030680B1 publication Critical patent/NL2030680B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Physical Vapour Deposition (AREA)

Claims (10)

CONCLUSIES
1. Een tindioxide oxide dunne film met een kristalfasestructuur van rutielstructuur, waarbij de weerstand voor de mtroductie van waterstof op kamertemperatuur 80 tot 100 Q is, en de weerstand na introductie van waterstof 50 tot 70 Q is.
2. De tindioxide oxide dunne film volgens claim 1, waarbij de weerstand voor de introductie van waterstof 80 tot 85 Q is; of de weerstand na introductie van waterstof 65 tot 70 Q is.
3. Een werkwijze voor het voorbereiden van een tindioxide oxide dunne film, waarbij tin wordt gemaakt in een neergeslagen tindioxide dunne film door middel van distaal plasma sputteren, en waarna uitgloeien wordt toegepast waarbij dus een dunne rutielfilm van tindioxide wordt verkregen.
4. De werkwijze voor het voorbereiden van een tindioxide oxide dunne film volgens claim 3, waarbij de uitgloeitemperatuur 300 tot 500°C is.
5. De werkwijze voor het voorbereiden van een tindioxide oxide dunne film volgens claim 3, waarbij zuurstof een reactief gas in distaal plasma sputteren 1s, en een vloeisnelheid van zuurstof 1 tot 10 scem is; of, argon gas een plasma gasbron in distal plasma sputteren is en de vloeisnelheid van argon 50 tot 100 sccm is.
6. De werkwijze voor het voorbereiden van een tindioxide oxide dunne film volgens claim 3, waarbij de kracht van een plasma-emissiebron bij distaal plasma sputteren 300 tot 500 W is; of een versnellende instelkracht van doelmateriaal bij distaal plasma sputteren 50 tot 100 W 1s.
7. De werkwijze voor het voorbereiden van een tindioxide oxide dunne film van volgens claim 3, waarbij een druk in een sputterkamer bij distaal plasma sputteren 2 tot 510% mbar is; of een sputtersnelheid bij distaal plasma sputteren 10 tot 50 nm/min is, en sputtertijd 10 tot 20 minuten is; of een sputtertemperatuur 20 tot 50°C 1s bij distaal plasma sputteren, en een temperatuur van een substraat kamertemperatuur is.
8. Een toepassing van de tindioxide oxide dunne film volgens claims 1 of 2, of de tindioxide oxide dunne film bereid door middel van de werkwijze volgens één van de claims 3 tot 7 bij waterstofdetectie.
9. Een waterstofgassensor, omvattende een gasgevoelig element en een vast kader, waarbij het gasgevoelige element is vastgemaakt aan het vaste kader, en het gasgevoelige element de tindioxide oxide dunne film volgens claim l of 2 is, of de tindioxide oxide dunne film bereid door middel van de werkwijze volgens één van de claims 3 tot 7 is.
10. Een werkwijze van gasdetectie, waarbij een te meten gas bestaande uit waterstof doorheen de dunne film van tindioxide volgens claim 1 of 2 gebracht wordt of doorheen de dunne film van tindioxide voorbereid door middel van de methode volgens één van de claims 3 tot 7, zodat de resistentieverandering van de dunne film van tindioxide gedetecteerd wordt.
NL2030680A 2021-04-14 2022-01-25 Tin dioxide oxide thin film, preparation method thereof and application thereof in hydrogen detection NL2030680B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110402049.XA CN113136547B (zh) 2021-04-14 2021-04-14 二氧化锡氧化物薄膜及制备方法与其在检测氢气中的应用

Publications (2)

Publication Number Publication Date
NL2030680A NL2030680A (en) 2022-10-24
NL2030680B1 true NL2030680B1 (en) 2022-10-28

Family

ID=76812577

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2030680A NL2030680B1 (en) 2021-04-14 2022-01-25 Tin dioxide oxide thin film, preparation method thereof and application thereof in hydrogen detection

Country Status (2)

Country Link
CN (1) CN113136547B (nl)
NL (1) NL2030680B1 (nl)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244406A (zh) * 2015-10-23 2016-01-13 中国石油大学(华东) 基于钯/二氧化锡/硅异质结的紫外光探测器及其制备方法
CN105821378B (zh) * 2016-05-20 2019-03-08 郑州大学 一种铌掺杂二氧化锡透明导电膜及其制备方法
US20190339227A1 (en) * 2018-05-03 2019-11-07 King Fahd University Of Petroleum And Minerals Room temperature hydrogen gas sensor
CN111705306A (zh) * 2020-07-21 2020-09-25 深圳扑浪创新科技有限公司 一种锌掺杂氧化锡透明导电薄膜及其制备方法和用途

Also Published As

Publication number Publication date
NL2030680A (en) 2022-10-24
CN113136547A (zh) 2021-07-20
CN113136547B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
Patil et al. Synthesis, characterization and gas sensing performance of SnO 2 thin films prepared by spray pyrolysis
Velumani et al. Composite metal oxide thin film based impedometric humidity sensors
O'Brien et al. Zinc oxide thin films: Characterization and potential applications
Mokrushin et al. Pen plotter printing of ITO thin film as a highly CO sensitive component of a resistive gas sensor
Shen et al. Microstructure and enhanced H2S sensing properties of Pt-loaded WO3 thin films
Vijayalakshmi et al. Influence of annealing on the structural, optical and photoluminescence properties of ZnO thin films for enhanced H2 sensing application
Li et al. Gas sensing selectivity of oxygen-regulated SnO2 films with different microstructure and texture
Hakim et al. Synthesis of vanadium pentoxide nanoneedles by physical vapour deposition and their highly sensitive behavior towards acetone at room temperature
Liang et al. Synthesis and room temperature NO2 gas sensitivity of vanadium dioxide nanowire structures by chemical vapor deposition
Chen et al. Highly sensitive and selective acetone gas sensors based on modified ZnO nanomaterials
Pi et al. A reversible and fast-responsive humidity sensor based on a lead-free Cs 2 TeCl 6 double perovskite
Song et al. Synthesis of star-shaped lead sulfide (PbS) nanomaterials and theirs gas-sensing properties
CN101824603A (zh) 一种复合薄膜气敏传感器的制作方法
CN109246860A (zh) 可实现在显微镜下原位、动态观察材料的高温装置
Shen et al. Highly sensitive and selective room temperature alcohol gas sensors based on TeO2 nanowires
CN106018490A (zh) 一种钯银合金纳米薄膜氢敏元件及制作方法
NL2030680B1 (en) Tin dioxide oxide thin film, preparation method thereof and application thereof in hydrogen detection
Cho et al. Substantially Accelerated Response and Recovery in Pd‐Decorated WO3 Nanorods Gasochromic Hydrogen Sensor
Kim et al. ZnO–SnO2 branch–stem nanowires based on a two-step process: Synthesis and sensing capability
Park et al. Synthesis, structure, and room-temperature gas sensing of multiple-networked Pd-doped Ga 2 O 3 nanowires
Lin et al. Growth and Characterization of pure and doped SnO2 films for H2 gas detection
Munasinghe et al. Low temperature gas sensing properties of Graphene Oxide/SnO2 nanowires composite for H2
Aleksanyan et al. Fabrication and characterization of highly responsive hydrogen sensor based on Fe2O3: ZnO nanostructured thin film
CN209387570U (zh) 一种基于新型ZnO纳米柱/SnO2薄膜探测器
CN114113034A (zh) 一种多壁碳纳米管“手指”的制备方法及其在表面增强拉曼散射检测中的应用