NL2030459B1 - MEMS Electromagnetic Motor and Manufacturing Method Thereof - Google Patents

MEMS Electromagnetic Motor and Manufacturing Method Thereof Download PDF

Info

Publication number
NL2030459B1
NL2030459B1 NL2030459A NL2030459A NL2030459B1 NL 2030459 B1 NL2030459 B1 NL 2030459B1 NL 2030459 A NL2030459 A NL 2030459A NL 2030459 A NL2030459 A NL 2030459A NL 2030459 B1 NL2030459 B1 NL 2030459B1
Authority
NL
Netherlands
Prior art keywords
silicon substrate
core
stator
manufacturing
rotor
Prior art date
Application number
NL2030459A
Other languages
Dutch (nl)
Inventor
Tao Zhi
Wang Wenbin
Xu Tiantong
Zhai Yanxin
Lei Kaibo
Li Haiwang
Wu Yuying
Cao Xiaoda
Zhu Kaiyun
Zhang Xiao
Fang Weidong
Original Assignee
Langfang Zhichi Dongli Tech Co Ltd
Univ Beihang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Langfang Zhichi Dongli Tech Co Ltd, Univ Beihang filed Critical Langfang Zhichi Dongli Tech Co Ltd
Priority to NL2030459A priority Critical patent/NL2030459B1/en
Application granted granted Critical
Publication of NL2030459B1 publication Critical patent/NL2030459B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K99/00Subject matter not provided for in other groups of this subclass
    • H02K99/20Motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)

Abstract

Disclosed is a MEMS electromagnetic motor and a manufacturing method thereof, which comprises a stator and a rotor, wherein the centre of the stator is provided with a first through hole for installing the rotor, and the rotor is rotatably connected with the stator, wherein the stator comprises a first silicon substrate, a soft magnetic core and a plurality of solenoids and the rotor comprises a second silicon substrate, a rotating shaft and a plurality of permanent magnets. By radially arranging the windings of the stator and rotors of the electromagnetic motor, the electromagnetic motor has the advantages of high winding coil density and large cross-sectional area, and can obtain higher inductance value in the same plane area, and the driving current required by the same output torque is smaller and the overall efficiency is higher. At the same time, the silicon substrate can radiate and protect the soft magnetic core and solenoids, so that the electromagnetic motor has good heat dissipation and impact resistance.

Description

MEMS Electromagnetic Motor and Manufacturing Method Thereof
TECHNICAL FIELD The invention relates to the technical field of micro-electromechanical systems (MEMS), more specifically, to a MEMS electromagnetic motor and a manufacturing method thereof.
BACKGROUND With the development of all kinds of complex electromechanical systems towards high integration and complexity, it is necessary to integrate more components in a smaller volume. In addition to developing high-density integration technology, it is also a necessary way to develop miniaturized devices to reduce the overall volume and weight of the system.
As a kind of micro power component, micromotor has the characteristics of small size, light weight and low power consumption, so it is widely used in the information field, medical field, aerospace field and military field. At present, most of the micro-motors in production still adopt the form of micro-precision machining, and the technology is mature, but the requirements for machining equipment are high, which leads to the relatively high price of micro-machining At the same time, the machining form of precision machining also limits the development of micromotor to smaller size. MEMS processing technology is a kind of micron-scale processing technology, which originated from integrated circuit processing technology at the earliest.
Compared with micro-precision processing technology, this technology can make devices smaller in size, more suitable for mass production and lower in cost. It can be seen that the characteristics of MEMS technology just meet the requirements of miniaturization of electromechanical system, and the design and development of micro-motor by using MEMS technology is a research hotspot in recent years.
MEMS micromotors can be divided into electrostatic micromotors, electromagnetic micromotors, piezoelectric micromotors, memory alloy micromotors and magnetostrictive micromotors according to their working principles. Compared with other motor driving principles, electromagnetic micromotor has the characteristics of high rotating speed, large driving torque, low driving voltage, stable and reliable operation, easy control, easy application and so on.
However, at present, the existing miniature electromagnetic motors are generally of axial distribution structure, that is, the rotor and stator are distributed along the axial direction, which is different from the radial distribution of conventional motors. The disadvantage of this axial structure is that the number of cail turns is limited, and the magnetic leakage of the whole structure is serious, which leads to the limited output torque of the motor and the low overall efficiency, which seriously affects its marketability.
SUMMARY The invention provides a MEMS electromagnetic motor which overcomes the above problems or at least partially solves the above problems and a manufacturing method thereof.
On one hand, the invention provides a MEMS electromagnetic motor, which comprises a stator and a rotor, wherein the centre of the stator is provided with a first through hole for installing the rotor, and the rotor is rotatably connected with the stator; among them, the stator comprises a first silicon substrate, a soft magnetic core and a plurality of solenoids, wherein the soft magnetic core is wrapped inside the first silicon substrate, and the soft magnetic core is provided with a plurality of protrusions which are arranged around the first through hole; the first silicon substrate is provided with a plurality of spiral channels, and the protrusions respectively pass through the centres of the spiral channels, and the solenoids are respectively arranged in the spiral channels; The rotor comprises a second silicon substrate, a rotating shaft and a plurality of permanent magnets, wherein, the centre of the second silicon substrate is provided with a second through hole, a plurality of grooves are arranged around the second through hole, a plurality of permanent magnets are arranged in the grooves, and the rotating shaft penetrates into the second through hole.
Further, the first silicon substrate is divided into an upper silicon substrate and a lower silicon substrate, and the soft magnetic core is divided into an upper core and a lower core, and the upper core and the lower core have the same shape; The lower surface of the upper silicon substrate is provided with a ore groove corresponding to the shape of the upper core, the upper surface of the lower silicon substrate is provided with a core groove corresponding to the shape of the lower core, the upper core and the lower core are respectively arranged in the corresponding core grooves, and the lower surface of the upper silicon substrate and the upper surface of the lower silicon substrate are bonded to each other so that the lower surface of the upper core and the upper surface of the lower core are aligned with each other.
Further, the spiral channels include a plurality of first horizontal grooves, a plurality of second horizontal grooves and a plurality of vertical through holes; the first horizontal grooves are arranged on the upper surface of the first silicon substrate, the second horizontal grooves are arranged on the lower surface of the first silicon substrate, and the vertical through holes run through the upper surface and the lower surface of the first silicon substrate; the beginning and end of any first horizontal groove in the spiral channels are respectively communicated with two vertical through holes, and the two vertical through holes are respectively communicated with two adjacent second horizontal grooves.
Furthermore, each solenoid in the stator also includes two pins, and each spiral channel also includes two pin slots;
The two pin slots are arranged on the upper surface of the first silicon substrate, and are respectively communicated with the beginning and the end of the spiral channel, and the two pins are respectively arranged in the two pin slots.
Further, the soft magnetic core is made of iron-nickel alloy material or iron-cobalt alloy material.
Further, the plurality of permanent magnets are made of Neodymium iron boron material, and the rotating shaft is made of iron-nickel alloy material.
On the other hand, the invention provides a manufacturing method of MEMS electromagnetic motor, which comprises the following steps: manufacturing a stator and a rotor respectively, and assembling the stator and the rotor to obtain the MEMS electromagnetic motor; among them, the manufacturing process of the stator includes: step 1, respectively manufacturing an upper silicon substrate and a lower silicon substrate of the first silicon substrate; among them, manufacturing the upper silicon substrate includes: performing a first thermal oxidation on a first silicon wafer with a first pre-set thickness; according to the structure of the spiral channels, a plurality of first horizontal grooves in parallel, upper half parts of a plurality of vertical through holes and core grooves are deeply etched on the upper surface, the inner surface and the lower surface of the first silicon wafer after the first oxidation respectively; performing a second thermal oxidation on the first silicon wafer obtained by deep etching of silicon to obtain the upper silicon substrate; manufacturing the lower silicon substrate includes: performing a first thermal oxidation on a second silicon wafer with a first pre-set thickness; according to the structure of the spiral channels, the core groove, the lower half of a plurality of vertical through holes and a plurality of second horizontal grooves in parallel are deeply etched on the upper surface, the inner surface and the lower surface of the second silicon wafer after the first oxidation, respectively; performing a second thermal oxidation on the second silicon wafer to obtain the lower silicon substrate; step 2, electroplating in the core grooves of the upper silicon substrate and the lower silicon substrate to form an upper core and a lower core respectively; step 3, aligning the upper surface of the upper silicon substrate and the lower surface of the lower silicon substrate with each other, bonding the upper silicon substrate and the lower silicon substrate at low temperature, and forming the spiral channel in the bonded upper silicon substrate and the lower silicon substrate; step 4, electroplating in the spiral channel to form solenoids;
step 5, according to the shape of the second silicon substrate, machining a first through hole in the centre of the bonded upper silicon substrate and lower silicon substrate, thus obtaining the stator; the manufacturing process of the rotor includes: step 1, manufacturing a second silicon substrate: according to the shapes of the rotating shaft and a plurality of permanent magnets, deep etching the second through hole and a plurality of grooves on the third silicon wafer after the first thermal oxidation to obtain the second silicon substrate; step 2, electroplating the plurality of permanent magnets in a plurality of grooves, and magnetizing the plurality of permanent magnets to form permanent magnet characteristics; and step 3, inserting the rotating shaft into the second through hole to obtain the rotor.
Further, in the step 2 of manufacturing the stator, electroplating to form an upper core in the core groove of the upper silicon substrate specifically includes: after aligning the metal mask with the core groove pattern with the core groove on the lower surface of the upper silicon substrate, adhering the metal mask to the lower surface of the upper silicon substrate; magnetically sputtering metal nickel or metal cobalt with a second pre-set thickness on the lower surface of the upper silicon substrate as a seed layer, and electroplating iron-nickel alloy or iron-cobalt alloy with a third pre-set thickness in the core groove of the upper silicon substrate to obtain the upper core; accordingly, electroplating to form a lower core in the core groove of the lower silicon substrate specifically includes: after aligning the metal mask with the core groove pattern with the core groove on the upper surface of the lower silicon substrate, sticking the metal mask to the upper surface of the lower silicon substrate; magnetically sputtering metal nickel or metal cobalt with a second pre-set thickness on the upper surface of the lower silicon substrate as a seed layer, and electroplating iron-nickel alloy or iron-cobalt alloy with a third pre-set thickness in the core groove of the lower silicon substrate to obtain the lower core.
Further, in the step 4 of manufacturing the stator, electroplating in the spiral channel to form solenoids specifically includes: magnetically sputtering metallic titanium with a fourth pre-set thickness on the lower surface of the lower silicon substrate as an intermediate layer, magnetically sputtering metallic copper with a fifth pre-set thickness on the intermediate layer as a seed layer, and electroplating metallic copper in the second groove and the vertical through hole of the rotary channel until the metallic copper is filled to the position of the lower plane of the first groove;
after magnetically sputtering metallic copper on the upper surface of the upper silicon substrate as a seed layer, electroplating metallic copper until the spiral channel is completely filled with metallic copper to obtain the solenoids.
Further, in step 1 of manufacturing the stator, manufacturing the upper silicon substrate 5 further comprises: according to the structure and position of the two pins, deeply etching two pin slots on the upper surface of the first silicon wafer after the first oxidation; accordingly, step 4 of manufacturing the stator further comprises: electroplating in the two pin slots to form the two pins.
According to the MEMS electromagnetic motor and the manufacturing method thereof provided by the invention, by radially arranging the windings of the stator and rotors of the electromagnetic motor, this arrangement brings the advantages of high winding coil density and large cross-sectional area, and can obtain higher inductance value in the same plane area, smaller driving current required by the same output torque and higher overall efficiency. At the same time, the silicon substrate can radiate and protect the soft magnetic core and solenoids, so that the electromagnetic motor has good heat dissipation and impact resistance.
BRIEF DESCRIPTION OF THE FIGURES In order to more clearly explain the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are some embodiments of the present invention, and for ordinary technicians in the field, other drawings can be obtained according to these drawings without creative efforts.
Fig. 1 is a schematic diagram of the three-dimensional structure of the MEMS electromagnetic motor provided by an embodiment of the present invention; Fig. 2 is a schematic diagram of the three-dimensional structure of the stator after removing the first silicon substrate in the embodiment of the present invention; Fig. 3 is a schematic diagram of the three-dimensional structure of the rotor in the embodiment of the present invention; Fig. 4 is a schematic diagram of the three-dimensional structure of the upper silicon substrate in the embodiment of the present invention; Fig. 5 is a schematic diagram of a three-dimensional structure of the lower silicon substrate in an embodiment of the present invention; Fig. 6 is a schematic sectional view of steps (1) to (6) of the manufacturing process of the stator in the example provided by the embodiment of the present invention; Fig. 7 is a schematic sectional view of steps (7) to (12) in the manufacturing process of the stator in the example provided by the embodiment of the present invention;
Fig. 8 is a schematic sectional view of steps (13) to (17) in the manufacturing process of the stator in the example provided by the embodiment of the present invention; Fig. 9 is a schematic sectional view of steps (18) to (20) of the manufacturing process of the stator in the example provided by the embodiment of the present invention; Reference number: 1- stator; 2- rotor; 11- first silicon substrate; 12- soft magnetic core; 13- solenoid; 14- pin; 14'- pin slot; 111-upper silicon substrate; 112-lower silicon substrate; 121-Upper core; 122-lower core; 131'- first horizontal groove; 132'-second horizontal groove; 133'-vertical through hole; 21- second silicon substrate; 22-rotating shaft; 23- permanent magnet.
DESCRIPTION OF THE INVENTION In order to make the purpose, technical scheme and advantages of the embodiments of the present invention clearer, the technical scheme in the embodiments of the present invention will be clearly described below with reference to the drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of them. Based on the embodiments in the present invention, all other embodiments obtained by ordinary technicians in the field without creative work are within the scope of the present invention.
Fig. 1 is a schematic diagram of the three-dimensional structure of the MEMS electromagnetic motor provided by an embodiment of the present invention. As shown in Fig. 1, it comprises the stator 1 and the rotor 2, wherein the centre of the stator 1 is provided with the first through hole for mounting the rotor 2, and the rotor 2 is rotatably connected with the stator
1. Among them: the stator 1 comprises the first silicon substrate 11, the soft magnetic core 12 and a plurality of solenoids 13, wherein the soft magnetic core 12 is wrapped inside the first silicon substrate 11 and the soft magnetic core 12 is provided with a plurality of protrusions which are arranged around the first through hole; the first silicon substrate 11 is provided with a plurality of spiral channels, and the protrusions respectively pass through the centres of the spiral channels, and the solenoids 13 are respectively arranged in the spiral channels; Specifically, the spiral channels are arranged on the first silicon substrate 11, most of the structure of the solenoids 13 arranged in the spiral channels are also wrapped inside the first silicon substrate 11, that is, both the soft magnetic core 12 of the stator 1 and the solenoids 13 are wrapped inside the first silicon substrate 11. A plurality of protrusions respectively pass through the centres of a plurality of spiral channels, and then a plurality of solenoids 13 are wound around the protrusions of a plurality of soft magnetic cores 12 to form a plurality of stator windings, and the formed stator windings are uniformly arranged around the first through holes. Understandably, the number of windings and the number of turns of solenoids 13 on the windings can be set according to actual needs.
As shown in Fig. 2, the rotor 2 includes the second silicon substrate 21, the rotating shaft 22 and a plurality of permanent magnets 23. Among them, the centre of the second silicon substrate 21 is provided with a second through hole, a plurality of grooves are arranged around the second through hole, the plurality of permanent magnets 23 are arranged in the grooves, and the rotating shaft 22 penetrates into the second through hole.
Specifically, the second silicon substrate 21 serves as a bearing structure for the rotating shaft 22 and a plurality of permanent magnets 23 in the rotor 2. A plurality of permanent magnets 23 are arranged in the grooves of the second silicon substrate 21, the grooves are uniformly arranged around the second through hole, and the rotating shaft 22 is inserted in the grooves, that is, a plurality of permanent magnets 23 are uniformly arranged around the rotating shaft 22. The diameter of the first through-hole is adapted to the diameter of the second silicon substrate 21. After the rotor 2 is fitted to the first through-hole, the rotor 2 can rotate around the rotation axis 22 relative to the stator 1, and the windings of the rotor 2 and the stator 1 are arranged in a radial direction.
According to the MEMS electromagnetic motor provided by the embodiment of the invention, by radially arranging the windings of the stator and rotors of the electromagnetic motor, this arrangement brings the advantages of high winding coil density and large cross- sectional area, and can obtain higher inductance value in the same plane area, smaller driving current required by the same output torque and higher overall efficiency. At the same time, the silicon substrate can radiate and protect the soft magnetic core and solenoids, so that the electromagnetic motor has good heat dissipation and impact resistance.
In the above embodiment, as shown in Fig. 1 and Fig. 3, the silicon substrate 11 is divided into the upper silicon substrate 111 and the lower silicon substrate 112, and the soft magnetic core 12 is divided into the upper core 121 and the lower core 122, and the upper core 121 and the lower core 122 have the same shape; The lower surface of the upper silicon substrate 111 is provided with an core groove corresponding to the shape of the upper core 121, the upper surface of the lower silicon substrate 112 is provided with an core groove corresponding to the shape of the lower core 122, the upper core 121 and the lower core 122 are respectively arranged in the corresponding core grooves, and the lower surface of the upper silicon substrate 111 and the upper surface of the lower silicon substrate 112 are bonded to each other so that the lower surface of the upper core 121 and the upper surface of the lower core 122 are aligned with each other.
Among them, the upper iron core 121 and the lower iron core 122 are two iron cores with the same shape, which are divided equally by the soft magnetic core 12 in the vertical direction.
The shapes of the upper iron core 121 and the lower iron core 122 can be polygonal with a plurality of protrusions, and the thickness of the upper iron core 121 is half that of the soft magnetic core 12. Similarly, the upper silicon substrate 111 and the lower silicon substrate 112 are bisected by the first silicon substrate 1 in the vertical direction, and they are symmetrically arranged.
By dividing the silicon substrate and the soft magnetic core into two parts, the stator as a whole is easy to process. At the same time, dividing the soft magnetic core into the upper core and the lower core can reduce the eddy current loss in the core and further improve the efficiency.
In the above embodiment, as shown in Fig. 4 and Fig. 5, the spiral channels include a plurality of first horizontal grooves 131’, a plurality of second horizontal grooves 132' and a plurality of vertical through holes 133; the first horizontal grooves 131’ are arranged on the upper surface of the first silicon substrate 11, the second horizontal grooves 132' are arranged on the lower surface of the first silicon substrate 11, and the vertical through holes 133' run through the upper surface and the lower surface of the first silicon substrate; the beginning and end of any first horizontal groove 131' in the spiral channels are respectively communicated with two vertical through holes 133’, and the two vertical 133' through holes are respectively communicated with two adjacent second horizontal grooves 132". Among them, when the first silicon substrate 11 is divided into the upper silicon substrate 111 and the lower silicon substrate 112, each vertical through hole 133' is also divided into two parts respectively located in the upper silicon substrate 111 and the lower silicon substrate 112.
Specifically, in the spiral channels, a plurality of first horizontal grooves 131' are parallel to each other, and a plurality of second horizontal grooves 132" are parallel to each other and communicate with each other through a plurality of vertical through holes 133’. It can be understood that the vertical through hole 133' can be straight or curved, and the first horizontal grooves 131' and the second horizontal grooves 132' can also be straight or curved.
In the above embodiment, as shown in Fig. 4, each solenoid 13 in the stator 1 also includes two pins 14, and each spiral channel also include two pin slots 14; The two pin slots 14' are arranged on the upper surface of the first silicon substrate 11, and the two pin slots 14' are respectively communicated with the end of the spiral channels, and the two pins 14 are respectively arranged in the two pin slots 14.
Specifically, because the two pin slots 14' communicate with the end of the spiral channels, the two pins 14 are respectively connected with the end of the solenoids 13. When the motor works, the two pins 14 constitute the input and output of each stator winding, respectively.
In the above embodiment, the soft magnetic core 12 is made of iron-nickel alloy material or iron-cobalt alloy material.
In the above embodiment, the solenoids 13 and the solenoid 13 are made of metallic copper.
In the above embodiment, the plurality of permanent magnets 23 are made of Neodymium iron boron material, and the rotating shaft 22 is made of iron-nickel alloy material.
The manufacturing method of the electromagnetic motor provided by the embodiment of the invention comprises the following steps: manufacturing the stator and the rotor respectively, and assembling the stator and the rotor to obtain the MEMS electromagnetic motor.
Among them:
|. The manufacturing process of the stator includes:
step 1, respectively manufacturing the upper silicon substrate and the lower silicon substrate of the first silicon substrate; among them,
manufacturing the upper silicon substrate includes:
performing the first thermal oxidation on the first silicon wafer with the first pre-set thickness;
according to the structure of the spiral channels, a plurality of first horizontal grooves in parallel, upper half parts of a plurality of vertical through holes and core grooves are deeply etched on the upper surface, the inner surface and the lower surface of the first silicon wafer after the first oxidation respectively;
performing the second thermal oxidation on the first silicon wafer obtained by deep etching of silicon to obtain the upper silicon substrate;
manufacturing the lower silicon substrate includes: performing the first thermal oxidation on the second silicon wafer with the first pre-set thickness;
according to the structure of the spiral channels, the core groove, the lower half of a plurality of vertical through holes and a plurality of second horizontal grooves in parallel are deeply etched on the upper surface, the inner surface and the lower surface of the second silicon wafer after the first oxidation, respectively;
performing the second thermal oxidation on the second silicon wafer to obtain the lower silicon substrate; step 2, electroplating in the core grooves of the upper silicon substrate and the lower silicon substrate to form an upper core and a lower core respectively; step 3, aligning the upper surface of the upper silicon substrate and the lower surface of the lower silicon substrate with each other, bonding the upper silicon substrate and the lower silicon substrate at low temperature, and forming the spiral channel in the bonded upper silicon substrate and the lower silicon substrate; step 4, electroplating in the spiral channel to form the solenoids; step 5, according to the shape of the second silicon substrate, machining the first through hole in the centre of the bonded upper silicon substrate and lower silicon substrate, thus obtaining the stator;
Among them, in step 1, the structural difference between the upper silicon substrate and the lower silicon substrate is essentially only that the upper surface of the upper silicon substrate is provided with the first horizontal grooves, and the lower surface of the lower silicon substrate is provided with the second horizontal grooves, and the structures of other parts are the same, and the silicon substrate and the lower silicon substrate are symmetrically arranged, and the processing process before bonding them is basically the same.
In step 2, the upper iron core and the lower iron core are electroplated on the upper silicon substrate and the lower silicon substrate respectively. Because the iron core needs to be completely wrapped in the silicon substrate, this step of iron core electroplating is completed before bonding the upper silicon substrate and the lower silicon substrate.
In step 3, when the upper silicon substrate and the lower silicon substrate are bonded, it is necessary to ensure that the lower surface of the upper iron core and the upper surface of the lower iron core are aligned with each other to ensure the mutual coordination of their magnetic fields. At the same time, after the upper silicon substrate and the lower silicon substrate are bonded, the horizontal grooves and vertical through holes previously respectively arranged on the upper silicon substrate and the lower silicon substrate are combined to form spiral channels.
In step 4, after the spiral channels are formed, the solenoids can be formed only by electroplating related metals in it.
Furthermore, in the step 2 of manufacturing the stator, electroplating to form an upper core in the core groove of the upper silicon substrate specifically includes: after aligning the metal mask with the core groove pattern with the core groove on the lower surface of the upper silicon substrate, adhering the metal mask to the lower surface of the upper silicon substrate; magnetically sputtering metal nickel or metal cobalt with a second pre-set thickness on the lower surface of the upper silicon substrate as a seed layer, and electroplating iron-nickel alloy or iron-cobalt alloy with the third pre-set thickness in the core groove of the upper silicon substrate to obtain the upper core; accordingly, electroplating to form a lower core in the core groove of the lower silicon substrate specifically includes: after aligning the metal mask with the core groove pattern with the core groove on the upper surface of the lower silicon substrate, sticking the metal mask to the upper surface of the lower silicon substrate; magnetically sputtering metal nickel or metal cobalt with the second pre-set thickness on the upper surface of the lower silicon substrate as a seed layer, and electroplating iron-nickel alloy or iron-cobalt alloy with the third pre-set thickness in the core groove of the lower silicon substrate to obtain the lower core.
Furthermore, in the step 4 of manufacturing the stator, electroplating in the spiral channels to form the solenoids specifically includes: magnetically sputtering metallic titanium with a fourth pre-set thickness on the lower surface of the lower silicon substrate as an intermediate layer, magnetically sputtering metallic copper with the fifth pre-set thickness on the intermediate layer as a seed layer, and electroplating metallic copper in the second groove and the vertical through hole of the rotary channel until the metallic copper is filled to the position of the lower plane of the first groove; after magnetically sputtering metallic copper on the upper surface of the upper silicon substrate as a seed layer, electroplating metallic copper until the spiral channel is completely filled with metallic copper to obtain the solenoids. Further, in step 1 of manufacturing the stator, manufacturing the upper silicon substrate further comprises: according to the structure and position of the two pins, deeply etching two pin slots on the upper surface of the first silicon wafer after the first oxidation; accordingly, step 4 of manufacturing the stator further comprises: electroplating in the two pin slots to form the two pins.
Specifically, as shown in Fig. 8- Fig. 9, the stator manufacturing process can be as follows: (1) Using double-polished silicon wafer with thickness of 1000 um. The silicon wafer is thermally oxidized to form a thermal oxide layer with a thickness of 2 um on both sides.
(2) Coating photoresist. The upper surface of the upper silicon substrate exposes the first horizontal groove (covering the position of the vertical through holes) and the contact pattern; the upper surface of the lower silicon substrate exposes the vertical through holes and the second horizontal groove; the lower surfaces of the upper silicon substrate and the lower silicon substrate respectively expose the iron core groove pattern; and the first horizontal groove, the second horizontal groove and the vertical through holes form spiral channels.
(3) Using BOE (Buffered Oxide Etch) solution to remove the exposed silicon dioxide, and patterning. (4) Second coating photoresist, exposing vertical through hole patterns on the upper and lower surfaces of the upper and lower silicon substrates.
(5) deeply etching the upper and lower surfaces with silicon to etch the silicon through hole pattern.
(8) Using piranha solution to remove photoresist.
(7) Etching the upper surface with the oxide layer as the masking layer to etch the vertical through hole and the horizontal groove on the upper surface. Etching the lower surface with the oxide layer as the masking layer to etch the iron core pattern.
(8) Thermal oxidation to form an oxide layer with a thickness of 2 um.
(9) Taking the metal mask with the iron core groove pattern, aligning the upper iron core groove pattern with the iron core groove pattern on the lower surface of No.1 and No.2 silicon wafers, and sticking to the lower surface of silicon wafers.
(10) Magnetically sputtering 100 nm metallic nickel on the lower surface as a seed layer. (11) Electroplating iron-nickel alloy, so that the iron-nickel alloy is filled from the bottom to 100 um from the surface of the silicon wafer.
(12) Getting the lower surfaces of the upper silicon substrate opposite to the lower silicon substrate to perform low-temperature silicon-silicon bonding.
(13) Magnetically sputtering the lower surface with 100 nm metallic titanium as the intermediate layer, and then sputtering with 500 nm metallic copper as the seed layer.
(14) Electroplating metallic copper, so that the electroplated copper is filled from the bottom to the lower plane position of the top horizontal conductor.
(15) Magnetically sputtering 500 nm metallic copper on the upper surface.
(16) Electroplating metallic copper so that the whole structure of the upper surface is completely covered by the electroplated copper.
(17) Using CMP (chemical mechanical polishing machine) to thin the metal copper on the upper and lower surfaces until the metal copper is thinned to the same height as the surface of the thermal oxide layer of the silicon wafer, and then polishing the surface by CMP.
(18) Carrying out PECVD process on the upper and lower surfaces, and depositing 2 um thick oxide layers respectively.
(19) Double-sided spin coating photoresist, double-sided exposure of the first through hole pattern of the rotor.
(20) Etching the oxide layer of the first through hole pattern via pattern with BOE solution; etching the first through hole pattern on the upper surface by ICP until the depth reaches half of the thickness of the silicon wafer, and then etching the first through hole pattern on the lower surface by ICP until the through hole is obtained, thus finishing the machining of the MEMS electromagnetic motor stator.
II. The manufacturing process of the rotor includes: step 1, manufacturing the second silicon substrate: according to the shapes of the rotating shaft and a plurality of permanent magnets, deep etching the second through hole and a plurality of grooves on the third silicon wafer after the first thermal oxidation to obtain the second silicon substrate; step 2, electroplating the plurality of permanent magnets in the grooves, and magnetizing the plurality of permanent magnets to form permanent magnet characteristics; and step 3, inserting the rotating shaft into the second through hole to obtain the rotor.
Specifically, the specific manufacturing process of the rotor can be as follows: (1) taking a silicon wafer with double-sided polishing and double-sided oxidation; (2) double-sided spin coating photoresist, exposing the rotating shaft hole pattern and the permanent magnet groove pattern on the upper surface, exposing the permanent magnet groove pattern on the lower surface, developing, and peeling off the photoresist at the above patterns; (3) etching the silicon dioxide at the above pattern with BOE solution;
(4) using ICP (Inductively Coupled plasma etching machine) to etch all patterns on the upper surface to a certain depth, and using ICP (Inductively Coupled plasma etching machine) to etch patterns on the lower surface until it is completely etched; (5) removing photoresist, and using diluted HF solution to remove the oxide layer on the surface of the silicon wafer; (6) electroplating Neodymium iron boron permanent magnets in the permanent magnet groove and magnetizing permanent magnets; (7) inserting an iron-nickel alloy rotating shaft into the rotating shaft hole; (8) cutting to obtain a plurality of rotors of the micromotor.
According to the manufacturing method of MEMS electromagnetic motor provided by the embodiment of the invention, the silicon substrate is divided into two symmetrical parts to be manufactured separately, the core electroplating is completed before bonding, and the solenoids are formed by electroplating after bonding, so that the whole manufacturing process does not need to adopt multilayer silicon deep etching, the machining fault tolerance rate is improved, the repeatability is very good, and the windings and rotors of the electromagnetic motor stator are radially arranged. This arrangement brings the advantages of high winding density and large cross-sectional area. It can get higher inductance value on the same plane area, lower driving current required by the same output torque, higher overall efficiency, compatibility with IC semiconductor technology and suitability for large-scale production.
Finally, it should be noted that the above embodiments are only used to illustrate the technical scheme of the present invention, but not to limit it. Although the present invention has been described in detail with reference to the foregoing embodiments, ordinary technicians in the field should understand that it is still possible to modify the technical schemes described in the foregoing embodiments, or equivalently replace some of its technical features. However, these modifications or substitutions do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of each embodiment of the present invention.

Claims (10)

CONCLUSIESCONCLUSIONS 1. Een elektromagnetische motor voor micro-elektromechanische systemen (MEMS), die een stator en een rotor omvat, waarbij het midden van de stator is voorzien van een eerste doorgaande opening voor installatie van de rotor, en de rotor roteerbaar is verbonden met de stator, waarbij — de stator een eerste siliciumsubstraat, een zachte magnetische kern en een aantal solenoïden omvat, waarbij de zachte magnetische kern binnen het eerste siliciumsubstraat is gewikkeld en de zachte magnetische kern is voorzien van een aantal uitsteeksels die rond de eerste doorgaande opening zijn aangebracht, het eerste siliciumsubstraat is voorzien van een aantal spiraalkanalen en de uitsteeksels door de middelpunten van de spiraalkanalen gaan en de solenoïden in de spiraalkanalen zijn aangebracht; — de rotor een tweede siliciumsubstraat, een roterende as en een aantal permanente magneten omvat, waarbij het midden van het tweede siliciumsubstraat is voorzien van een tweede doorgaande opening, een aantal groeven rond de tweede doorgaande opening zijn aangebracht, een aantal permanente magneten in de groeven zijn aangebracht en de roterende as in de tweede doorgaande opening doordringt.1. An electromagnetic motor for microelectromechanical systems (MEMS) comprising a stator and a rotor, the center of the stator having a first through hole for installation of the rotor, and the rotor being rotatably connected to the stator , wherein - the stator comprises a first silicon substrate, a soft magnetic core and a plurality of solenoids, the soft magnetic core being wound within the first silicon substrate and the soft magnetic core having a plurality of projections arranged around the first through-hole, the first silicon substrate has a plurality of spiral channels and the protrusions pass through the centers of the spiral channels and the solenoids are disposed in the spiral channels; - the rotor comprises a second silicon substrate, a rotating shaft and a plurality of permanent magnets, the center of the second silicon substrate having a second through-hole, a plurality of grooves arranged around the second through-hole, a plurality of permanent magnets in the grooves are fitted and the rotating shaft penetrates into the second through-hole. 2. De MEMS elektromagnetische motor volgens conclusie 1, waarbij — het eerste siliciumsubstraat verdeeld is in een bovenste siliciumsubstraat en een onderste siliciumsubstraat, en de zachte magnetische kern verdeeld is in een bovenste kern en een onderste kern, en de bovenste kern en de onderste kern dezelfde vorm hebben; — het onderoppervlak van het bovenste siliciumsubstraat voorzien is van een kerngroef die overeenkomt met de vorm van de bovenste kern, het bovenoppervlak van het onderste siliciumsubstraat is voorzien van een kerngroef die overeenkomt met de vorm van de onderste kern, de bovenste kern en de onderste kern in de overeenkomstige kerngroeven gerangschikt zijn, en het onderoppervlak van het bovenste siliciumsubstraat en het bovenoppervlak van het onderste siliciumsubstraat zodanig aan elkaar zijn gehecht dat het onderoppervlak van de bovenste kern en het bovenoppervlak van de onderste kern met elkaar zijn uitgelijnd.The MEMS electromagnetic motor according to claim 1, wherein - the first silicon substrate is divided into an upper silicon substrate and a lower silicon substrate, and the soft magnetic core is divided into an upper core and a lower core, and the upper core and the lower core have the same shape; - the lower surface of the upper silicon substrate is provided with a core groove corresponding to the shape of the upper core, the upper surface of the lower silicon substrate is provided with a core groove corresponding to the shape of the lower core, the upper core and the lower core are arranged in the corresponding core grooves, and the lower surface of the upper silicon substrate and the upper surface of the lower silicon substrate are bonded together such that the lower surface of the upper core and the upper surface of the lower core are aligned with each other. 3. De MEMS elektromagnetische motor volgens conclusie 1, waarbij — de spiraalvormige kanalen een aantal eerste horizontale groeven, een aantal tweede horizontale groeven en een aantal verticale doorgaande gaten omvatten; — de eerste horizontale groeven op het bovenoppervlak van het eerste siliciumsubstraat zijn gerangschikt, de tweede horizontale groeven op het onderoppervlak van het eerste siliciumsubstraat zijn gerangschikt, en de verticale doorlopende gaten door het bovenoppervlak en het onderoppervlak van het eerste siliciumsubstraat lopen; — het begin en het eind van willekeurig welke eerste horizontale groef in de spiraalvormige kanalen met de twee verticale doorgaande openingen in verbinding staan, en de twee verticale doorgaande openingen met twee aangrenzende tweede horizontale groeven in verbinding staan.The MEMS electromagnetic motor according to claim 1, wherein - the spiral channels include a plurality of first horizontal grooves, a plurality of second horizontal grooves and a plurality of vertical through-holes; - the first horizontal grooves are arranged on the upper surface of the first silicon substrate, the second horizontal grooves are arranged on the lower surface of the first silicon substrate, and the vertical through-holes pass through the upper surface and the lower surface of the first silicon substrate; - the beginning and end of any first horizontal groove in the spiral channels communicate with the two vertical through-holes, and the two vertical through-holes communicate with two adjacent second horizontal grooves. 4. De MEMS elektromagnetische motor volgens conclusie 1, waarbij — elke solenoïde in de stator tevens twee pinnen bevat, en elk spiraalkanaal eveneens twee pinsleuven bevat; — de twee pinsleuven op het bovenoppervlak van het eerste siliciumsubstraat zijn geplaatst, en in verbinding staan met respectievelijk het begin en het eind van het spiraalkanaal, en de twee pinnen in respectievelijk de twee pinsleuven zijn geplaatst.The MEMS electromagnetic motor according to claim 1, wherein - each solenoid in the stator also contains two pins, and each spiral channel also contains two pin slots; - the two pin slots are placed on the top surface of the first silicon substrate, communicating with the beginning and the end of the spiral channel, respectively, and the two pins are placed in the two pin slots, respectively. 5. De MEMS elektromagnetische motor volgens conclusie 1, waarbij de zachte magnetische kern is vervaardigd van ijzer-nikkel-legering materiaal of ijzer-kobalt-legering materiaal.The MEMS electromagnetic motor according to claim 1, wherein the soft magnetic core is made of iron-nickel alloy material or iron-cobalt alloy material. 6. De MEMS elektromagnetische motor volgens conclusie 1, waarin het aantal permanente magneten van neodymium ijzer borium materiaal zijn vervaardigd, en de roterende schacht van ijzer-nikkel legeringsmateriaal is vervaardigd.The MEMS electromagnetic motor according to claim 1, wherein the plurality of permanent magnets are made of neodymium iron-boron material, and the rotating shaft is made of iron-nickel alloy material. 7. Een werkwijze voor het vervaardigen van een MEMS elektromagnetische motor volgens willekeurig welke van de voorgaande conclusies, welke werkwijze het vervaardigen van de stator en de rotor, en het assembleren van de stator en de rotor omvat om de MEMS elektromagnetische motor te verkrijgen; waarbij, — de werkwijze voor de vervaardiging van de stator omvat: stap 1: het vervaardigen van het bovenste siliciumsubstraat en het onderste siliciumsubstraat van de eerste siliciumsubstraat; waarbij het vervaardigen van het bovenste siliciumsubstraat omvat: het uitvoeren van een eerste thermische oxidatie op een eerste silicium wafer met een eerste vooraf ingestelde dikte; het volgens de structuur van de spiraalvormige kanalen het diep etsen van een aantal eerste horizontale groeven in parallel, bovenste halve delen van een aantal verticale doorgaande openingen en kerngroeven op respectievelijk het bovenoppervlak, het binnenoppervlak en het onderoppervlak van de eerste siliciumwafer na de eerste oxidatie;A method of manufacturing a MEMS electromagnetic motor according to any one of the preceding claims, the method comprising manufacturing the stator and the rotor, and assembling the stator and the rotor to obtain the MEMS electromagnetic motor; wherein, - the stator manufacturing method comprises: step 1: manufacturing the upper silicon substrate and the lower silicon substrate of the first silicon substrate; wherein manufacturing the upper silicon substrate comprises: performing a first thermal oxidation on a first silicon wafer having a first preset thickness; according to the structure of the spiral channels, deeply etching a plurality of first horizontal grooves in parallel, upper half portions of a plurality of vertical through-holes and core grooves on the upper surface, inner surface and lower surface, respectively, of the first silicon wafer after the first oxidation; het uitvoeren van een tweede thermische oxidatie op de eerste siliciumwafer verkregen door het diep etsen van silicium om de bovenste siliciumsubstraat te verkrijgen; het vervaardigen van het onderste siliciumsubstraat omvat: het uitvoeren van een eerste thermische oxidatie op een tweede siliciumwafer met een eerste vooraf ingestelde dikte; het volgens de structuur van de spiraalkanalen diep etsen van de kerngroef, de onderste helft van een aantal verticale doorgaande gaten en een aantal tweede horizontale parallel lopende groeven op respectievelijk het bovenoppervlak, het binnenoppervlak en het onderoppervlak van de tweede siliciumwafer na de eerste oxidatie; het uitvoeren van een tweede thermische oxidatie op de tweede siliciumwafer om de onderste siliciumsubstraat te verkrijgen; stap 2: galvaniseren in de kerngroeven van het bovenste siliciumsubstraat en het onderste siliciumsubstraat om respectievelijk de bovenste kern en de onderste kern te vormen stap 3: het met elkaar uitlijnen van het bovenoppervlak van de bovenste siliciumsubstraat en het onderoppervlak van de onderste siliciumsubstraat, het lijmen van de bovenste siliciumsubstraat en de onderste siliciumsubstraat bij lage temperatuur, en het vormen van de spiraalvormige kanalen in het gelijmde bovenste siliciumsubstraat en het onderste siliciumsubstraat; stap 4: galvaniseren in het spiraalvormige kanaal om solenoiden te vormen; stap 5: overeenkomstig de vorm van het tweede siliciumsubstraat het machinaal bewerken van een eerste doorgaande opening in het midden van het gelijmde bovenste siliciumsubstraat en het onderste siliciumsubstraat, waardoor de stator wordt verkregen; — de werkwijze voor de vervaardiging van de rotor omvat: stap 1: het vervaardigen van het tweede siliciumsubstraat: volgens de vormen van de roterende as en een aantal permanente magneten het diep etsen van de tweede doorlopende opening en een aantal groeven op de derde siliciumwafer na de eerste thermische oxidatie om het tweede siliciumsubstraat te verkrijgen; stap 2: galvaniseren van het aantal permanente magneten in het aantal groeven, en magnetiseren van het aantal permanente magneten om permanente magneetkenmerken te vormen; en stap 3: het inbrengen van de roterende as in de tweede doorgaande opening om de rotor te verkrijgen.performing a second thermal oxidation on the first silicon wafer obtained by deep etching silicon to obtain the upper silicon substrate; manufacturing the lower silicon substrate comprises: performing a first thermal oxidation on a second silicon wafer having a first preset thickness; deep etching the core groove, the bottom half of a plurality of vertical through-holes and a plurality of second horizontal parallel grooves on the top surface, the inner surface and the bottom surface of the second silicon wafer after the first oxidation, respectively, according to the structure of the spiral channels; performing a second thermal oxidation on the second silicon wafer to obtain the lower silicon substrate; step 2: plating in the core grooves of the upper silicon substrate and the lower silicon substrate to form the upper core and lower core respectively step 3: aligning the upper surface of the upper silicon substrate and the lower surface of the lower silicon substrate with each other, bonding of the upper silicon substrate and the lower silicon substrate at low temperature, and forming the spiral channels in the bonded upper silicon substrate and the lower silicon substrate; step 4: electroplating in the spiral channel to form solenoids; step 5: according to the shape of the second silicon substrate, machining a first through hole in the center of the glued upper silicon substrate and the lower silicon substrate, thereby obtaining the stator; - the rotor manufacturing process includes: step 1: manufacturing the second silicon substrate: according to the shapes of the rotating shaft and a number of permanent magnets deep etching of the second through-hole and a number of grooves except for the third silicon wafer the first thermal oxidation to obtain the second silicon substrate; step 2: electroplating the plurality of permanent magnets into the plurality of grooves, and magnetizing the plurality of permanent magnets to form permanent magnet features; and step 3: inserting the rotating shaft into the second through hole to obtain the rotor. 8. De werkwijze volgens conclusie 7, waarbij in stap 2 van de vervaardiging van de stator het galvaniseren om een hogere kern in de kerngroef van het hogere siliciumsubstraat te vormen omvat: — na het uitlijnen van het metaalmasker met het kerngroefpatroon met de kerngroef op het onderoppervlak van het bovenste siliciumsubstraat, het vasthechten van het metaalmasker aan het onderoppervlak van het bovenste siliciumsubstraat; — magnetisch sputteren van metallisch nikkel of metallisch kobalt met een tweede vooraf ingestelde dikte op het onderoppervlak van het bovenste siliciumsubstraat als een zaadlaag, en galvaniseren van ijzer-nikkellegering of ijzer-kobaltlegering met een derde vooraf ingestelde dikte in de kerngroef van het bovenste siliciumsubstraat om dienovereenkomstig de bovenste kern te verkrijgen; waarbij het galvaniseren om een lagere kern in de kerngroef van het lagere siliciumsubstraat te vormen omvat: — na het uitlijnen van het metaalmasker met het kerngroefpatroon met de kerngroef op het bovenoppervlak van het onderste siliciumsubstraat, het plakken van het metaalmasker op het bovenoppervlak van het onderste siliciumsubstraat; — magnetisch sputteren van metallisch nikkel of metallisch kobalt met een tweede vooraf bepaalde dikte op het hogere oppervlak van het lagere siliciumsubstraat als zaadlaag, en galvaniseren van ijzer-nikkel legering of ijzer-kobalt legering met een derde vooraf bepaalde dikte in de kerngroef van het lagere siliciumsubstraat om de lagere kern te verkrijgen.The method of claim 7, wherein in step 2 of manufacturing the stator, plating to form a higher core in the core groove of the higher silicon substrate comprises: - after aligning the metal mask with the core groove pattern with the core groove on the bottom surface of the top silicon substrate, bonding the metal mask to the bottom surface of the top silicon substrate; — magnetic sputtering of nickel metal or cobalt metal of a second preset thickness on the bottom surface of the top silicon substrate as a seed layer, and electroplating of iron-nickel alloy or iron-cobalt alloy of a third preset thickness into the core groove of the top silicon substrate to accordingly obtain the top core; wherein the plating to form a lower core in the core groove of the lower silicon substrate comprises: — after aligning the metal mask with the core groove pattern with the core groove on the upper surface of the lower silicon substrate, sticking the metal mask on the upper surface of the lower silicon substrate silicon substrate; — magnetic sputtering of nickel metal or cobalt metal of a second predetermined thickness on the upper surface of the lower silicon substrate as a seed layer, and electroplating of iron-nickel alloy or iron-cobalt alloy of a third predetermined thickness in the core groove of the lower silicon substrate to obtain the lower core. 9. De werkwijze volgens conclusie 7, waarbij in stap 4 van de vervaardiging van de stator het galvaniseren in de spiraalvormige kanalen om solenoïden te vormen omvat: — magnetisch sputteren van metallisch titaan met een vierde vooraf ingestelde dikte op het onderoppervlak van het onderste siliciumsubstraat als tussenlaag, magnetisch sputteren van metallisch koper met een vijfde vooraf ingestelde dikte op de tussenlaag als zaadlaag, en galvaniseren van metallisch koper in de tweede groef en de verticale doorgaande opening van het spiraalkanaal totdat het metallische koper is gevuld tot de positie van het onderste vlak van de eerste groef; — na magnetisch sputteren van metallisch koper op het hogere oppervlak van het hogere siliciumsubstraat als zaadlaag, galvaniseren van metallisch koper tot het spiraalvormige kanaal volledig met metallisch koper is gevuld om de solenoiden te verkrijgen.The method of claim 7, wherein in step 4 of the manufacture of the stator, electroplating in the spiral channels to form solenoids comprises: - magnetic sputtering of metallic titanium of a fourth preset thickness onto the lower surface of the lower silicon substrate as interlayer, magnetic sputtering of metallic copper with a fifth preset thickness on the interlayer as a seed layer, and electroplating of metallic copper in the second groove and the vertical through hole of the spiral channel until the metallic copper is filled to the position of the bottom face of the first groove; — after magnetic sputtering of metallic copper on the higher surface of the higher silicon substrate as a seed layer, electroplating of metallic copper until the spiral channel is completely filled with metallic copper to obtain the solenoids. 10. De werkwijze volgens conclusie 7, waarbij in stap 1 van het vervaardigen van de stator, het vervaardigen van het bovenste siliciumsubstraat verder omvat: — volgens de structuur en positie van de twee pinnen, diep etsen van twee pinsleuven op het bovenoppervlak van de eerste siliciumwafer na de eerste oxidatie; dienovereenkomstig, — waarbij stap 4 van de vervaardiging van de stator voort het galvaniseren in de twee pinsleuven omvat om de twee pinnen te vormen.The method of claim 7, wherein in step 1 of manufacturing the stator, manufacturing the top silicon substrate further comprises: - according to the structure and position of the two pins, deep etching two pin slots on the top surface of the first silicon wafer after the first oxidation; accordingly, - wherein step 4 of the stator fabrication further comprises electroplating in the two pin slots to form the two pins.
NL2030459A 2022-01-07 2022-01-07 MEMS Electromagnetic Motor and Manufacturing Method Thereof NL2030459B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2030459A NL2030459B1 (en) 2022-01-07 2022-01-07 MEMS Electromagnetic Motor and Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2030459A NL2030459B1 (en) 2022-01-07 2022-01-07 MEMS Electromagnetic Motor and Manufacturing Method Thereof

Publications (1)

Publication Number Publication Date
NL2030459B1 true NL2030459B1 (en) 2022-11-24

Family

ID=84237951

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2030459A NL2030459B1 (en) 2022-01-07 2022-01-07 MEMS Electromagnetic Motor and Manufacturing Method Thereof

Country Status (1)

Country Link
NL (1) NL2030459B1 (en)

Similar Documents

Publication Publication Date Title
EP0619642B1 (en) Micro-motor and method of fabrication
Merzaghi et al. Development of a hybrid MEMS BLDC micromotor
CN109326421B (en) MEMS (micro-electromechanical system) annular solenoid inductor and manufacturing method thereof
CN109741903B (en) MEMS linear solenoid inductor and manufacturing method thereof
JP7267641B2 (en) MEMS solenoid inductor and manufacturing method thereof
US5685062A (en) Self-assembly fabrication method for planar micro-motor
KR20080086444A (en) Micromachined reluctance motor
NL2030459B1 (en) MEMS Electromagnetic Motor and Manufacturing Method Thereof
Yang et al. An axial flux electromagnetic micromotor
CN109921527B (en) MEMS electromagnetic motor and manufacturing method thereof
US7480981B2 (en) Method of producing hard disk drives of reduced size
JP7378166B2 (en) MEMS solenoid transformer and its manufacturing method
CN114337172A (en) Axial flux type PCB winding permanent magnet synchronous motor and stator thereof
JP4715126B2 (en) Manufacturing method of micro rotating device and micro rotating device manufactured by this method
Wang et al. Design and fabrication of integrated power inductor based on silicon molding technology
CN109599249A (en) A kind of back-shaped solenoid transformer of MEMS and its manufacturing method
JP2001267167A (en) Method for manufacturing coil and method for manufacturing coil assembled body
AU2020101712A4 (en) A MEMS miniaturized solenoid transformer and its manufacturing method
EP3393966B1 (en) A method for manufacturing a hollow mems structure
CN109390144B (en) MEMS annular solenoid transformer and manufacturing method thereof
AU2020101768A4 (en) A MEMS miniaturized solenoid inductor and manufacturing method thereof
Sun et al. A MEMS Voice Coil Motor with a 3D Solenoid Coil
JPH09121490A (en) Method of manufacturing coil retainer
Hansen et al. Development and fabrication of linear and multi-axis microactuators
JPH0646548A (en) Manufacture of electromagnetic motor